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In the continuing search for new cerebrospinal fluid (CSF) biomarkers for Alzheimer’s dis-
ease (AD), reasonable candidates are the secretase enzymes involved in the processing
of the amyloid precursor protein (APP), as well as the large proteolytic cleavage fragments
sAPPα and sAPPβ. The enzymatic activities of some of these secretases, such as BACE1
and TACE, have been investigated as potential AD biomarkers, and it has been assumed
that these activities present in human CSF result from the soluble truncated forms of the
membrane-bound enzymes. However, we and others recently identified soluble forms of
BACE1 and APP in CSF containing the intracellular domains, as well as the multi-pass
transmembrane presenilin-1 (PS1) and other subunits of γ-secretase. We also review
recent findings that suggest that most of these soluble transmembrane proteins could
display self-association properties based on hydrophobic and/or ionic interactions leading
to the formation of heteromeric complexes. The oligomerization state of these potential
new biomarkers needs to be taken into consideration for assessing their real potential as
CSF biomarkers for AD by adequate molecular tools.
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Introduction

Alzheimer’s disease (AD) is an age-related neurodegenerative disorder recognized as the most
common cause of dementia among the elderly. The pathologic characteristics of AD are neu-
rodegeneration and proteinaceous deposits, including extracellular plaques composed mostly of
β-amyloid peptides (Aβ) and intracellular tangles of the microtubule-associated protein tau abnor-
mally hyperphosphorylated (P-tau). Both pathological effectors, Aβ and P-tau, can be monitored in
cerebrospinal fluid (CSF). In late-onset AD, concentrations of tau and P-tau in CSF are increased
and probably reflect neuronal damage, but levels of Aβ peptides are decreased. These changes can
be measured in CSF before the onset of any other symptoms, and, therefore, they can be used as a
diagnostic marker for the disease [for a recent review, see Ref. (1)]. Although numerous laboratories
have reported increased levels of P-tau and total tau (T-tau) in the CSF of AD patients, they are not
specific, and also increase in other neuropathological disorders (2, 3). It is well recognized that Aβ
peptides, and especially the Aβ42 species, are the most specific CSF biomarkers for AD.

According to the amyloid hypothesis, accumulation of Aβ in the brain, resulting from an
imbalance between production and clearance, is the primary influence driving AD pathogenesis (4).
The Aβ peptide is generated by processing a larger type I transmembrane spanning glycoprotein,
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the amyloid precursor protein (APP), through the successive
action of proteolytic enzymes called secretases. Sequential pro-
cessing of APP begins with either the action of α-secretase or β-
secretase, followed by γ-secretase cleavage. When cleavage is car-
ried out by β- and γ-secretase, the so-called amyloidogenic path-
way, a 36–43 amino acid peptide is generated since γ-secretase
acts on a domain with multiple potential cleavage sites (5). The
Aβ40 peptide is themost common species, while theAβ42 variant
is the most amyloidogenic form of the peptide associated with
AD progression. However, in the non-pathological condition,
the majority of APP molecules are cleaved through the non-
amyloidogenic pathway by the sequential action of α- and γ-
secretases. α-Secretase cleaves APP within the Aβ domain, pre-
cluding the generation of the Aβ peptide [for a review, see Ref.
(6)]. The existence in CSF of several shorter isoforms in addition
to Aβ40 and Aβ42 has been explained by an alternative APP
processing pathway involving concerted cleavages of APP by α-
and β-secretase (7).

The predisposition for self-association of Aβ42 determines that
while Aβ42 content is increased in the AD brain, its levels in
CSF are decreased presumably due to its increasing deposition in
brain tissue (2). In this context, with two dynamics playing out
in opposite directions within the brain, increasing Aβ production
and increasing deposition, the interpretation of CSF changes in
Aβ levels in pre-symptomatic stages seems difficult. In fact, Jack
et al. (8) proposed thatAβ-plaque biomarkers are dynamic early in
the disease before the appearance of clinical symptoms, but have
largely reached a plateau by the time clinical symptoms appear,
determining that CSF Aβ does not change significantly over time
in patients with AD. Moreover, in this context, it is difficult
to anticipate, thus to evaluate, the outcomes expected from the
CSF biochemical assessments of Aβ in AD subjects consequence
of effective therapy with β- or γ-secretase inhibitors, potential
disease-modifying therapeutics under development (9, 10).

In accordance with the mentioned challenges, there is a need to
identify additional β-amyloid-related markers of AD. Reasonable
candidates are proteins, such as secretases, involved in the patho-
logical processing of APP, and the large proteolytic cleavage frag-
ments sAPPα and sAPPβ. Sincemost of these secretases are trans-
membrane proteins, their assessments in CSFwere not considered
until recent years. The purpose of this article is to review recent
evidence about the presence of secretase components in CSF and
their potential as AD biomarkers. In addition, we summarize
our recent findings about the presence of soluble full-length APP
(sAPPf) in CSF and their oligomerization into heteromers. Our
studies demonstrated that sAPP heteromers contribute to the
estimation of sAPPα and sAPPβ levels, which needs to be taken
into consideration for their assessment by ELISA. The suitability
of applying adequate molecular tools for the assessment in CSF
of hydrophobic proteins and soluble heteromeric aggregates is
absolutely necessary to evaluate their potential as biomarkers.

Soluble Full-Length and Heteromers of
sAPP in CSF

The processing of APP begins with the action of either α-
secretase or β-secretase, initiating mandatory pathways. The

initial shedding by α-secretase or β-secretase releases large sol-
uble proteolytic cleavage fragments of APP, sAPPα and sAPPβ,
respectively, both present in human CSF (11, 12). Since amy-
loidogenic processing of APP is expected to be altered in the
Alzheimer brain, both large sAPP fragments have been postu-
lated as potential new AD biomarkers, but no consistent changes
in CSF sAPPα and sAPPβ levels have been identified to date
[see review by Perneczky et al. (13)]. Interestingly, it has been
suggested that full-length APP containing an intact cytoplasmic
domain also exists as a soluble form (sAPPf) (14, 15). Recently, we
confirmed that sAPPf is present in human CSF and demonstrated
its contribution when estimating levels of large sAPP fragments
(16). In consequence, the 6E10 antibody, a widely used anti-APP
antibody that recognizes an epitope present in sAPPα and absent
in sAPPβ, will detected not only sAPPα, but also sAPPf in CSF.
Therefore, the use of 6E10 or similar antibodies in contraposition
to pan-specific antibodies for the C-terminus of sAPPα should
be considered as a contributing factor for contradictory find-
ings between laboratories. Moreover, we have demonstrated that
sAPPf co-exists in CSF with sAPPα and sAPPβ, and all forms are
capable of assembling into heteromers [(16); see also Figure 1A].
TheAPPoligomerization status is particularly relevant, sincemost
quantification of sAPPα and sAPPβ in CSF from AD subjects
relies on ELISA determinations developed formonomeric species.
Our data indicate that sAPP heteromers interfere with the mea-
surement of sAPPα and sAPPβ in commercially available ELISA
kits. Interestingly, an unexpected positive correlation has been
consistently reported between both forms, indicating a similar
shift for sAPPα and sAPPβ levels (17–20). Since the production
of sAPPβ should be inversely proportional to that of sAPPα, this
is an unexpected finding that we attributed, at least in part, to the
existence of sAPPα/sAPPβ heteromers. In this context, early stud-
ies assessing sAPPα and sAPPβ levels by Western blot failed to
demonstrate this positive correspondence (21). The assessment of
sAPPα/sAPPβ levels is also of interest tomonitor the biochemical
effect of drugs targeting Aβ in clinical trials (22), particularly for
β-/γ-secretase inhibitors since discouraging reports question this
therapeutic strategy, even the amyloid cascade hypothesis (23). In
this regard, β-secretase inhibition resulted in sAPPβ significant
decrease, but also in increased concentration of sAPPα (24),
suggesting that inhibition of β-secretase in humans resulted in a
compensatory increase in non-amyloidogenic APP cleavage. The
simultaneous determination of sAPPα and sAPPβ in CSF by pro-
tocols that prevents underestimation by heteromeric association
is mandatory.

In conclusion, an optimal approach to quantify sAPPα and
sAPPβ in CSF has been based on ELISA determinations, but the
presence of heteromeric complexes of sAPP obligate adjusting
protocols. Moreover, the characterization of a soluble transmem-
brane protein might be hindered by the difficulty in distinguish-
ing it from the truncated species generated by cleavage of the
transmembrane protein. The existence of different sAPP isoforms,
generated from alternative exon splicing (26), adds complexity to
the determination of sAPP as CSF biomarkers, but needs to be
taken into consideration since large species of sAPP, which should
correspond to APP751/770, appeared to increase AD CSF (16).
Analysis of sAPPf splicing isoforms may be of particular interest
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FIGURE 1 | sAPP and PS1 complexes in CSF. (A) APP complexes from
CSF samples analyzed by blue native-PAGE and resolved with a C-terminal
antibody (from Sigma), confirmed the presence of APP complexes. A CSF
sample denatured by boiling at 95°C for 5min under fully reducing
conditions (Dn) was also analyzed by blue native-PAGE to warrant the
migration of the monomeric sAPP band. A similar banding profile was
obtained with sAPPα and sAPPβ specific antibodies (not shown). See Ref.
(16) for further details. (B) CSF samples were fractionated in 5–20%
sucrose density gradients (left panel: same CSF sample prior fractionation).

The fractions (collected from the top) were immunoblotted for PS1 with an
anti N-terminal antibody (from Calbiochem). Enzymes of known
sedimentation coefficient, β-galactosidase (G, 16.0S; ~540 kDa), catalase
(C, 11.4S; ~232 kDa), and alkaline phosphatase (P, 6.1S; ~140–160 kDa)
were used as internal markers. Incubation of blots with antibodies for the
different γ-secretase subunits confirmed that APH1 and PEN2, but not
nicastrin, are present in CSF as complexes (see Ref. (25) to complete
information). In all analyses performed on PS1, denaturation before
electrophoresis was conducted at 50°C.

and needs to be more specifically addressed. More research is
needed to design an appropriate strategy and assays for CSF
sAPP. The validation of sAPP as a CSF biomarker may be of
particular interest for assessing the effect of clinical trials based
on β-secretase inhibition, where a decrease in newly generated
sAPPβ is expected, but with an unclear effect on newly generated
sAPPα (27).

β-Secretase and TACE/α-Secretase
Activities in CSF

The major neuronal β-secretase has been identified as beta-site
APP cleaving enzyme 1 [BACE1; (28)], though other proteases
such as BACE2 and cathepsins might be involved as well (29,
30). Interestingly, both BACE1 protein and activity levels can be
measured in CSF (31), but, to date, accurate determination of
BACE1 remains a great challenge and there is no consensus as to
whether its levels are consistently affected in CSF as dementia pro-
gresses (32). Most published results suggest that BACE1 activity
increases in AD, preferentially in MCI cases with prodromal AD
(31, 33, 34). However, such biochemical analysis often relies on
APP fluorogenic substrates with modified APP β-cleavage sites,
whose discrimination between BACE1 from other β-secretase
enzymes like BACE2 and cathepsins is unclear [for a review, see
Ref. (32)]. Currently, it is not known whether BACE1 activity
reflects BACE1 protein content since it correlates poorly (33),
and it is also unknown if the values measured are due to full-
length BACE1 or a truncated form. Mature BACE1 holoprotein
contains a single transmembrane domain and a short intracel-
lular C-terminal (28). Membrane-bound BACE1 can be partly
cleaved within its extracellular domain to generate soluble BACE1
for secretion (35, 36). Accordingly, it has been assumed that

the BACE1 present in CSF is a truncated soluble form of the
originally membrane-bound BACE1 missing the transmembrane
and intracellular domains (37). Indeed, some studies failed to
demonstrate the presence of BACE1 containing the C-terminal
domain in human CSF and plasma (38, 39), but others detected
immunoreactivity with BACE1C-terminal antibodies (25, 31, 33),
suggesting that full-lengthBACE1 exists in this fluid. The presence
of full-length BACE1, together with its truncated form, has also
been demonstrated in conditioned media from cultured neurons
(40). The presence in CSF of an immature form of BACE1 protein,
poorly active or inactive, has also been suggested (33). Futurework
will be required to elucidate if both the full-length and truncated
BACE1 account for β-secretase in CSF.

Furthermore, similarly to APP, BACE1 occurred as a dimer
in human brain tissue (41, 42). Therefore, we cannot discard the
occurrence of BACE1 forming complexes in CSF, which needs
to be taken into consideration, especially for the attempts to
develop BACE1 ELISA assays (33, 43). In conclusion, extensive
work remains to be accomplished to reinforce the interest of using
CSF BACE1 levels and activity as AD biomarkers.

Regarding α-secretase, at least three members of the ADAM (a
disintegrin and metalloproteinase) family, ADAM10, ADAM17
(TACE), and ADAM9 have been proposed as α-secretases (44),
and other ADAM family members, such as ADAM8, has also
demonstrated efficiency in cleavage of APP (45). Evidence indi-
cates that ADAM10, but not ADAM9 or ADAM17, is the enzyme
acting as a physiologically relevant constitutive α-secretase in vivo
(46, 47). To our knowledge, the occurrence of ADAM-10/α-
secretase activity in either CSF or plasma has not been reported
to date, and ADAM10 has so far only been found in platelets (48)
and other blood cells (49). However, elevated activity levels for
ADAM17/TACE activity have been found in both CSF (50) and
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plasma (51, 52) from subjects with AD. TACE releases several
transmembrane proteins into soluble forms, including APP, but
also tumor necrosis factor α (TNFα) receptors (53). The synthetic
peptide used for TACE enzymatic activity assays in CSF and
plasma consists of a TACE-sensitive TNF sequence surrounding
the TACE-specific cleaving site (50); thus, it constitutes a sub-
strate favorable for TACE compared to ADAM10. α-Secretase
accurately refers to the activity targeting APP and generating
sAPPα; nonetheless, the general requirements for secretase cleav-
age are not strict and we cannot exclude the possibility that other
enzymes, including ADAM10, may cleave peptides in human
CSF and plasma. The presence in CSF of other ADAM family
members, including ADAM10, deserves study.

Moreover, ADAM proteases, similarly to BACE1, are type I
transmembrane proteins, but also include secreted isoforms (44).
Indeed, ADAM10 and ADAM17 have been shown to be secreted
outside the cells in exosomes (54). Thus, the occurrence of TACE
activity in CSF and plasma has been attributed to soluble isoforms
shedding from cell membranes after the cleavage of TNFα and
the TNF receptors. Nonetheless, TACE protein has only been
studied in plasma by Western blot using an anti-TACE polyclonal
antibody (52), but not by the combination of N- and C-terminal
antibodies allowing characterization of the full-length and trun-
cated forms. Again, a parallel study of protein and enzyme activity
is pending in order to define the most sensitive molecular tools
necessary for using ADAM as CSF biomarkers.

Presenilin-1 and Other γ-Secretase
Components are Present in CSF

γ-Secretase is an intramembrane protease complex composed of
presenilin-1 (PS1), nicastrin, APH1 (anterior pharynx-defective
1), and PEN2 (presenilin enhancer 2) (55). Since most of the γ-
secretase components contain several transmembrane domains,
their presence in CSF was not assessed until recently. PS1
is a transmembrane aspartyl protease and the catalytic sub-
unit of γ-secretase, and it is known to undergo endoprote-
olytic cleavage as part of its maturation, generating N- and C-
terminal fragments (NTF and CTF) (56), with six- and three-
transmembrane domains, respectively (57). APH1 also displays
seven-transmembrane domains and PEN2 two transmembrane
domains; only nicastrin contains a single transmembrane domain
[for a review, see Ref. (58)]. Previously, the presence of solu-
ble CTF–PS1 was reported in the media from cultured neurons
(59). Recently, we demonstrated the presence of 100–150-kDa
heteromeric complexes in CSF, composed of NTF and CTF PS1
[(25); see also Figure 1B]. The presence of the NTF and 20-
kDa CTF fragments was only clearly detectable in post-mortem
CSF, where artifacts are likely to appear. APH1 and PEN2, but
not nicastrin, co-exist within these CSF–PS1 complexes. We were
unable to detect γ-secretase activity in human CSF, and pre-
sumed that CSF–PS1 complexes may result from non-specific
aggregation of these transmembrane proteins with large num-
bers of hydrophobic regions. PS1 aggregates have previously been
described as temperature-sensitive (60); similarly, CSF–PS1 com-
plexes are only detectable when denaturation before electrophore-
sis is conducted at 50°C (15min). Thus, analysis performed with

samples denatured at 98°C can underestimate and fail to detect
PS1 complexes. Ultracentrifugation in sucrose density gradients
confirmed the existence of stable complexes of 100–150-kDa, but
also showed that large complexes, which sediment in regions
closer to 200 and 250 kDa, are unstable during electrophoresis
under denaturing conditions. Interestingly, when we assessed
whether CSF–PS1 levels are altered in AD, ventricular post-
mortem samples (disease at term) display higher levels of PS1
than those present in non-demented control cases, particularly the
stable complexes resolved by sucrose density gradients. Lumbar
CSF samples from probable AD cases (early stages of the disease)
display only significant differences in the proportion of the PS1
stable complex, but not in total levels (25). The amount of PS1
stable complexes correlates with Aβ42. Our results suggest that
the early and more significant phenomenon is the change in the
dynamics of the assembly of PS1 complexes. The change in the
proportion of stable complexes appears as a better marker for
discriminating pathological samples than the estimation of total
PS1 protein levels. Further characterization of CSF–PS1 com-
plexes has yet to be conducted in order to define the appropri-
ate methodological approach for evaluating their feasibility as a
potential new AD biomarker, as well evaluation of its diagnos-
tic performance in comparison with existing biomarkers such
as Aβ.

Conclusion

Because CSF is in direct contact with the extracellular space of
the central nervous system, biochemical changes in the brain
could potentially be reflected in CSF. It is expected that poten-
tial AD biomarkers involved in AD pathogenesis will mirror
AD progression. However, to date, no single biomarker has
reached expectations. Several models of CSF secretion have
been proposed (61–63), but the relationship with protein con-
tent and cellular origin of CSF protein composition remains
unclear. Moreover, increasing evidence indicates the occurrence
of soluble full-length membrane proteins in CSF. The mecha-
nisms by which these membrane-bound proteins reached the
CSF are unknown. Active secretion is unlikely, and it is still
unclear if passive release from brain cells or neuronal death may
be major contributing factors, as recently observed for BACE1
(43). Most of these forms could display self-association prop-
erties based on hydrophobic and/or ionic interactions, result-
ing in the formation of complexes. Indeed, proteins like pre-
senilins, with large numbers of hydrophobic regions, may be
highly unstable in CSF, and spontaneously form complexes.
The occurrence of different types of protein complexes in CSF,
forming heterogeneous components, should be considered to
accurately determine their levels. In this sense, the presence
in CSF of soluble oligomers, normally associated with protein-
misfolding diseases, has been suggested for multiple sclerosis
patients (64).

Our understanding of the potential roles for APP, BACE1,
ADAM proteins, PS1, and other related proteins in CSF is lacking,
but of interest in order to design adequate quantification strategies
to assess their real potential as biomarkers for AD. Ultimately, it
is anticipated that a combination of CSF biomarkers might serve
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for early diagnosis, but also for assessing disease progression and
especially the efficiency of secretase inhibitors during the course
of clinical trials. In this review, we presented evidence that most of
the proteins related with APP processing are measurable in CSF.
More investigation should focus on the possibility of monitoring
soluble forms of APP and secretase components, and to evaluate
the progress and feasibility of developingmolecular tools for these
potential new CSF biomarkers for AD.
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