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Abstract: Chimeric antigen receptor (CAR)-T cell therapy is undeniably a promising tool in combating
various types of hematological malignancies. However, it is not yet optimal and a significant number
of patients experience a lack of response or relapse after the treatment. Therapy improvement requires
careful analysis of the occurring problems and a deeper understanding of the reasons that stand
behind them. In this review, we summarize the recent knowledge about CAR-T products’ clinical
performance and discuss diversified approaches taken to improve the major shortcomings of this
therapy. Especially, we prioritize the challenges faced by CD19 CAR-T cell-based treatment of B cell-
derived malignancies and revise the latest insights about mechanisms mediating therapy resistance.
Since the loss of CD19 is one of the major obstacles to the success of CAR-T cell therapy, we present
antigens that could be alternatively used for the treatment of various types of B cell-derived cancers.

Keywords: CAR-T cells; adoptive immunotherapy; CD19 antigen; B-ALL; B cell lymphoma; resistance
mechanism

1. Introduction

In the last decade, chimeric antigen receptor (CAR)-modified T cells have emerged
as a breakthrough treatment for patients with relapsed/refractory (r/r) B cell-derived
malignancies. Until now, B cell acute lymphoblastic leukemia (B-ALL) and B cell lymphoma
patients have benefited most from this clinically-approved cellular therapy. The survival
prognosis for r/r B-ALL and diffuse large B cell lymphoma (DLBCL) patients who receive
conventional treatment is still not satisfactory. Before the approval of CD19 CAR-T cells,
the 3-year survival rate after the first relapse for adult B-ALL was 11% [1], whereas for
pediatric patients the event-free survival did not exceed 50% [2,3]. For relapsed DLBCL
patients, 4-year progression-free survival varied between 20 and 40% [4]. Similar to r/r
B cell cancers, plasma cell-derived malignancy—multiple myeloma (MM) is difficult to
manage clinically, especially due to an increasing resistance to the available treatment
regimens [5,6]. Therefore, very recently, CAR-T therapy targeting B cell maturation antigen
(BCMA) was introduced for the treatment of r/r MM patients [7].

Unfortunately, despite the undeniable success of CAR-T cell therapy in hemato-
oncology, there are still patients who progress after this therapy or develop resistance
mechanisms that avert the eradication of malignant cells. Taking into consideration major
CAR-T pitfalls, herein, we describe novel strategies aimed at boosting the antitumor effects
of this highly personalized treatment. In particular, we present improvements in the area
of CAR-T cells persistence and the management of effector cells exhaustion. Furthermore,
we highlight the mechanisms exploited by malignant B cells to escape the CD19 CAR-T
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treatment. Indeed, we characterize various factors contributing to the development of
resistance, both related and unrelated to the CD19 antigen loss. Lastly, we describe surface
molecules that could be used as new promising targets for CAR-T adoptive therapy in
B cell and plasma cell-derived blood cancers.

2. Clinically Available CAR-T Therapies

Currently, there are four different CD19-targeting, and one BCMA-targeting CAR-T
products, approved by American and European Drug Agencies (Food and Drugs Ad-
ministration and European Medicines Agency, respectively). All these products are used
for the treatment of malignancies derived from abnormal B cells at different stages of
their differentiation.

The general structure of a CAR construct includes four parts: (1) an extracellular
antigen-binding domain, (2) a hinge, (3) a transmembrane helix, and (4) an intracellular
signaling domain. Accordingly, decades of research in the area of CAR design have led to
the development of five CAR-T cell generations, each of them differing in an intracellular
signaling milieu composition. In fact, the first CAR-T generation contains only a single
immunoreceptor tyrosine-based activation motif (ITAM) domain derived from a CD3ζ
chain of the T cell receptor (TCR). Further approaches have involved adding one (second
generation) or two (third generation) co-stimulatory domains (mostly CD28 and/or 4-1BB)
that enhance CAR-T cells activation and persistence [8–10]; however, in order to addition-
ally boost the CAR-T cells activation, proliferation, and killing potential, fourth and fifth
CAR-T generations were designed [11]. Such CAR-T cells are armored with additional
intracellular domains responsible for specific cytokines production (e.g., IL-12, IL-2). These
CAR-T cells are currently being evaluated in the research phase.

CAR-T cells products used for therapy of hematological patients represent the sec-
ond CAR-T cell generation, with either a CD28 or 4-1BB (CD137) co-stimulatory domain.
Since 2017, four CAR-T cell products aimed to target CD19 were approved based on pivotal
phase 1/2 clinical trials, all of which are still active. Initial clinical responses for each trial
and appropriate follow-up studies results (with observations lasting longer than 2 years)
are summarized in Table 1.
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Table 1. Clinically approved CAR-T therapies in B cell and plasma cell-derived malignancies.

Generic Name
and Brand Name Indication

Target
(Single Chain

Variable
Fragment, scFv)

Signaling
Domain/

Hinge and TM
Gene

Editing Vector
First

FDA/EMA
Registration Date

Approval-Based
Clinical Trials,

Number of
Participants

CR or
ORR Rate

Long-Term
Follow-Up

Studies,
Number of
Participants

Survival
(Median

Follow-Up
in Years)

Tisagenlecleucel
(KYMRIAH)

R/R pediatric and
YA B-ALL

CD19
(FMC63)

4-1BB-
CD3ζ/CD8α Lentivirus

August 2017/
August 2018

ELIANA, n = 75
[NCT02435849] [12] CR 60% NCT01593696, n = 50

[13]
median OS
10.5 months
(4.8 years)

R/R adult DLBCL May 2018/
August 2018

JULIET, n = 93
[NCT02445248] [14] CR 40% JULIET follow-up,

n = 115 [15]

median OS
11.1 months
(3.4 years)

Axicabtagene
Ciloleucel

(YESCARTA)

R/R adult DLBCL
(including DLBCL
arising from FL)

CD19
(FMC63)

CD28-
CD3ζ/CD28 Retrovirus

October 2017/
August 2018

ZUMA-1, n = 101
[NCT02348216] [16] CR 54% ZUMA-1 follow up,

n = 101 [17]
median OS
25.8 months

(4 years)
R/R adult PMBCL

R/R adult FL
Mar 2021/

not yet
registered

ZUMA-5, n = 84
[NCT03105336] [18] CR 79% not yet

available
not yet

available

Brexucabtagene
Autoleucel

(TECARTUS)

R/R adult
MCL CD19

(FMC63)
CD28-

CD3ζ/CD28 Retrovirus

July 2020/
December 2020

ZUMA-2, n = 60
(efficacy group)

[NCT02601313] [19]
CR 67% not yet

available
not yet

available

R/R adult
B-ALL

October 2021/
not yet registered

ZUMA-3, n = 55
[NCT02614066] [20] CR 56% not yet

available
not yet

available

Lisocabtagene
Maraleucel

(BREYANZI)

R/R adult DLBCL
(including DLBCL

arising from
indolent lymphoma) CD19

(FMC63)
4-1BB-CD3ζ/IgG4

and CD28
Lentivirus

May 2021/
pending

registration

TRANCEND
NHL 001,
n = 256

[NCT02631044]
[21]

CR 53%
TRANCEND

NHL 001 follow-up,
n = 257 [22]

median OS
27.3 months

(2.4 year)
R/R adult PMBCL

R/R FL3B

Idecabtagene
Vicleucel

(ABECMA)
R/R MM BCMA 4-1BB-

CD3ζ/CD8α Lentivirus Mar 2021/
August 2021

KarMMa, n = 100
(efficacy group)
[NCT03361748]

[23,24]

ORR 72%
sCR 28%

not yet
available

not yet
available

Note: Above 2 years of follow-up was considered long-term. Abbreviations: B-ALL—B cell acute lymphoblastic leukemia, CR—complete response, DLBCL—diffuse large B cell
lymphoma, FL—follicular lymphoma, FL3B—follicular lymphoma grade 3B, MCL—mantle cell lymphoma, MM—multiple myeloma, ORR—overall response rate, OS—overall survival,
PMBCL—primary mediastinal large B cell lymphoma, R/R—relapse/refractory, sCR—stringent complete response, YA—young adults.
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Out of these four products only tisagenlecleucel (Kymriah) is registered for children
and young adults (up to 25 years old) with B-ALL, who are refractory to previous treatment
regimens, or with more than two relapses. Considering that it was the first CAR-T cell ther-
apy approved, there is the longest follow-up available for this product (median 4.8 years),
showing complete response (CR) in more than 60% of the patients and overall survival
(OS) equal to 10.5 months [13]. On the other hand, the access to CD19-targeted CAR-T
therapy for adult r/r B-ALL patients was not granted until recently, when in October
2021 the FDA approved brexucabtagene autoleucel (Tecartus) for such indication. The
registration was based on the multicenter ZUMA-3 trial [20,25]. The efficacy estimation
group in the phase 2 ZUMA-3 trial included 55 adult previously treated patients, of which
27% represented a high-risk group, bearing BCR-ABL1 translocation [20]. CR was achieved
in 56% of the patients, and more importantly, CR or complete remission with incomplete
hematological recovery (CRi) was reached in 60% of the patients previously submitted
to blinatumomab, another CD19-targeted immunotherapy. The side effects post CAR-T
infusions were generally manageable. Taking into consideration the combined results of
phases 1 and 2, the median duration of remission in this trial was estimated by the investi-
gators at 13.4 months; however, a longer follow-up is needed to draw stronger conclusions
regarding safety profiles and the durability of responses.

In addition to adult B-ALL, brexucabtagene autoleucel is also approved for the treat-
ment of mantle cell lymphoma (MCL). The results gathered during ZUMA-2 trial showed
encouraging responses in heavily pre-treated r/r MCL patients, with CR achieved in 67%
after single CAR-T administration [19]. Common adverse events following CAR-T therapy
occurred in the majority of treated patients, however, they were mostly manageable. A one-
year follow-up of the ZUMA-2 trial presented at the 2020 ASH Annual Meeting showed
that with a median of 17.5 month-long observations, the CR was maintained in 67% of
the patients [26].

For the treatment of B cell lymphomas, several CAR-T products are available. Based on
JULIET [14] and ZUMA-1 [16] trials, tisagenlecleucel (Kymriah) and axicabtagene ciloleucel
(Yescarta), respectively, were first to be approved for the treatment of various types of
B cell lymphoma, including adult r/r DLBCL, DLBCL arising from follicular lymphoma
(FL), or primary mediastinal large B cell lymphoma (PMBCL), for the patients who failed
after two or more lines of systemic therapy (see Table 1 for more details). Importantly,
long-term follow-up of patients’ status within these trials (median follow-up exceeding
3 years) provided data showing a superior efficacy of Yescarta, with median OS reach-
ing 25.8 months [17] as compared to 11.1 months for Kymriah [15]. This discrepancy,
however, could arise from the fact that most of the patients in the JULIET study received
a bridging therapy (e.g., rituximab, nucleoside analogues, corticosteroids), whereas in
the ZUMA-1 trial bridging chemotherapy was not allowed, with the exception of corti-
costeroids administration. Thus, one can speculate that the JULIET trial included more
patients with aggressive lymphomas; however, the direct impact of bridging therapies on
CAR-T responses should not be excluded.

The year 2021 was extremely rich in FDA/EMA approvals for CAR-T therapies. In
addition to the aforementioned Tecartus approval for r/r adult B-ALL, the additional
registrations included axicabtagene ciloleucel (Yescarta) for r/r adult FL [18], and lisocabta-
gene maraleucel (Breyanzi) for adult r/r DLBCL, r/r PMBCL, grade 3B FL [21]. Moreover,
in 2021, we witnessed the first approval of a BCMA-directed CAR-T therapy designated for
adult r/r MM patients who had failed at least four previous lines of treatment [24]. Indeed,
the efficacy of idecabtagene vicleucel (Abecma) was evaluated in the pivotal KarMMa
clinical trial [23]. Stringent CR (sCR) was detected in only 28%, however, the CAR-T cells
were administered to patients with a significant number of prior lines of treatment (median
of 6 lines) [24]. Importantly, 65% of the patients who achieved sCR had a durable response
for at least 12 months. All in all, CAR-T cells targeting BCMA seem to be an attractive treat-
ment option for heavily pre-treated, relapsed MM patients. Certainly, a longer follow-up is
still required to estimate the safety profiles and survival rates in a long run.
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3. Managing Major Pitfalls of CAR-T Cell Therapy

Despite the phenomenal success of CD19 CAR-T therapy, it is not without limitations
and side effects. The challenges faced by CAR-T cell therapy are related to both effector
and target cells and include: (1) proliferation, persistence, and exhaustion of CAR-T cells,
(2) side effects, (3) immunosuppressive tumor microenvironment, and (4) tumor intrinsic
factors that account for the development of resistance.

The obstacles related to effector CAR-T cells are elegantly described by others [27–31].
Therefore, below we only shortly present currently investigated and implemented solutions
to modulate insufficient CAR-T cells persistence in vivo, and exhaustion of the effector
cells. Considering, however, that more and more data is now gathered on tumor related
features contributing to immunotherapy resistance, in this review we will mostly focus on
limitations and solutions concerning target cells. In particular, we portray the mechanisms
responsible for resistance to CD19 CAR-T therapy, both CD19-dependent and independent
(Section 4), and new antigens explored in hemato-oncology (Section 5).

3.1. Improvement of CAR-T Cells Persistence

The sufficient number of viable and functional CAR-T cells is one of the major con-
tributors to the therapy’s success [16,32]. The poor persistence even after the achieve-
ment of complete remission is considered to be the main reason for the development of
CD19-positive relapses [33,34]. One of the features affecting CAR-T cell persistence and
proneness to exhaustion is the co-stimulatory domain incorporated in the CAR construct.
CD28 and 4-1BB are the most frequently exploited co-stimulatory domains in pre-clinically
tested and in clinically available CAR products (Table 1). Several studies have demon-
strated a higher proliferative capacity and longer in vivo persistence of CAR-T cells bearing
a 4-1BB domain as compared to CD28 [35,36]. This effect was at least partly attributed to
the 4-1BB-mediated activation of non-canonical nuclear factor κB (ncNF-κB) signaling in
CAR-T cells [37]; however, as CARs with a CD28 domain exhibit more rapid tumor elimina-
tion [38], attempts to improve their in vivo performance have led to a generation of mutant
CD28 endodomain [39], or third generation CARs containing both CD28 and 4-1BB se-
quences [40]. The latter were demonstrated to retain the beneficial aspects of both domains,
showing enhanced antitumor activity and concomitantly increased in vivo persistence.

In the clinical settings, in order to improve CAR-T cells persistence and thus the
overall therapy efficacy, lymphodepleting chemotherapy is performed prior to CAR-T
cells infusion. The pre-conditioning is most often based on fludarabine and/or cyclophos-
phamide administration. The reason standing behind this approach was demonstrated
in several studies showing higher response rates in patients with r/r B-ALL [41,42], and
non-Hodgkin lymphomas, including r/r DLBCL [43–45], who received lymphodepleting
chemotherapy regimens prior to CD19 CAR-T cells. Primarily, lymphodepletion reduces
the numbers of endogenous lymphocytes, which normally absorb the cytokines that stim-
ulate T cells proliferation and thus limit their availability for infused CAR-T cells [44,46].
In addition, it partially eliminates T regulatory cells (Tregs) which exhibit immunosup-
pressive activity towards tumor-specific cytotoxic T cells [47]. The beneficial effect of
lymphodepleting regimens was demonstrated for both CD8-positive and CD4-positive
CAR-T cell populations [48].

However, the intensity of existing pre-conditioning therapy using fludarabine and
cyclophosphamide was shown to be correlated with higher toxicity of the CAR-T cell-based
therapy, thus it may exclude the application of this approach for numerous patients [49].
The approach of targeted lymphodepletion with a CD45-directed antibody radioconjugate,
which was recently shown to eliminate several subsets of leukocytes while preserving
progenitor hematopoietic cells in a murine model, could potentially be proposed as a safer
alternative [50]. However, regardless of the lymphodepleting protocol used, the inevitable
side effects of these regimens are lymphopenia and prolonged T cells dysfunction, which
may lead not only to overall higher sensitivity to infections and autoimmunity development,
but also to tumor relapse [51].
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Some already existing approaches undermine the need for lymphodepletion. The most
prominent is based on the construction of CAR-T cells that besides having the ability to rec-
ognize specific targets can also produce selected proteins, in particular cytokines [52]. These
4th generation CAR-T cells are called TRUCKs (T cells redirected for antigen-unrestricted
cytokine-initiated killing). Cytokines are crucial for CAR-T cells’ survival, proliferation
and persistence, both during in vitro culture and following the administration into the
patient [53]. The additional modification of CD19 CAR-T cells to secrete IL-12 was shown
to improve their in vivo cytotoxicity towards murine cells expressing human CD19 and al-
leviate their suppression by Tregs—the main two aims of pre-conditioning with chemother-
apy [54]. Similar observations were made by Kueberuwa et al., who demonstrated that
CD19 CAR-T cells expressing IL-12 effectively eliminated lymphoma cells in fully lym-
phorepleted mice [55]. Besides the killing of CD19-positive target cells directly, the TRUCKs
also contributed to the induction of an anticancer response elicited by the host immune
cells, primarily CD8-positive T cells.

Except for IL-12, other cytokines were also shown to improve the persistence and
effector functions of transferred cytotoxic T cells. In particular, IL-2, IL-7, and IL-15 sup-
plementation during the culture of CAR-T cells has beneficial effects [56,57]. Interestingly,
CAR-T cells expanded with IL-15 exhibited a higher anticancer efficacy as compared to
IL-2-supplemented CD19 CAR-T cells against a lymphoma cell line in vivo [58]. In addi-
tion, IL-15-expressing CAR-T cells appear to be less terminally differentiated and have
an increased ability to expand in vitro, but also tend to be more toxic in vivo due to the
simultaneously higher production of TNF-α and IL-2, as compared to CAR-T cells with-
out IL-15 [59]. On the other hand, constitutive cytokine expression poses a risk for the
uncontrolled growth of administered CAR-T cells which may lead to overt toxicity. Several
research groups have demonstrated that novel CAR constructs may be engineered to induce
cytokine signaling only after antigen stimulation (5th CAR-T generation) and preserve
their superior antitumor effects while having minimal toxicity [60–62]. The additional
incorporation of an inducible caspase-9-based suicide gene, which mediates the selective
depletion of CAR-T cells in case of toxicity, may increase the safety while keeping all the
advantages of the therapy based on using anti-CD19 TRUCKs [63–65].

3.2. Modulation of CAR-T Cells Exhaustion

The effectiveness of CAR-T cells is also impeded by their exhaustion, which is of-
ten caused by the enhanced expression of immune checkpoint molecules on cancer cells
and CAR-T cells. In particular, PD-1/PD-L1 interaction activates downstream signaling
pathways and inhibits T cell activation, which leads to tumor immune escape [66]. PD-L1
was reported to be overexpressed in classical Hodgkin lymphoma [67,68] and DLBCL [69].
Moreover, PD-1 expression was observed to be increased on T cells isolated from B-ALL
patients’ bone marrow aspirates [70]. Similarly, CD19 CAR-T cells were also reported to
have increased PD-1 expression following the infusion to the patients [71]. The solution
for this issue can be achieved by combining a CAR-based therapy with anti-PD-1 anti-
bodies [72,73], or their administration just after CAR-T failure [74]. The more advanced
and safe approaches include the delivery of CAR-T cells secreting anti-PD-1 scFv [75],
or the transformation of PD-1 in CAR-T cells into a co-stimulatory molecule using the
switch-receptor technology [76].

Recent reports have also shown that CAR-T cells exhaustion occurs due to epigenetic
reprogramming [77–79]. In a clinically-relevant setting, Zebley et al. observed the changes
in DNA methylation patterns in CD8-positive CD19 CAR-T cells that were previously
administered to B-ALL patients [79]. Importantly, a deletion of a gene coding DNA methyl-
transferase 3 alpha (DNMT3A) in T cells bearing CAR constructs augmented a long-term
antitumor response and prevented them from developing an exhausted phenotype [77]. In
addition, several other modifications show promise to limit CAR-T cells exhaustion. For in-
stance, CAR-T cells engineered to overexpress a transcription factor c-Jun had an improved
ability to resist exhaustion and maintain functionality despite prolonged activation [80].
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There are also other factors contributing to the loss of CAR-T cells effector abilities,
including those related to CAR tonic signaling [81]. One of the consequences of CAR tonic
signaling is terminal differentiation to effector cells. The available literature indicates the
involvement of sustained phosphoinositide 3-kinase (PI3K)/Akt pathway activation in
this process [82,83]. Therefore, pharmacological approaches aimed at PI3K/Akt signaling
inhibition have been implemented during the manufacturing phase to maintain CAR-T
cells stemness, including the addition of tyrosine kinase inhibitors, e.g., idelalisib [84],
ibrutinib [85], or duvelisib [86]. In addition, the modifications of CAR constructs may
be performed to address the issue of CAR tonic signaling and involve several aspects,
e.g., the substitution of co-stimulatory domains, alterations in the spacer and hinge domain,
or the improvement of scFv stability [81]. An alternative approach is to reduce CAR
surface expression and selectively switch-off CAR signaling. This could be achieved by
incorporating the ligand-induced degradation/destabilizing domain into the C-terminus
of the CAR construct [87,88]. In addition, Weber et al. modulated CAR-T cells exhaustion
by the addition of dasatinib, a tyrosine kinase inhibitor that reversed the tonic signaling
and led to downregulation of the immune checkpoint markers [88]. Importantly, dasatinib
administration inhibits the secretion of cytokines by CAR-T cells and impairs their in vivo
antitumor activity [89]. This effect, however, is reversible after the drug discontinuation,
which implies that short-term dasatinib treatment could be used as a switch to control
CAR-T cells’ performance.

4. Mechanisms of Resistance to the CD19 CAR-T Therapy in B Cell Malignancies

As already mentioned in Section 3, not only insufficient effector cells are to blame for
CAR-T therapy failures. Intrinsic features of malignant B cells also significantly contribute
to the development of resistance underlying a relapse in patients with B-ALL and high-
grade lymphomas. Indeed, the relapse in B-ALL patients following CD19 CAR-T treatment
can affect even half of them, but the cumulative incidence of relapse according to the meta-
analysis of available clinical trials’ reports is estimated at 36% [90]. The most commonly
reported causes of tumor resistance to CD19 CAR-T treatment and subsequent relapse
concern various tumor cells aberrations, among which the loss of CD19 antigen is the most
frequent [91]. The loss of CD19 is reported even in up to 25% of B-ALL cases [12,92–95].
The relapses after CD19 CAR-T therapy occur also in lymphomas, where about 30% of
the patients demonstrate a loss of CD19 expression [16,96,97]. Moreover, in some patients
the CD19 downregulation is accompanied by decreased expression of other surface anti-
gens, such as CD20 and CD22 in B-ALL [98] and similarly CD20, CD22, and CD79a in
lymphomas [99,100]. Below, we describe the currently known tumor-intrinsic mechanisms
of CD19 CAR-T therapy resistance, highlighting the similarities and differences between
various B cell malignancies, particularly B-ALL and B cell lymphomas (Figure 1).
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ity of resistance development is CD19 epitope masking by either a CD19-specific CAR construct, or 
therapeutic anti-CD19 antibody. Target antigen loss can also occur as a consequence of phenotypic 
changes due to the lineage switch of malignant B cell precursors. Right panel: target anti-
gen-independent mechanisms of resistance cover structural aberrations and mutations in selected 
genes of malignant lymphoma cells. Additionally, disruption of the apoptosis pathway or 
CD58-CD2 co-stimulation could be involved in this process. 

4.1. Resistance Related to CD19 Antigen 
One of the causes of the CD19 antigen loss is a mutation in the CD19 gene and al-

ternative splicing of the CD19 transcript. The missense and frameshift mutations in exon 
2 of the CD19 gene, as well as alternative splice variants lacking exon 2 or exons 5–6, were 
detected in samples from relapsed B-ALL patients after CD19 CAR-T therapy [101]. So-
tillo et al. also highlighted that the deletion of exon 2 promotes arising of the N-terminal 
truncated CD19 isoform, which prevents killing by CD19 CAR-T cells, due to the loss of 
the epitope recognized by a particular anti-CD19 scFv used in this study [101]. Moreover, 
CD19 exon 2 retention was linked with a function of serine and arginine-rich splicing 
factor 3 (SRSF3). The reduced expression of SRSF3 and consequent N-terminally trun-
cated CD19 was observed in samples from B-ALL patients who relapsed after CD19 
CAR-T [101]. Similar results were obtained by Orlando et al. [102], where CD19 muta-
tions were linked to the antigen loss. The analysis of primary material from 17 B-ALL 
pediatric and young-adult patients with relapses after CD19 CAR-T administration re-
vealed that 12 of them were CD19-negative. All of these 12 patients had mutations in the 
CD19 gene that affected exons 2–5 and led to the expression of a truncated protein devoid 
of the transmembrane domain; however, some of the observed mutations could be sub-

Figure 1. B cell-derived cancers develop various mechanisms of resistance to CD19 CAR-T therapy.
Left panel: the mechanisms related to downregulation of target antigen include genetic and epigenetic
aberrations within CD19 gene or alternative splicing of CD19 transcripts. Another possibility of
resistance development is CD19 epitope masking by either a CD19-specific CAR construct, or thera-
peutic anti-CD19 antibody. Target antigen loss can also occur as a consequence of phenotypic changes
due to the lineage switch of malignant B cell precursors. Right panel: target antigen-independent
mechanisms of resistance cover structural aberrations and mutations in selected genes of malignant
lymphoma cells. Additionally, disruption of the apoptosis pathway or CD58-CD2 co-stimulation
could be involved in this process.

4.1. Resistance Related to CD19 Antigen

One of the causes of the CD19 antigen loss is a mutation in the CD19 gene and
alternative splicing of the CD19 transcript. The missense and frameshift mutations in
exon 2 of the CD19 gene, as well as alternative splice variants lacking exon 2 or exons 5–6,
were detected in samples from relapsed B-ALL patients after CD19 CAR-T therapy [101].
Sotillo et al. also highlighted that the deletion of exon 2 promotes arising of the N-terminal
truncated CD19 isoform, which prevents killing by CD19 CAR-T cells, due to the loss of
the epitope recognized by a particular anti-CD19 scFv used in this study [101]. Moreover,
CD19 exon 2 retention was linked with a function of serine and arginine-rich splicing
factor 3 (SRSF3). The reduced expression of SRSF3 and consequent N-terminally truncated
CD19 was observed in samples from B-ALL patients who relapsed after CD19 CAR-T [101].
Similar results were obtained by Orlando et al. [102], where CD19 mutations were linked to
the antigen loss. The analysis of primary material from 17 B-ALL pediatric and young-adult
patients with relapses after CD19 CAR-T administration revealed that 12 of them were
CD19-negative. All of these 12 patients had mutations in the CD19 gene that affected exons
2–5 and led to the expression of a truncated protein devoid of the transmembrane domain;
however, some of the observed mutations could be subclonal, which is reflected by the
ratio between the CD19 negative cells percentage and the rate of mutations observed in
the patients’ sample [102]. Later studies showed that CD19 splice variants lacking exon 2
were also detected in B-ALL pediatric patients at diagnosis and could be the cause of initial
leukemia resistance to CD19-targeting CAR-T treatment [103]. Similar observations were
made for B cell lymphoma, where CD19 isoforms with exon 2 and exons 5–6 aberrations
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(that could affect FMC63 epitope) were detected in patients’ samples and were found to
be more common after relapse. On the other hand, the full-length isoform of CD19 was
co-expressed with spliced variants in relapsed samples, suggesting that the loss of the
FMC63 epitope is not the only cause of relapse [100].

Another genetic-related factor that could account for the CD19 loss is the retention
of intron 2 in CD19 mRNA. The presence of intron 2 in mature mRNA molecules can
induce premature termination and decay of the CD19 transcript or the appearance of
a truncated protein. The phenomenon of intron 2 retention was revealed using lym-
phoma and B-ALL cell lines models and confirmed in matched diagnosis-relapse B-ALL
patients’ samples [104].

Recent studies also showed that the antigen loss following CD19 CAR-T therapy can
be a result of hypermethylation of the CD19 promoter in tumor cells [105]. It was demon-
strated in an in vivo chronic lymphocytic leukemia (CLL) relapse model after CD19 CAR-T
treatment, as well as in vitro experiments using primary CLL cells and CLL and Burkitt
lymphoma cell lines co-cultured with CD19 CAR-T cells. The correlation between CD19
promoter hypermethylation and decreased CD19 expression was found to be reversible by
demethylating drugs, highlighting the reversible character of this epigenetic modification.

In addition to CD19 loss on the surface of malignant cells, CAR-T therapy failure
may be caused by CD19 epitope masking. This mechanism was identified by Ruella et al.
in a B-ALL patient with relapse that was discovered almost 9 months after CD19 CAR-T
treatment [106]. Unexpectedly, the researchers observed CAR-expressing leukemic blasts
in the patient’s bone marrow. It turned out to be a result of unintentional CAR transgene
insertion into a single neoplastic B cell during the CD19 CAR-T cells manufacturing process.
As a consequence, CAR expression on the cell surface of leukemic B cells masked the CD19
epitope in cis and hampered the binding of the antigen by CAR-T cells. This phenomenon
was further confirmed using a CD19 CAR-modified Nalm-6 cell line and in a xenograft
model in vivo. These experiments proved that leukemic B cells expressing CAR are resistant
to CD19 CAR-T cell-mediated killing [106]. This discovery contributed to modifications
of the CAR-T manufacturing protocols and the development of new strategies providing
maximal T cell selection [107,108]. Importantly, the CD19 epitope masking may also be
due to prior CD19-targeted therapy. Indeed, Fitzgerald et al. observed that tafasitimab, an
anti-CD19 antibody approved for r/r DLBCL treatment, masked the CD19 epitope and
caused a delay in CD19 CAR-T therapy responses [109].

Yet another way of resistance to CD19 CAR-T cell therapy is lineage switch, which
results not only in CD19 loss but also in many other phenotypic changes. It was demon-
strated that some B-ALL patients after CD19 CAR-T treatment relapsed with a myeloid
type of leukemia expressing CD34, CD33, or CD64 markers [110]. Moreover, lineage
reprogramming in these cases was found to be correlated with the aberration of genes
encoding Pax5, EBF1, or FLT3. The phenomenon of lineage switch is one of the causes of
resistance to CD19 CAR-T therapy, mainly in mixed lineage leukemia (MLL)-rearranged B-
ALL [111–113], however, one case was also detected in a Philadelphia chromosome-positive
B-ALL patient [114]. Recent studies showed that a similar situation can also occur in lym-
phomas. Zhang et al. described the case of MCL that transdifferentiated into sarcoma [115].
It was triggered by epigenetic reprogramming, including the silencing of mature B cell
characteristic genes by promoter DNA methylation. The broad analysis of samples from
patients with lymphomas (mainly DLBCL) before and after CD19 CAR-T therapy displayed
a tremendous phenotypic shift in tumor cells after CAR-T infusion. These genomic changes
included downregulated expression of B cell markers (CD19, CD20, CD22, CD79a), an
increased methylation profile, and mutations affecting immune suppressive mechanisms,
such as the PI3K pathway [116].

4.2. Resistance Not Related to CD19 Antigen

Currently, it is known that not only CD19 aberrations can influence the response to
CD19 CAR-T immunotherapy. The circulating tumor DNA profiling of samples from r/r
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DLBCL patients who underwent CD19 CAR-T treatment determined the association of
SOCS1, TNFAIP3, and XPO1 mutations with a poor prognosis after that therapy [117].
Additionally, the whole-genome sequencing analysis of CD19 CAR-T-treated large B cell
lymphoma patients indicated some tumor intrinsic aberrations, such as RHOA or RB1
deletions, APOBEC mutational activity, and chromothripsis events as characteristics for
relapsed patients [118,119]. The aforementioned defects were accompanied by preserved
CD19 expression.

An inherent resistance of neoplastic B cells for CD19 CAR-T therapy has been also
correlated with aberrant expression of genes from the death receptor apoptosis pathway
such as BID, FADD, CASP8, TNFRSF10B, Fas, and TRAIL [91,120]. The crucial role of death
receptor signaling in susceptibility to CD19 CAR-T cytotoxicity was demonstrated in a
Nalm-6 B-ALL cell line in vitro model and CRISPR-based genome-wide loss-of-function
screen [121,122]. It was observed that Nalm-6 cells with a deletion of apoptotic genes,
such as BID or FADD, diminished the CAR-T cells’ expansion and their cytotoxic abilities.
Moreover, analysis of primary samples from B-ALL pediatric patients after CD19 CAR-
T therapy indicated a lower expression of death receptor signaling genes in a group
of patients who did not respond to the treatment as compared to those who achieved
complete remissions [122]. Using the same approach based on the CRISPR-based screen,
the significant role of Fas-FasL in antigen-specific T cell killing was confirmed in B cell
lymphoma cell lines [123].

In addition to the aforementioned resistance mechanisms, the lack of CD58 on the
surface of malignant B cells, a co-stimulatory ligand for CD2 on T cells, was also demon-
strated as one of the causes of poor prognosis and resistance to CD19 CAR-T therapy.
Changes in CD58, including downregulation, mutation, or loss, were observed in up to
67% of DLBCL patients [124]. CD58 aberrations were found to be correlated with a faster
progression of lymphoma disease and decreased durable, complete responses to CD19
CAR-T treatment. This observation was also confirmed in in vitro and in vivo models using
a Nalm-6 CD58 KO B-ALL cell line. These pre-clinical studies showed that CD19 CAR-T
cells had a reduced cytokine production and killing potential after contact with CD58 KO
tumor cells. Similarly, mice with B-ALL tumors lacking CD58 expression only partially
responded to CD19 CAR-T treatment [125].

5. New CAR-T Targets Explored in Hematological Malignancies

Considering that around half of the leukemia relapses that occur following CD19
CAR-T administration are manifested by the appearance of CD19-negative cells [12,93], the
development of new approaches is crucial to managing such cases. One of the strategies to
eliminate the risk of the disease recurrence is to perform allogeneic hematopoietic stem cell
transplantation (allo-HSCT) [126]; however, many of the patients, who are usually heavily
pre-treated, are not eligible for allo-HSCT due to its toxicity and potential side effects [127].
Hence, another strategy to avoid CD19-negative relapses is focused on targeting alternative
molecules expressed on the surface of malignant cells. Searching for novel antigens is still
ongoing, and several targets are already being evaluated in pre-clinical and/or clinical
studies [128]. Herein, we present promising targets that are currently investigated for the
treatment of B cell and plasma cell-derived malignancies.

These novel (other than CD19) targets are summarized in Table 2. For each targeted
molecule, we highlight its physiological functions, the expression on normal cells, and
the targeted disease. Further in this section, we also describe several antigens in more
detail. Primarily, we elaborate on less-explored targets that are not widely discussed in
CAR-T-oriented literature reviews, such as CD32B, CD70, and CD72. We also characterized
promising, clinically explored targets that are tested in blood cancers derived from B cells
at various stages of development and maturation, including BAFF-R (B-ALL), CD37 (CLL,
B cell lymphoma), and GPRC5D (MM).
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Table 2. Alternative targets for CAR-T therapy in B cell and plasma cell-derived malignancies
(listed alphabetically).

Targeted
Molecule Physiological Functions Expression in Non-Malignant Cells

[References]
Targeted
Disease

References or Numbers
of Clinical Trials

pre-clinical studies

CD23 regulation of IgE responses

a subset of T and B cells,
monocytes, leukocytes,

follicular DCs,
intestinal epithelial cells,

bone marrow stromal cells
[129–135]

CLL [136,137]

CD32B regulation of B cell activation,
antibody production

B cells, DCs, granulocytes,
liver endothelial cells,

airway smooth muscle cells
[138–140]

CLL [141]

CD70
T cell activation and

proliferation
(cytokine, CD27 ligand)

subsets of activated T cells,
B cells, NK cells, mature DCs,

epithelial cells of the thymic medulla
[142,143]

B cell
lymphoma [144,145]

CD72

B cell proliferation,
B cell differentiation,

negative regulation of BCR
signaling

B cells [146] B-ALL [147]

CD133 unclear, a marker
of undifferentiated cells

hematopoietic stem and
progenitor cells

[148]
B-ALL [149,150]

FcµR IgM receptor
subsets of B cells,
T cells, NK cells

[151]
CLL [152]

Siglec-6 inhibition of immune response
memory B cells, exhausted B cells,

placenta, mast cells
[153–155]

CLL [156]

TSLPR T and B cell development DCs, monocytes
[157] B-ALL [158]

clinical trials

BAFF-R promotion of B cell survival B cells (except plasma cells),
memory T cells [159] B-ALL NCT04690595

CD20 B cell proliferation,
B cell differentiation

pre-B cells and mature B cells
[160,161]

CLL,
B cell

lymphoma

NCT04169932

NCT04030195

NCT03664635

CD22
regulation of BCR signaling,

B cell migration
B cells

[162,163]
B-ALL,
B cell

lymphoma

NCT04546906

NCT04088864

NCT04088890

NCT04007978

NCT03262298

NCT04340167

NCT03244306

NCT04571138

NCT02650414

NCT02315612

NCT04150497

NCT03620058

CD30
possibly T cell survival and/or

establishment of memory responses

a subset of activated T
and B lymphocytes

[164,165]

DLBCL,
Hodgkin

lymphoma

NCT04526834

NCT03049449

CD37 regulation of humoral and cellular
immune responses mature B cells [166]

CLL,
B cell

lymphoma
NCT04136275
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Table 2. Cont.

Targeted
Molecule Physiological Functions Expression in Non-Malignant Cells

[References]
Targeted
Disease

References or Numbers
of Clinical Trials

CD38
cell adhesion and migration,

generation of nucleotide
metabolites

T cells, B cells, NK cells,
plasma cells, monocytes

[167]
B-ALL,

MM
NCT03754764

NCT03464916

CD70 T cell activation and proliferation
(cytokine, CD27 ligand)

APCs, activated T and B cells
[142,143] MM NCT04662294

CD79B promotion of B cell survival B cells [168] B-ALL,
B cell NHL NCT04609241

CD123 IL-3 signal transmission,
regulation of hematopoiesis

Basophils,
plasmacytoid DCs

[169,170]
B-ALL NCT04318678

CD138 cell adhesion, endocytosis
epithelial cells, hepatocytes,

plasma cells
[171,172]

MM NCT03672318

GPRC5D hard keratinization
epithelial cells of the hair follicles,

plasma cells, B cells
[173–175]

MM NCT05016778

LMP1
induction and maintenance

of virus latency by modulation
of host’s immune responses

EBV-infected cells
[176]

B cell
lymphoma NCT04657965

ROR1 cell differentiation,
proliferation and survival

various cells
during embryogenesis

[177]

CLL, MCL,
ALL NCT02706392

SLAMF7 inhibition of proinflammatory
immune responses

B cells, T cells, DCs,
NK cells, monocytes

[178,179]
MM

NCT04499339

NCT03958656

Abbreviations: APCs—antigen presenting cells, BAFF-R—B cell activating factor receptor, DCs—dendritic cells,
FcµR—immunoglobulin M Fc receptor, GPRC5D—G protein-coupled receptor class C group 5 member D,
LMP1—latent membrane protein 1, ROR1—receptor tyrosine kinase like orphan receptor 1, SLAMF7—signaling
lymphocytic activation molecule F7, TSLPR—thymic stromal lymphopoietin protein receptor.

5.1. Novel Antigens under Investigation in Pre-Clinical Studies

CD32B (FcγRIIB) is the low-affinity inhibitory receptor for IgG, which contains an
intracellular immune inhibitory motif (ITIM). CD32 is expressed in three isoforms: CD32A,
B, and C. The isoform B occurs in normal and malignant B cells and some subpopulations
of dendritic cells and granulocytes [138]. The expression of CD32B was also detected in
non-hematopoietic tissues such as liver endothelial cells [140] and airway smooth mus-
cle cells [139]. CD32B is the main FcγR present on B cells. Following co-ligation with
activating receptors such as B cell receptor (BCR), CD32B recruits SH-2 containing in-
ositol 5′ phosphatase 1 (SHIP-1), which attenuates activating signals and contributes to
the regulation of B cell activation and homeostasis [138,180,181]. High and homogenous
expression of CD32B was also demonstrated in B cell-related disorders [141,182]. Moreover,
it was shown that the expression of CD32B negatively affects immunotherapy of CD20-
expressing lymphomas with therapeutic monoclonal antibody (mAb) rituximab [183,184].
The mechanism results from the binding and internalization of rituximab by CD32B. An-
tagonistic mAbs specifically targeting the CD32B isoform improved rituximab efficacy
in pre-clinical lymphoma models and were further tested in combination with rituximab
in lymphoma patients [185]. Recently, CAR-T cells containing scFv derived from mAbs
specifically recognizing the CD32B isoform were generated and presented to efficiently
kill CD32B-expressing cell lines and primary CLL cells in vitro and in vivo [141]. However,
considering the expression of CD32B in normal cells, CAR constructs with improved safety
such as dual CARs with an “AND” logic gate should be developed due to the potential
on-target off-tumor toxicity.

CD70, a type II transmembrane glycoprotein from the tumor necrosis factor (TNF)
family, is a ligand for the CD27 receptor present on T cells [186,187]. The CD70/CD27
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interaction was shown to serve as a co-stimulatory signal for T cell activation and to play
a role in T cell-dependent B cell differentiation into plasma cells [188,189]. In healthy
individuals, the expression of CD70 was found to be restricted to subsets of activated
T cells, B cells, NK cells, mature DCs, and epithelial cells of the thymic medulla [142,143].
In contrast to normal cells, various types of malignant lymphoid cells exhibit aberrant
CD70 expression. Increased CD70 levels were observed on various malignant B cells, for
instance, isolated from patients with CLL, DLBCL, MCL, and MM [190,191]. Importantly,
CD70 overexpression in MCL patients was recently reported to be associated with higher
proliferation, a more aggressive clinical course of the disease, and with an increased number
of Tregs infiltration in the tumor [192]. The possible role of CD70 in the generation of the
immune-suppressive tumor microenvironment was also demonstrated by Yang et al. [193].
In this study, CD70-positive biopsy-derived primary lymphoma B cells more potently
enhanced Foxp3 levels in CD4-positive CD25−negative T cells subpopulation than their
CD70-negative counterparts.

Anti-CD70 antibodies inhibited tumor growth and prolonged mice survival in models
of CD70-positive B cell malignancies [191,194], providing the rationale for targeting CD70
with CAR-T cells. In 2011, Shaffer et al. demonstrated that CD70-specific T cells caused
in vivo lymphoma regression [144]. Importantly, the study also evaluated the toxicity
of CD70 CAR-T cells towards activated T and B cells, which physiologically express
CD70 upon activation. While activated T cells were not killed in cytotoxicity assays,
B cells stimulated with the CD40 ligand were observed to be eliminated by CD70 CAR-T.
However, the issue of potential B cell aplasia in vivo remains uncertain as CD70 expression
on normal lymphoid cells occurs only transiently. Recently, Deng et al. also showed the
effectiveness of CD70 CAR-T cells against CD19 KO Raji cells in vitro and in vivo [145].
The study shows the potential application of this approach in the treatment of CD19-
negative B cell malignancies, thus addressing the issue of antigen escape following CD19
CAR-T cell therapy.

CD72 is a B cell-specific protein that recruits Src homology region 2 domain-containing
phosphatase-1 (SHP-1) to intracellular ITIM motifs and is involved in the negative reg-
ulation of BCR signaling [195,196]. CD72 was shown to interact with CD5, CD100, and
nuclear lupus self-antigens [197–199]. The interaction with CD100 turns off the negative
signals of CD72 and enhances BCR signaling [198]. CD72 −/− mice develop lupus-like
syndrome and CD72 is downregulated in humans diagnosed with lupus erythematosus,
indicating the involvement of CD72 in the pathogenesis of autoimmune diseases [200,201].
CD72 is predominantly expressed in B cells. Its expression starts at the pro-B cell stage
and continues throughout all stages of B cell development with the exception of plasma
cells [146]. CD72 is also abundantly expressed in B cell-derived neoplasms, including
B-ALL, CLL, and B cell lymphomas [146,147,202]. In contrast, CD72 is rarely expressed in
other normal tissues including the human brain [146,147]; however, the presence of CD72
was reported on a subset of activated NK cells [203] and in mast cells [204]. Recently, Nix
et al. analyzed the surfaceome of a MLL-rearranged B-ALL subtype, in which significant
cell surface upregulation of CD72 was observed [147]. Using an in vitro yeast display
library, the authors developed CD72-binding nanobodies and generated CD72 CAR-T
cells effective against CD72-positive B-ALL and B cell lymphoma cell lines. Importantly,
CD72 expression was maintained in CD19-negative cells and CD72 CAR-T cells effectively
eliminated CD19-negative leukemia cells in vitro and in vivo. In contrast, CD72 CAR-T
cells were not toxic against normal cells including peripheral blood mononuclear cells,
immortalized vascular endothelial cells, mesenchymal stem cells, and induced pluripo-
tent stem cells [147]. Overall, CD72 CAR-T cells are very promising candidates to be
tested in clinical trials, in particular as a second-line treatment in patients relapsing after
CD19-targeted immunotherapy.
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5.2. Promising Antigens Tested in Clinical Trials

B cell activating factor receptor (BAFF-R, also known as BR3, CD268 or TNFRSF17)
is a type III membrane protein belonging to the tumor necrosis factor receptors (TNFR)
family [205]. The BAFF-R interaction with its specific ligand BAFF was shown to be crucial
for the generation of mature B cells in both mice and humans [206–208]. In humans, the
receptor can be detected on most B cells. The evaluation of BAFF-R expression on different
B cell subsets revealed that cells with pre–B phenotype as well as plasma cells lack the
receptor, while most circulating B cells, a subset of B cells within germinal centers, and
B cells colonizing the mantle zones of reactive lymphoid tissues and a splenic marginal
zone are BAFF-R-positive. Importantly, the BAFF-R expression pattern was found to
be preserved on mature neoplastic B cells [159]. BAFF-R protein is present on several
lymphomas, including MCL, FL and DLBCL [209–213], and on most CLL cells [214].
Surprisingly, malignant pre-B cells also exhibit high BAFF-R expression in contrast to their
normal counterparts [215,216]. Moreover, BAFF-R-positive blasts were found to persist
in previously treated relapsed pediatric B-ALL [217]. High tissue specificity and the low
possibility of BAFF-R antigen escape related to its importance for B cell survival make this
receptor an attractive target for immunotherapies in both lymphomas and leukemias.

Antibodies targeting BAFF-R were demonstrated to promote NK cell-mediated killing
of B-ALL, CLL and MCL cells in pre-clinical studies [213,218,219], and currently, anti-BAFF-
R antibody ianalumab (VAY736) is being evaluated in the treatment of CLL patients in
combination with ibrutinib (NCT03400176). In 2019, the results with BAFF-R-specific CAR-
T cells were firstly published [220]. In this study, BAFF-R-targeting CAR-T cells caused
tumor regression and prolonged the survival of mice with various human lymphomas and
B-ALL. Moreover, BAFF-R CAR-T cells efficiently eradicated CD19-negative malignant
cells, which were either generated using CRISPR-Cas9 technology, or obtained from the
patients relapsing after CD19-targeted therapy. In 2020, a first-in-human trial evaluating
BAFF-R-targeting CAR-T cells for patients with r/r B-ALL was initiated (NCT04690595).

CD37 belongs to the transmembrane 4 superfamily (TM4SF) of tetraspanin proteins,
which have four potential membrane-spanning domains. Unlike most tetraspanin proteins,
which are not tissue-specific, CD37 can be detected only in several subsets of immune
cells [221] and plays a role in both cellular and humoral immune responses [222,223]. B cells
show the highest expression of CD37 among leukocytes in human blood and in primary
and secondary lymphoid organs [166]. Low or medium CD37 expression was also observed
on T cells, NK cells, monocytes and dendritic cells. Importantly, the level of CD37 on B cells
changes during their development, with low expression in B cell precursors, a peak in ma-
ture/peripheral B lymphocytes and a decrease at the stage of plasma cells [224]. A similar
pattern of expression is observed on malignant B cells, as B-ALL and MM cells were found
to be CD37-low or CD37-negative, whereas mature/peripheral B cell leukemias and lym-
phomas highly express this antigen [224]. Therefore, CD37 is considered to be a promising
immunotherapeutic target in non-Hodgkin lymphoma (NHL) and CLL [225]. Several
anti-CD37 molecules were investigated in clinical trials, including monoclonal antibody
otlertuzumab [226] (NCT00614042, NCT01188681), Fc-engineered monoclonal antibody
BI 836826 [227] (NCT01403948), antibody-drug conjugates AGS67E [228] (NCT02175433),
IMGN529 [229] (NCT01534715), and radio-immunoconjugate betalutin [230] (NCT02658968).
The first CD37-specific CAR was presented in 2018 and its efficacy in the eradication of
MCL tumors was demonstrated in murine models, which were established using a Jeko-1
cell line and a patient-derived xenograft [231]. Importantly, although CD37 may also
have been present on T cells, no significant T cell fratricide occurred during the in vitro
expansion of CD37-CAR T cells. These results were also confirmed by Köksal et al., along
with the additional observation that CD19 and CD37 are not always mutually expressed
on the cell surface, and that CD37 CAR-T cells are able to kill both CD19-positive and
CD19-negative cells [232]. Since the pre-clinical studies showed no evidence of the off-
tumor activity, the approach was advanced to a clinical trial, where CD37 CAR-T cells were
evaluated in patients with relapsed or refractory CD37-positive hematologic malignancies
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(NCT04136275). According to the recent report, three out of four enrolled patients with
relapsed B cell or T cell malignancies eventually achieved CR; however, one patient with re-
fractory double-hit high-grade B cell lymphoma (HGBCL), who relapsed after CD19 CAR-T,
experienced disease progression post CD37 CAR-T administration with a CD19-negative
and CD37-negative phenotype. Additionally, two patients experienced unexpected bone
marrow aplasia, but it was rescued with allogeneic HSCT [233].

GPRC5D is a seven-pass membrane protein belonging to the family of orphan G-
protein coupled receptors, all of which lack identified ligands [234]. In normal tissues,
elevated levels of GPRC5D mRNA were observed in differentiating cells that produce
hard keratin [235], in lymph nodes, and the spleen. Minimal GPRC5D mRNA levels were
also detected in lung, skin, and testis [236]. However, GPRC5D protein was found on
the surface of the cells from hair follicles [173], and among hematopoietic compartment
only on CD19-positive B cells and plasma cells [174,175]. In 2012, GPRC5D mRNA was
for the first time reported to be expressed in the bone marrow of patients with MM [237].
Moreover, it was later demonstrated that MM cells express significantly higher levels of
GPRC5D mRNA and protein as compared to normal plasma cells, and, importantly, MM
patients’ plasma cells continue to express GPRC5D after therapy with immunomodulatory
drugs, proteasome inhibitors, or CD38-targeting antibodies [175]. The GPRC5D surface
protein level was also confirmed in several MM cancer cell lines [236]. Pre-clinical studies of
talquetamab (JNJ-64407564), a humanized bispecific antibody binding CD3 and GPRC5D,
demonstrated its ability to effectively induce MM cell death and inhibit tumor growth
in murine models [236]. Moreover, an ex vivo analysis showed that MM cells isolated
from newly diagnosed or heavily pretreated refractory patients were equally susceptible
to talquetamab-mediated lysis [175]. The initial results of an ongoing clinical study of
talquetamab (NCT03399799) enrolling 137 patients presented an overall response rate
(ORR) at 78% in patients who received the drug intravenously [238]. GPRC5D was also
recognized as an attractive molecule for CAR-based therapy, and in 2018, GPRC5D-specific
CAR was shown to effectively target MM cells in vitro and eradicate MM xenografts in
a murine model [239]. Moreover, the ability of GPRC5D CAR-T cells to eliminate BCMA
KO MM cells in vivo was observed by Smith et al. along with an independent BCMA and
GPRC5D protein expression in MM patients’ CD138-positive plasma cells [173]. Altogether,
these results suggest that treatment with anti-GPRC5D CAR-T cells may rescue relapses
caused by an antigen escape after BCMA CAR-T therapy. The GPRC5D-targeted CAR
construct MCARH109 is currently being evaluated in a clinical trial (NCT04555551), and
the first results were shown in 2021. So far, 18 r/r MM patients were enrolled in the study.
From 12 patients who had already received the treatment, 83% of them had at least a
minimal response and 75% remained progression-free (13 weeks median follow-up). No
dose-limiting toxicities were observed during the treatment. Additionally, six patients who
experienced relapse following BCMA CAR-T therapy responded to MCARH109, and two
of them achieved stringent CR [240].

5.3. New Directions for Alternative CAR-T Targets Development

In the light of lessons learned from the experience with single-aimed CAR-T regimens,
the field of adoptive therapies is now focused on developing multiple-targeting CAR-T
cells. Currently, the safety and efficacy of the approach is being evaluated in a clinical
study (NCT03455972), where patients with MM receive both CD19 and BCMA CAR-
T cells [241]. The more advanced approach involves utilizing CAR constructs able to
recognize multiple targets simultaneously. The treatment with dual CAR-T targeting both
CD19 and BCMA resulted in CR in 9/16 MM patients (56.3%) with the median follow-up
time being 7.3 months (NCT04236011) [242]. In addition, CD38 and BCMA bispecific
CAR-T cells application led to stringent CR in 13 out of 16 patients, 76.9% of whom did
not relapse or progress during a follow-up of 11.5 months (ChiCTR1900026286) [243]. In
non-Hodgkin lymphoma or CLL, bispecific CARs targeting simultaneously CD19 and CD20
were also successful, with 92% of the patients having CR (NCT03019055). Importantly,
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the relapse in some of the patients was not associated with CD19 antigen loss [244]. In
the case of B-ALL, CD19 and CD22 dual CAR-T cells were evaluated in clinical trials
(NCT03233854, NCT03289455). Despite the promising results from in vitro and in vivo
studies [245], relapses were observed in approximately 50% of the patients [246,247].

Moreover, it was recently reported that CD20 and CD22 are not only heterogeneously
expressed in B-ALL samples but can also be downregulated in CD19-negative relapsed
cancer cells [98]. The solution to prevent cancer cell escape via such a mechanism could
be the induction of the antigen expression pharmacologically. For instance, bryostatin 1
potently upregulated CD22 expression and improved CD22 CAR-T activity in a pre-clinical
B-ALL model [248]. In addition, histone deacetylase inhibitors are known to upregulate
CD20 expression on several types of malignant B cells [249,250], though not on CLL cells
in vivo [251].

The limitation for a traditional CAR construct in terms of specificity is its ability to
recognize molecules expressed only on the cell surface; however, recent advances in the
construct design may overcome this limitation by generating TCR-like CARs. TCRs can
detect particular tumor antigens as peptides presented by MHC molecules. Since most
of the mutated proteins are presented in this mechanism, TCR-based CARs can be more
tumor-specific and thus less toxic to non-malignant cells [252]. The examples are novel
TCR-like CAR-T cells targeting an HLA*0201-restricted SSX2 epitope, which were shown
to be effective against acute myeloid leukemia cells in vitro [253]. In addition, TÜ165
CAR-T is able to recognize an Epstein–Barr nuclear antigen (EBNA)−3C-derived peptide
in HLA-B*35 context and specifically target EBV-infected B cells [254].

6. Conclusions

Adoptive CAR-T cell therapy has emerged as a breakthrough treatment for relapsed
and refractory B cell malignancies. Despite initial success and an induction of remissions,
long-term observations have provided data showing a significant number of patients with
disease progression and relapse. Hence, understanding the major difficulties at all phases
of CAR-T treatment is of crucial importance.

Clinical trials evaluating CD19 CAR-T and their follow-ups have already shed more
light on the treatment-related obstacles and the approaches that could be undertaken to
avoid them. Therefore, the current research focuses on improving various aspects, including
CAR-T cells proliferation and persistence, their killing potential in an immunosuppressive
tumor environment, and target antigen expression. Importantly, relapses associated with
the loss of target antigen following CAR-T cells administration have led to an interest in
finding alternative targets. One of the most important characteristics of a potent target
is its tumor-specificity. Unfortunately, such targets are not broadly available as many of
them are also expressed on normal hematopoietic cells or other tissues. Hence, many
studies develop strategies to address off-tumor effects, for instance by modulating scFv
affinity, incorporating on/off switches or suicide genes to the CAR constructs, or the
generation of TCR-based CARs. In addition, high-throughput approaches are currently
being implemented to study the surfaceome of malignant cells. Such a large-scale approach
generating extensive data can yield positive results and help to identify yet unexplored
surface antigens for CAR-T cell therapy. In this review, we described several antigens
that were selected either by standard or large-scale approaches and that are currently
under investigation in pre-clinical or clinical trials. However, targeting only one antigen on
cancer cells poses a risk, as the administration of single-targeting CD19 CAR-T cells was
linked with unsatisfactory relapse rates. For this reason, the selection of an antigen that
is involved in malignant cells’ survival, and that its loss is detrimental, would be of great
advantage. Another alternative to solving the issue of target antigen downmodulation is
to target multiple antigens with a single CAR-T cell, and such attempts are already being
implemented in clinical trials.

Even though CAR-T cell therapy still requires improvement, it has already revolution-
ized the care of patients with blood cancers; however, further basic research, as well as
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clinical trials, are needed to find optimal therapeutic solutions and durable effects. Ideally,
all those efforts would lead to a safe, effective, and financially available adoptive therapy
for all patients with hematological malignancies.
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