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Abstract 

Background:  Genetic and epigenetic alterations have been indicated to be closely correlated with the carcinogene-
sis, DNA methylation is one of most frequently occurring molecular behavior that take place early during this compli-
cated process in gastric cancer (GC).

Methods:  In this study, 398 samples were collected from the cancer genome atlas (TCGA) database and were 
analyzed, so as to mine the specific DNA methylation sites that affected the prognosis for GC patients. Moreover, the 
23,588 selected CpGs that were markedly correlated with patient prognosis were used for consistent clustering of 
the samples into 6 subgroups, and samples in each subgroup varied in terms of M, Stage, Grade, and Age. In addi-
tion, the levels of methylation sites in each subgroup were calculated, and 347 methylation sites (corresponding to 
271 genes) were screened as the intrasubgroup specific methylation sites. Meanwhile, genes in the corresponding 
promoter regions that the above specific methylation sites were located were performed signaling pathway enrich-
ment analysis.

Results:  The specific genes were enriched to the biological pathways that were reported to be closely correlated 
with GC; moreover, the subsequent transcription factor enrichment analysis discovered that, these genes were mainly 
enriched into the cell response to transcription factor B, regulation of MAPK signaling pathways, and regulation of cell 
proliferation and metastasis. Eventually, the prognosis prediction model for GC patients was constructed using the 
Random Forest Classifier model, and the training set and test set data were carried out independent verification and 
test.

Conclusions:  Such specific classification based on specific DNA methylation sites can well reflect the heterogene-
ity of GC tissues, which contributes to developing the individualized treatment and accurately predicting patient 
prognosis.
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zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Background
From the perspective of the world, gastric cancer has 
a higher incidence and ranks fourth [1]. Through-
out China, gastric cancer has a higher incidence and 

mortality rate, ranking second among malignant 
tumors [2]. The number of deaths from malignant dis-
eases is also the highest among malignant tumors of 
the digestive system [3]. Gastric cancer is a malignant 
tumor that originates from the gastric mucosa epithe-
lium, due to changes in dietary structure, increased 
work pressure, and H. pylori infection, gastric cancer 
is becoming younger [4]. Radical surgery is currently 
the only possible cure for early gastric cancer, but 
because there are no obvious s in the early stage, it is 
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often similar to the symptoms of chronic gastric dis-
eases such as gastritis and gastric ulcer, and it is easy 
to be ignored [5]. Coupled with the low popularity of 
screening for gastric cancer in China, more than half of 
the patients were already in the middle and advanced 
stages at the time of diagnosis and lost the chance of 
radical surgery [6]. Surgical treatment combined with 
radiotherapy and chemotherapy have made some pro-
gress in the treatment of advanced gastric cancer, but 
the prognosis and quality of life of patients are still 
not ideal and need to be improved [7]. Therefore, fur-
ther strengthening the research on the mechanism of 
gastric cancer occurrence and development, and look-
ing for biological markers with stronger sensitivity and 
specificity, will help early detection and intervention of 
tumors, predict the prognosis of tumors, and develop 
more effective anti-tumor drugs. Important content in 
the prevention and treatment of gastric cancer.

As we know, the same cancer manifests differently 
in different individuals, but the same disease manifests 
different treatments [8]. Although the different stages 
of cancer reflect some characteristics of cancer, they 
can also help clinicians to develop treatment plans for 
specific stages. However, the individual differences due 
to changes in molecular level make the same patho-
logical staging with the same treatment scheme get dif-
ferent treatment results [9, 10]. The root cause of this 
phenomenon is that clinicians do not know much about 
the molecular mechanisms of the occurrence, progres-
sion and metastasis of specific cancers in the human 
body, and cannot reach the stage of individualized 
treatment.

The method to cope with this problem is to use bio-
informatics to conduct systematic research on a certain 
molecular level of cancer with the support of a large 
number of clinical samples to find the cause of cancer 
or find some genes caused by cancer changes in expres-
sion levels [11]. The purpose of this study was to identify 
molecular subtypes of gastric cancer at the gene expres-
sion level and methylation level using public data, find 
out the relationship between each cluster and clinical 
data, determine the unique molecular level characteris-
tics of each cluster and establish corresponding The clas-
sifier obtains the label-like genes and classifiers for the 
classification on the sample training set, and then uses 
the test set to verify the classification effect of the label-
like genes and classifiers. The tag-like genes and classifi-
ers obtained in this way can perform category prediction 
on new samples and achieve the purpose of identifying 
cancer subtypes in new samples, so as to establish tar-
geted treatment schemes for individuals in order to 
reduce cancer patient mortality and increase patients’ liv-
ing standard goals.

Methods
TCGA data download and preprocessing
We used the TCGA GDC API to download the latest 
clinical follow-up information (2019.01.04), which con-
tains a total of 398 samples (2 samples were paired nor-
mal counterparts named TCGA-xx-xxxx-11); RNA-Seq 
data was downloaded from TCGA GDC API, which 
contains a total of 450 samples (35 samples were paired 
normal counterparts named TCGA-xx-xxxx-11). UCSC 
Cancer Browser was used to download the Illumina 
Infinium Human Methylation 450 data included a total 
of 398 samples (2 samples were paired normal counter-
parts named TCGA-xx-xxxx-11). The exclusion criteria: 
NA was removed from all samples CpG sites with a value 
ratio exceeding 70%, while removing cross-reactive CpG 
sites in the genome according to the cross-reactive sites 
provided by Discovery of cross-reactive probes and poly-
morphic CpGs in the Illumina Infinium HumanMethyla-
tion450 microarray. Using the KNN method of R package 
impute to fill the methylation spectrum with missing 
values, and further remove the unstable genome meth-
ylation sites, that is, the CpGs and single nucleotide posi-
tions on the sex chromosome are removed Sites; 335,230 
methylation sites were finally obtained.

Random grouping of samples
First, 394 samples are equally divided into training and 
test set. The following criteria: 1. The samples were ran-
domly assigned to the training and testing sets; 2. The 
age distribution, clinical stage, follow-up time, and pro-
portion of patient deaths need to be similar in the two 
groups.

Survival analysis and molecular subtype screening 
of methylation sites in training set
A univariate Cox proportional hazards regression model 
was performed for each methylation site and survival 
data. Using the R package survival coxph function, 
p < 0.05 was selected as the threshold value. In the end, 
there were 23,588 significant prognostic difference sites, 
of which the most significant top 20 are shown in Table 1. 
Add Stage, Grade, and Age as covariates for CpG sur-
vival analysis: Through a univariate Cox model, select 
significant methylation sites for a multivariate Cox pro-
portional hazard regression model, with M, Stage, Grade, 
and Age as covariates obtain significant multi-factor 
methylation sites. Take the intersection of the two to 
obtain 22,062 significant methylation sites. The result is 
Additional file  1: Table  S1. Further, we used the R soft-
ware package Consensus Cluster Plus to perform consist-
ent clustering of methylation sites that were significant 
in both single and multiple factors to screen molecu-
lar subtypes. Euclidean distance is used to calculate the 
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similarity distance between samples, and K-means is 
used for clustering.

Function enrichment analysis and construction of classifier
To identify the molecular type of gastric cancer based 
on methylation, we use QDMR software to identify 

specific methylation sites. For each cluster, calculate 
the average value of each methylation level in 22,062 
methylation sites, and obtain the 22,062 × 6 matrix 
using the input data of QDMR software. Set the thresh-
old to 0.15.

In order to observe the mechanism of action of these 
specific methylation sites, we annotated the correspond-
ing genes in the promoter region where these specific 
methylation sites are located and used the Enrichr online 
tool to perform functional enrichment analysis to dis-
cover the functions of these gene enrichments. path. In 
order to verify the discrimination ability of the identified 
specific methylation sites, we further applied the 347 spe-
cific methylation sites identified by QDMR to construct a 
random forest classifier, and ten-fold cross-validation to 
determine the performance of the model.

Results
Uniform clustering block selection of molecular subtypes 
using single‑ and multi‑factor significant methylation 
profiles
Using the resampling scheme to sample 80% of the sam-
ples and resampling 100 times, the optimal number of 
clusters is determined by the cumulative distribution 
function (CDF), as shown in Fig. 1a, from which we can 
see that Clusters have clustering at 5, 6 The results are 
relatively stable. Further observation of the CDF Delta 
area curve is shown in Fig. 1b. It can be seen that the clus-
tering result is stable when Cluster is selected as 6, and 
finally we choose k = 6 to obtain 6 molecular subtypes.

Table 1  The most significant top 20 methylation sites

CpGs p.value HR Low 95%CI High 95%CI

cg11948421 2.94E − 08 442.2458396 51.34338135 3809.281304

cg08260760 8.75E − 08 2929.373453 157.3735659 54527.76507

cg16718891 1.95E − 07 1627.178489 100.4336939 26362.76462

cg01805784 2.25E − 07 9032.366266 287.3015503 283965.1936

cg22280359 5.71E − 07 2038.684276 102.8744546 40401.02662

cg26206990 5.90E − 07 10087.35509 270.7518914 375822.7955

cg26780750 6.06E − 07 40844.3516 630.5307387 2645804.487

cg16188681 1.39E − 06 282.9628544 28.58738574 2800.814937

cg05492845 1.46E − 06 10101.82075 237.0738349 430443.041

cg06812522 1.48E − 06 481.591637 38.94307486 5955.628971

cg18908524 1.81E − 06 2309.260249 96.01135579 55542.21014

cg14358451 2.23E − 06 100451.6413 850.915178 11858446.64

cg15674575 2.37E − 06 1480.507671 71.39852872 30699.55365

cg13518339 2.75E − 06 12097.95681 237.7795786 615530.3993

cg21367923 3.64E − 06 4224.520817 123.3644837 144665.4305

cg01334818 3.66E − 06 35951.47558 423.7024981 3050509.739

cg23248865 4.04E − 06 3654.415779 111.6644816 119597.1584

cg26833830 4.25E − 06 31.44342533 7.23235369 136.7036291

cg15633416 4.54E − 06 15621.4833 251.823192 969055.8625

cg21582582 4.77E − 06 287.2274165 25.40824841 3246.960885

Fig. 1  a CDF curve; b CDF Delta area curve
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Cluster analysis of methylation expression profiles of six 
molecular subtypes
Based on the consistent clustering results, we selected a 
stable k = 6 clustering result as shown in Fig. 2a. It can be 
seen that tumor samples were assigned to these six cat-
egories. Further, we used 22,062 methylation spectra to 
perform Cluster analysis, using Euclidean distance to cal-
culate the distance between methylation sites, as shown 
in Fig. 2b, it can be seen that most of the methylation sites 
are less abundant in each sample, while in the six catego-
ries There are also significant differences in methylation 
expression profiles, especially for Cluster1, which has sig-
nificantly lower methylation levels than other types.

Analysis of clinical characteristics of 6 molecular subtypes
Further, we analyzed the distribution of the prognosis, 
Stage, Grade, and Age of each sample in the six molecu-
lar subtypes as shown in Fig. 3, and it can be seen from 
Fig.  3a that there are significant prognostic differences 
among these six types of samples, among which Clus-
ter1 has the best prognosis. Well, Cluster3 has the worst 
prognosis, which suggests that the prognosis of the hypo 
methylated sample is better than that of the hyper meth-
ylated sample. It can be seen from Fig. 3b that Cluster6 
is associated with high invasion, and the age distribu-
tion of the six types of samples can be seen from Fig. 3c. 

From Fig. 3d, it can be seen that the patients in Cluster3 
are associated with high Grade, and the higher patient’s 
stage, the shorter the survival time.

Screening of specific methylation sites within the group
Finally, 347 methylation sites that were considered to be 
cluster-specific methylation sites were screened, such 
as Additional file 2: Table S2. The heat map is shown in 
Fig. 4a. It can be seen that Cluster1 and Cluster3 have the 
most specific methylation sites. Cluster1 is mostly hypo 
methylated, Cluster3 is mostly hyper methylated, and 
there are a few specific methylation sites in other types. 
We annotate these 347 methylation sites by genomic 
annotation to obtain a total of 271 genes, such as Addi-
tional file 3: Table S3. In addition, we explored the gene 
expression of specific methylation sites in the subgroup, 
and found a total of 160 samples from the training set 
corresponding to the detected RNA-Seq. We extracted 
271 genes of these 160 samples. The expression profile of 
the expressed genes, such as Additional file 4: Table S4, 
is further plotted as shown in Fig. 4b. It can be seen from 
the expression profile that these subgroups also have dif-
ferent expression patterns. This implies that there is a 
negative correlation between the DNA methylation level 
and gene expression.

Fig. 2  a Sample cluster heat map when consensus k = 6; b 22,062 methylation site clustering results in six types of samples



Page 5 of 10Lian et al. Cancer Cell Int          (2020) 20:349 	

Functional enrichment analysis of genes with specific 
methylation site annotation
Through online tool enrichment analysis, we finally 
found that these genes were enriched in functional path-
ways related to gastric cancer. As shown in Fig. 5a, these 
genes are enriched in multiple cancer-related pathways 
of KEGG, including WNT signaling pathway, FoxO sign-
aling pathway, cancer signaling pathway, and so on; as 
shown in Fig.  5b, these genes are enriched in multiple 
cancers of GO Relevant biological processes include cell 
response to transcription factor B, regulation of MAPK 
signaling pathways, and regulation of cell proliferation 
and metastasis. This indicates that the specific methyla-
tion probes identified in this study are closely related to 
gastric cancer.

Construction of random forest classifier and data 
verification of independent test set
Through the construction of the random forest classifier, 
we found that the classification accuracy of the model 
based on the training set was 82.35%. The area under 
the ROC curve reaches 0.795, as shown in Fig.  6a. In 
order to verify the stability and reliability of the model, 
we extracted the expression profile data of the 347 CpG 
methylation sites (6 clusters) and substituted it into the 
test set to verify the model. The statistics of the predic-
tion results are shown in Table 2. The number of catego-
ries of the sample and the training set are similar. Further 
analysis of the prognostic differences of the six types of 
samples is shown in Fig. 6b. It can be seen that there is 
also a significant difference in prognosis of these six types 

Fig. 3  a Prognostic differences between six types of samples; b The proportion of different Grades in the six categories of samples; c age 
distribution in six categories of samples; d The proportion of different stages in the six categories of samples
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of samples, with a significant p value of 0.0264. The prog-
nosis of the Cluster2 sample It is significantly better than 
other types of samples. Figure 6c shows the distribution 
of Grade in the test set sample, Fig. 6d shows the distri-
bution of Stage in the test set sample, and Fig. 6e shows 
the distribution of patient age in the test set sample. The 
feature distributions of 6 types of samples in the test set 
and the training set are compared, and it is found that the 
three feature distributions have certain consistency. In 
short, the prognostic model constructed from these 347 
methylation profiles has higher prediction accuracy and 
stability of the identified methylation features.

In order to exclude the interference of the predic-
tion results due to the particularity of the samples, this 
study compared the survival of the 6 types of patients 
in the training set and the test set. As shown in Fig. 7, 
the survival of the 6 types of samples in the training 
set and the test set were both Not significant, with a 
minimum P value of 0.1845 and greater than 0.05, 
which indicates that the methylation sites screened in 
this study can be applied to other gastric cancer sam-
ples and have certain potential significance in future 
research.

Fig. 4  a distribution of methylation specific sites, b expression profile analysis of genes with specific methylation site annotations

Fig. 5  Functional enrichment results of specific methylation site annotation genes. a special genes are enriched in multiple cancer-related 
pathways; b special genes are enriched in multiple cancers of GO relevant biological processes
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Discussion
In the field of bioinformatics, the classification and 
prediction of gastric cancer has become an important 
subject. This method can explore the genesis and devel-
opment mechanism of gastric cancer at the gene level, 
and can fundamentally study the cause of gastric cancer. 
The TCGA database collected epigenetic and transcrip-
tome sequencing information for more than 30 cancers 

from thousands of patients [12]. Researchers began to 
explore the pathogenesis of related cancers at the genetic 
level, cancer genomics has become new directions for 
treatment [13–15].

Cancer classification models are one of the important 
components of cancer genomics research. Researchers 
usually combine various types of genetic sequencing data, 
such as DNA methylation, copy number variation, and 
original sequencing data, to explore precise cancer clas-
sification models and Cancer occurrence and develop-
ment mechanism [16–19]. Most of the current literature 
researches are carried out by preprocessing operations 
such as data standardization, dimensionality reduction, 
and balance on various types of genetic sequencing data 
obtained [20]. Then, the pre-processed data set is input 
to the cancer classification model constructed in the 
study for learning and training, and the training param-
eters are continuously adjusted and the model is opti-
mized during the model training process [21]. Finally, 
stable performance and strong generalization ability are 
obtained cancer classification system. The classification 

Fig. 6  a AUC curve of the training set model; b predicted methylation pattern of the test set data after classification; c the proportion of different 
Grades in the six types of samples in the test set; d different stages of the six types of samples in the test set Proportional distribution; e Age 
distribution in six samples in the validation set

Table 2  Statistics of various samples predicted in the test 
set

Cluster Number 
of samples

1 42

2 15

3 15

4 53

5 29

6 61
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of gastric cancer has developed slowly, mainly because 
the early symptoms of gastric cancer are not obvious, and 
it is difficult to accurately classify them by pathological 
images. Therefore, this paper proposes to use the DNA 
methylation sequencing data of large-scale gastric can-
cer samples to learn the relevant characteristics of gastric 
cancer patients, and then construct and train a classifica-
tion system suitable for gastric cancer, which provides a 
reference for the accurate early classification and diagno-
sis of gastric cancer.

This study combines gene expression profile data and 
DNA methylation data to pre-process missing values of 
public data, remove unstable CpG sites, and select meth-
ylation sites in the promoter region as the final methyla-
tion. Expression spectrum. Use the Consensus Cluster 
Plus package [22] to perform supervised cluster analysis 
on the data, select samples with both methylation and 
expression profile data, and build a training set for build-
ing a classifier to train the model or determine model 
parameters; the test set is used to The performance of the 
final selection of the best model is tested, and the gen-
eralized ability of the trained model is tested. In short, 
the data set is divided into two categories to prevent 
overfitting. Perform a single factor Cox analysis on each 
methylation site, Stage, Grade, and Age, select significant 

classification characteristics, further use M, Stage, Grade, 
and Age as covariates to introduce Cox, and further each 
significant methyl group Cox multivariate analysis was 
performed on the quantification sites, and significant 
methylation sites were screened as subsequent categori-
cal variables. Through consistent cluster analysis of the 
expression profiles of these potential methylated bio-
markers, we identified six molecular subtypes. By ana-
lyzing the prognostic differences of different molecular 
subtypes, we observed the prognosis of different molecu-
lar subtypes. Differences, while analyzing differences in 
clinical characteristics of different molecular subtypes. 
Using QDMR software analysis, we screened out spe-
cific methylation sites in these molecular subtypes. At 
the same time, we found 271 genes containing methyla-
tion sites for classification. What is more critical is that 
there is a large correlation between these 6 subclasses 
and clinical data and gene mutation data, suggesting 
that these 6 each subclass represents a different biologi-
cal subtype. Enrichr, an online tool for gene enrichment 
analysis, was used to explore the molecular enrichment 
of tag-like genes to investigate the functional enrichment 
and related pathway enrichment of tag-like genes. Finally, 
we build a prognostic model of gastric cancer based on a 
random forest classifier model and model detection.

Fig. 7  Difference of survival information between the training set and the test set of the 6 types of samples. a–f are the KM curves of 
cluster1 ~ cluster6 samples
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Gastric cancer can be classified and analyzed at differ-
ent levels according to different molecular characteris-
tics [23]. Identifying and identifying different subtypes of 
gastric cancer samples at these molecular levels can not 
only help people understand the disease at the root, but 
also help doctors choose the best medicine [24]. Treat-
ment options predict the survival of different patients 
and identify high-risk factors associated with specific 
subtypes [25]. The purpose of this study is to expect to 
obtain gastric cancer subtypes that are related to gas-
tric cancer biology and clinical data at the gene expres-
sion level and methylation level, and use the information 
gene to establish a classifier at the molecular level to pre-
dict the class assignment of new samples. In-depth gene 
enrichment analysis and co-expression network analysis 
of information genes were performed.

Conclusion
This study was based on the TCGA methylation profile of 
gastric cancer to identify prognostic-specific methylation 
to construct a classifier for gastric cancer. Helps identify 
new molecular subtypes of gastric cancer. This classifier 
can provide guidance for clinicians on the diagnosis and 
prognosis of different epigenetic subtypes. In addition, 
the identified subtype-specific molecules provide mul-
tiple targets for the precise medical treatment of gastric 
cancer.

Supplementary information
Supplementary information accompanies this paper at https​://doi.
org/10.1186/s1293​5-020-01253​-4.

Additional file 1: Table S1. 22,062 significant methylation sites.

Additional file 2: Table S2. 347 cluster-specific methylation sites.

Additional file 3: Table S3. 271 genes obtained by genomic annotation.

Additional file 4: Table S4. The expression profile of the 271 genes in 160 
samples.

Abbreviations
GC: Gastric cancer; TCGA​: The cancer genome atlas; CDF: Cumulative distribu-
tion function.

Acknowledgements
Not applicable.

Authors’ contributions
Data curation, QL, BW; Formal analysis, QL, BW, LF; Methodology, JS; Software, 
QL, BW; Writing, QL, BW; Writing—review and editing, JZ. All authors read and 
approved the final manuscript.

Funding
No.

Availability of data and materials
The supplementary data used and generated during the current study are 
available from the corresponding authors on reasonable request.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Oncology Department, First Affiliated Hospital of Jiamusi University, 
154002 Qiqihar, Heilongjiang, China. 2 Gastroenterology Department, The 
First Hospital of Qiqihar, The Affiliate Qiqihar Hospital of Southern Medical 
University, Longsha District, 30 of Park Road, Qiqihar, Heilongjiang 161005, 
China. 3 Radiotherapy and Chemotherapy, The First Hospital of Dandong, 
Liaoning 118000, China. 4 General Surgery, The First Hospital of Qiqihar, The 
Affiliate Qiqihar Hospital of Southern Medical University, Longsha District, 30 
of Park Road, Qiqihar, Heilongjiang 161005, China. 

Received: 29 January 2020   Accepted: 10 May 2020

References
	1.	 Al Mansour M, Izzo L, Mazzone G, et al. Curative gastric resection for the 

elderly patients suffering from gastric cancer. G Chir. 2016;37:13–8.
	2.	 Sun W, Yan L. Gastric cancer: current and evolving treatment landscape. 

Chin J Cancer. 2016;35:83.
	3.	 Cheng J, Cai M, Shuai X, Gao J, Wang G, Tao K. Systemic therapy for previ-

ously treated advanced gastric cancer: a systematic review and network 
meta-analysis. Crit Rev Oncol Hematol. 2019;143:27–45.

	4.	 Cao L, Yu J. Effect of Helicobacter pylori infection on the composition of 
gastric microbiota in the development of gastric cancer. Gastrointest 
Tumors. 2015;2:14–25.

	5.	 Feng F, Feng B, Liu S, et al. Clinicopathological features and prognosis of 
mesenteric gastrointestinal stromal tumor: evaluation of a pooled case 
series. Oncotarget. 2017;8:46514–22.

	6.	 Li C, Oh SJ, Kim S, et al. Risk factors of survival and surgical treatment 
for advanced gastric cancer with large tumor size. J Gastrointest Surg. 
2009;13:881–5.

	7.	 Liang H. The Precised Management of Surgical Treatment for Gastric 
Cancer: Interpretation of the 5th edition of Japanese Gastric Cancer Treat-
ment Guideline and the 15th edition of Japanese Classification for Gastric 
Cancer. Zhonghua Zhong Liu Za Zhi. 2019;41:168–72.

	8.	 Lin JX, Wang ZK, Xie JW, et al. Clinicopathological features and impact 
of adjuvant chemotherapy on the long-term survival of patients with 
multiple gastric cancers: a propensity score matching analysis. Cancer 
Commun. 2019;39:4.

	9.	 Zhuo C, Xue Y, Guo Z, Gao W. Influencing factors and clinical significance 
of metastatic lymph node staging in advanced gastric carcinoma. Zhong-
hua Wei Chang Wai Ke Za Zhi. 2016;19:62–6.

	10.	 Zhou R, Zhao J, Shu P, Wang H, Qin J, Sun Y. Clinicopathologic character-
istics and prognosis analysis of 90 young patients with gastric cancer. 
Zhonghua Wei Chang Wai Ke Za Zhi. 2017;20:1288–92.

	11.	 Demircioglu D, Cukuroglu E, Kindermans M, et al. A pan-cancer transcrip-
tome analysis reveals pervasive regulation through alternative promoters. 
Cell. 2019;178:1465-1477 e1417.

	12.	 Cancer Genome Atlas Research N: Comprehensive genomic characteri-
zation defines human glioblastoma genes and core pathways. Nature. 
2008. 455: 1061-1068.

	13.	 Rosenstein BS, Rao A, Moran JM, et al. Genomics, bio specimens, and 
other biological data: current status and future directions. Med Phys. 
2018;45:e829–33.

	14.	 Katona BW, Rustgi AK. Gastric cancer genomics: advances and future 
directions. Cell Mol Gastroenterol Hepatol. 2017;3:211–7.

	15.	 Kelly CM, Janjigian YY. The genomics and therapeutics of HER2-positive 
gastric cancer-from trastuzumab and beyond. J Gastrointest Oncol. 
2016;7:750–62.

	16.	 Hansen KD, Timp W, Bravo HC, et al. Increased methylation variation in 
epigenetic domains across cancer types. Nat Genet. 2011;43:768–75.

https://doi.org/10.1186/s12935-020-01253-4
https://doi.org/10.1186/s12935-020-01253-4


Page 10 of 10Lian et al. Cancer Cell Int          (2020) 20:349 

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your research ?  Choose BMC and benefit from: 

	17.	 Li J, Ching T, Huang S, Garmire LX. Using epigenomics data to predict 
gene expression in lung cancer. BMC Bioinform. 2015;16(5):S10.

	18.	 Marsit CJ, Koestler DC, Christensen BC, Karagas MR, Houseman EA, 
Kelsey KT. DNA methylation array analysis identifies profiles of blood-
derived DNA methylation associated with bladder cancer. J Clin Oncol. 
2011;29:1133–9.

	19.	 Potter NE, Ermini L, Papaemmanuil E, et al. Single-cell mutational profiling 
and clonal phylogeny in cancer. Genome Res. 2013;23:2115–25.

	20.	 Lee S, Son D, Yu W, Park T. Gene-gene interaction analysis for the acceler-
ated failure time model using a unified model-based multifactor dimen-
sionality reduction method. Genomics Inform. 2016;14:166–72.

	21.	 Karakitsos P, Megalopoulou TM, Pouliakis A, Tzivras M, Archimandritis 
A, Kyroudes A. Application of discriminant analysis and quantita-
tive cytologic examination to gastric lesions. Anal Quant Cytol Histol. 
2004;26:314–22.

	22.	 Li Z, Jiang C, Yuan Y. TCGA based integrated genomic analyses of ceRNA 
network and novel subtypes revealing potential biomarkers for the 

prognosis and target therapy of tongue squamous cell carcinoma. PLoS 
ONE. 2019;14:e0216834.

	23.	 Hu B, El Hajj N, Sittler S, Lammert N, Barnes R, Meloni-Ehrig A. Gastric 
cancer: classification, histology and application of molecular pathology. J 
Gastrointest Oncol. 2012;3:251–61.

	24.	 Serra O, Galan M, Ginesta MM, Calvo M, Sala N, Salazar R. Comparison and 
applicability of molecular classifications for gastric cancer. Cancer Treat 
Rev. 2019;77:29–34.

	25.	 Nguyen VC, Nguyen TQ, Vu TNH, et al. Application of St gallen categories 
in predicting survival for patients with breast cancer in vietnam. Cancer 
Control. 2019;26:1073274819862794.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.


	DNA methylation data-based molecular subtype classification and prediction in patients with gastric cancer
	Abstract 
	Background: 
	Methods: 
	Results: 
	Conclusions: 

	Background
	Methods
	TCGA data download and preprocessing
	Random grouping of samples
	Survival analysis and molecular subtype screening of methylation sites in training set

	Function enrichment analysis and construction of classifier

	Results
	Uniform clustering block selection of molecular subtypes using single- and multi-factor significant methylation profiles
	Cluster analysis of methylation expression profiles of six molecular subtypes
	Analysis of clinical characteristics of 6 molecular subtypes
	Screening of specific methylation sites within the group
	Functional enrichment analysis of genes with specific methylation site annotation
	Construction of random forest classifier and data verification of independent test set

	Discussion
	Conclusion
	Acknowledgements
	References




