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Abstract Long-term estrogen deprivation treatment for

breast cancer can, in some patients, lead to the activation

of alternate cellular pathways, resulting in the re-

emergence of the disease. This is a distressing scenario

for oncologists and patients, but recent intensive molec-

ular and biochemical studies are beginning to unravel

these pathways, revealing opportunities for new targeted

treatments. Far from making present therapies redundant,

these new discoveries open the door to novel combination

therapies that promise to provide enhanced efficacy or

overcome treatment resistance. Letrozole, one of the most

potent aromatase inhibitors, is the ideal candidate for

combination therapy; indeed, it is one of the most

intensively studied aromatase inhibitors in the evolving

combinatorial setting. Complementary to the use of

combination therapy is the development of molecular

tools to identify patients who will benefit the most from

these new treatments. Microarray gene profiling studies,

designed to detect letrozole-responsive targets, are

currently under way to understand how the use of the

drug can be tailored more efficiently to specific patient

needs.
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Introduction

The proliferative, invasive, and metastatic potential of

breast tumors may be largely predetermined at an early

stage in the course of disease, whereas genetic alterations

that accumulate during progression from in situ to meta-

static disease are unpredictable and result in specific

phenotypic changes and loss of sensitivity to treatments

[1]; for example, although the estrogen receptor-positive

(ER+) phenotype may be largely stable over time [2],

hormone therapy-sensitive breast tumors may develop

resistance and progress to a hormone-independent state [3].

In addition, progression to hormone independence may be

associated with alterations in the expression of other reg-

ulatory genes, such as human epidermal growth factor

receptor 2 (HER2) [4]. In the clinical setting, a quantitative

decrease in ER expression was found in over 900 patients

with primary breast cancer when HER2 was amplified [5].

Recent advances in translational research studies have

highlighted the complexity of ER signaling, including

differential roles for the ERa and ERb subtypes [6], and

multiple regulatory interactions between steroid hormone,

growth factor, and other tyrosine kinase signaling pathways

[7–10]. Greater understanding of tumor biology is begin-

ning to help physicians to individualize treatment selection

based on clinical, pathologic, molecular, and genetic pro-

filing, and to rationally design novel combinations to

improve efficacy and safety.

This article reviews novel approaches with the more

potent third-generation aromatase inhibitor (AI) letrozole

(Femara1; Novartis Pharmaceuticals) in combination

strategies with agents targeting other growth factor path-

ways. The review explores the hypothesis that combining

letrozole with specifically targeted therapies may delay or

overcome endocrine therapy resistance in postmenopausal
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women with hormone receptor-positive (HR+) breast

cancer.

Endocrine therapy resistance

It is well established that breast cancer cells can adapt to

low concentrations of estrogen by becoming hypersensitive

to estradiol [11]. Long-term exposure to tamoxifen induces

hypersensitivity to estradiol [12] and this adaptive change

can result in resistance to endocrine therapy [13]. It has

been postulated that tamoxifen is more susceptible than AIs

to this phenomenon because of its intrinsic agonist prop-

erties [12]. Moreover, it has been suggested that highly

potent AIs are required to block estrogen synthesis when

breast cancer tumors are hypersensitive to small amounts

of estradiol [13].

Recent research has provided a compelling explanation

for the development of resistance [13, 14]. Experiments

using MCF-7 and other breast cancer model systems have

identified alternative intracellular signaling pathways used

by breast tumors to enhance and activate ER signaling, thus

allowing cells to escape from the inhibitory effects of

endocrine therapies [15, 16]. It has been shown that long-

term estrogen deprivation upregulates ERa and growth

factor signaling pathways such as mitogen-activated pro-

tein kinase (MAPK), phosphatidylinositol 3-kinase (PI3K),

and the mammalian target of rapamycin (mTOR) pathways

[14–19]. Of note, Jeng et al. [15] reported that a specific

inhibitor of MAPK (PD98059) could block the elevation of

activated MAPK observed in MCF-7 cells exposed to long-

term estrogen deprivation. Furthermore, studies in both

wild-type and long-term estrogen-deprived MCF-7 cells

suggested that mTOR has a key role in breast cancer cell

proliferation and showed that mTOR inhibition by farne-

sylthiosalicylic acid (FTS) can reduce proliferation and

induce apoptosis [19].

Growth factor pathways

The role of nongenomic pathways has been highlighted in

resistance to antiestrogen therapy [20]. Classically, estro-

gens bind to nuclear ER to enhance transcription of genes

important in breast cancer proliferation and survival

(genomic pathway) [21]; however, estrogen may also act

through ER located in or near the cell membrane [22].

Nongenomic actions include activation of various growth

signaling pathways, including MAPK [15]. In addition, ER

may indirectly activate epidermal growth factor receptors

(EGFR) via coactivators, including src, leading to activa-

tion of EGFR [23–25]. Subsequently, dimerization of

activated EGFR with other HER family receptors,

particularly HER2, activates intracellular signaling path-

ways, which in turn may enhance nuclear ER signaling [4],

thus completing a vicious cycle of events. Cross-talk

between ER and HER2 pathways has been implicated in

clinical resistance to tamoxifen [4, 7]. Shou et al. [4]

reported that tamoxifen behaves as an agonist in MCF-7

breast cancer cells that express high levels of the coacti-

vator AIB1 (src3) and HER2, resulting in de novo

resistance. Interestingly, addition of an anti-EGFR tyrso-

sine kinase inhibitor eliminated cross-talk and restored

tamoxifen’s antitumor activity [4].

It has been postulated that AIs may be more effective

than selective estrogen-receptor modulators (SERMs) [26]

because they can block genomic and nongenomic activities

of ER [27]. Elucidation of ER biology and interactions

with growth factor signaling pathways will help to identify

potential therapeutic targets for HR+ breast cancer [4, 28].

Combination therapy

Several strategies to inhibit growth factor signaling and

signal transduction in breast cancer have been tested in the

preclinical setting (see Fig. 1). The humanized monoclonal

antibody trastuzumab specifically targets the extracellular

domain of HER2 [29, 30]. Amplification of HER2 occurs

in approximately 25% of breast tumors and is associated

with more aggressive disease and a poor prognosis [31].

Trastuzumab has been shown to restore sensitivity to

estrogen and tamoxifen in estrogen-independent HER2-

transduced MCF-7 cells [32]. Furthermore, trastuzumab

blocked HER2 heterodimer formation and phosphoryla-

tion, reduced ERK1/2 activity, and strongly inhibited cell

growth in MCF-7 cells overexpressing EGFR and HER2

and resistant to tamoxifen [18]. Of note, synergistic inhi-

bition of the BT474 breast cancer cell line was observed

with trastuzumab and the HER dimerization inhibitor

pertuzumab [33], which targets a different domain of

HER2 [34]. The combination of tamoxifen and trast-

uzumab in ER+, HER2+ BT-474 cells resulted in

synergistic growth inhibition due to the enhancement of

cell accumulation in the G0–G1 phase of the cell cycle, and

a decreased number of cells in S phase [35].

HER signaling pathways can also be targeted by inhib-

iting receptor phosphorylation by intracellular tyrosine

kinases [36]. Gefitinib and erlotinib both specifically

inhibit the EGFR tyrosine kinase and have demonstrated

inhibitory activity in models of hormone-resistant breast

cancer [37, 38]. Interestingly, pretreatment of HER2+,

hormone-resistant MCF-7 cells with gefitinib eliminated

the agonist effects of tamoxifen and restored its antitumor

activity [4]. In ER+ breast tumors, targeted therapy with

single-agent gefitinib was found to be less effective than
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endocrine therapy [39]; however, tamoxifen plus gefitinib

had greater activity than tamoxifen alone in vivo in hor-

mone-sensitive cells [39]. Data also support the use of

EGFR tyrosine kinase inhibitors in combination with

HER2 antibodies, such as trastuzumab, against breast

tumors that express EGFR and high levels of HER2 [37].

Alternatively, the tyrosine kinase inhibitor lapatinib pro-

vides single-agent targeting of both EGFR and HER2 [40,

41]. Using a panel of 31 human breast tumors, Konecny

et al. [41] showed that response to lapatinib was signifi-

cantly correlated with HER2 expression and its ability to

inhibit HER2, Raf, Akt, and ERK phosphorylation. In vivo

studies showed that lapatinib had a sustained antitumor

effect that was further prolonged by combination with

trastuzumab [41]. Another study showed that the combi-

nation of AEE788 (an EGFR/HER2 tyrosine kinase

inhibitor) with letrozole enhanced antiproliferative effects

of these agents by 20–30% in MCF-7 and ZR75.1 cell lines

and by 60–70% in the BT474 cell line [42]. In a model

system of acquired resistance to letrozole, AEE788 par-

tially restored sensitivity to letrozole, whereas rapamycin

was not effective, suggesting that letrozole resistance and

mTOR activation may not be connected in this model [43].

The authors concluded that inhibition of both HER2-

mediated signaling and mTOR-dependent translation may

restore responsiveness to letrozole in breast cancer refrac-

tory to this AI [43].

Strategies to inhibit downstream signal pathways have

also been developed. Farnesyl transferase inhibitors block

the first and most important step in the activation of Ras

signaling pathways [44]. Aberrant function of the Ras

signal transduction pathway is common in breast cancer as

a result of upstream activation via HER2 or EGFR [45].

The farnesyl transferase inhibitor R11577 (tipifarnib) was

found to have antitumor activity against MCF-7 xenografts

[44]. Another interesting therapeutic target is mTOR, a

central regulator of G1 cell cycle protein synthesis, that

precedes commitment to normal cellular replication [46].

Treatment of MCF-7 Arom-1 cells with letrozole and the

mTOR inhibitor RAD001 resulted in a further 50%

reduction in proliferation compared with letrozole alone

[47]. Another set of experiments, developed to test the

hypothesis that Akt kinase confers resistance to endocrine

therapy through suppression of ASK1/JNK pathway,

showed that combining RAD001 with letrozole restored

activation of the ASK/JNK pathway and increased the

sensitivity of MCF-7 cells with constitutively active Akt to

endocrine therapy [48]. Studies have also targeted the

selective estrogen receptor down-regulator (SERD) fulve-

strant, which indirectly inhibits growth factor pathways by

down-regulating ER [3]. In MCF-7Ca xenografts, com-

bined treatment with fulvestrant and letrozole prevented

increases in HER2 and activation of MAPK and inhibited

tumor growth [49].

These preclinical models (see Table 1) suggest that

treatments to reduce growth factor signaling pathways may

be useful in the treatment of human breast cancer [52].

Specifically, novel combination strategies may be

p160ER

p90RSK

SOS
RAS

RAF

P

P P

P

P

P

SERD

AI

TKI

MoAb

ER

PI3-K
P

P

FTI

Plasma 
Membrane

Cytoplasm

Nucleus

Cell
Survival

Cell 
Growth

EGFR / HER2

ERE

ER CBP
Basal

Transcription
Machinery

P P P P

CCI

Akt

MAPK
P

MEK
P

ER Target Gene Transcription         

IGFR

Growth factors

Estrogen

Tamoxifen

Fig. 1 Cross-talk between signal transduction pathways and ER

signaling in endocrine resistant breast cancer, with opportunities for

targeted intervention. Estrogen (E2)-liganded ER activates E2-

regulated genes in classical pathway (thick black arrow), but

following long-term tamoxifen therapy resistance can develop with

bidirectional cross-talk (gray arrows) between ER and growth factor

receptors, with association of membrane bound ER with growth factor

receptors, and/or IGFR or EGFR/HER2 activation of ER phosphor-

ylation. Stars show various targeted therapies. AI aromatase inhibitor,

SERD selective estrogen receptor down-regulator, MoAb monoclonal

antibodies, TKI tyrosine kinase inhibitor, FTI farnesyltransferase

inhibitor, CCI cell cycle inhibitor. Reprinted from [28] with

permission from the American Association for Cancer Research
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developed to prevent or delay the development of endo-

crine therapy resistance [3, 39], to restore sensitivity to

endocrine therapy [53], and to treat hormone-resistant

tumors [18, 46]. Anti-vascular endothelial growth factor

(VEGF) therapy with bevacizumab may be able to over-

come resistance to endocrine therapy and improve efficacy

in HR+ metastatic breast cancer [54], and preclinical

models have shown that the estrogen-induced increase in

VEGF expression may be counteracted by aromatase

inhibition. Inhibition of growth factor signaling and

angiogenesis pathways may be rationally combined with

conventional endocrine strategies for breast cancer [4, 35,

50, 55, 56].

The activity of inhibitors of growth factor signaling

depends on the presence of specific cellular aberrations,

such as overexpression of HER2 [57] or mutations of

EGFR [58]. Consequently, targeted therapies may have

limitations as single agents because the target is active in a

restricted subset of patients, and breast tumors may

undergo adaptive changes to render the target redundant.

Since tamoxifen exhibits agonist effects on breast cancer

cells exposed to long-term estrogen deprivation [12], it

may be better to combine AIs with inhibitors of growth

factor signaling. Letrozole is one of the most potent AIs

and is one of the most extensively studied AIs in combi-

nation with new agents (see Table 1).

Clinical trials of letrozole in combination with

inhibitors of growth factor signaling pathways

Based on results from preclinical studies, several clinical

trials of novel combinations are under way, with the aim of

improving efficacy and safety of endocrine therapy with

letrozole (see Table 2). Many of these trials are being

conducted in patients with locally advanced or metastatic

breast cancer who have failed prior tamoxifen or have a

suboptimal response to letrozole. This represents a high-

risk, difficult-to-treat population who are candidates for

cytotoxic chemotherapy. Preliminary results have shown

that letrozole can be safely combined with trastuzumab,

lapatinib, everolimus, tipifarnib, bevacizumab, and imati-

nib. It is too early, however, to make definitive conclusions

about efficacy and clinical benefits with these novel

combinations.

In a clinical trial [69] designed to test whether combi-

nation therapy with letrozole and bevacizumab was

possible, patients with ER+ or progesterone receptor-

positive (PR+) metastatic or locally advanced breast cancer

were treated with letrozole (2.5 mg daily) and bev-

acizumab (15 mg/kg IV every 3 weeks) [54]. The majority

of patients had received prior therapy with a nonsteroidal

AI. The combination of bevacizumab and letrozole was

found to be well-tolerated. Common drug-related toxicities

reported were hypertension, fatigue, headache, and joint

pain. Median progression-free survival was reported to be

10 months, and this compares favorably with the published

data on median time to progression with first-line letrozole

(9.4 months) [70]. However, analysis of efficacy and bio-

marker data was confounded by the long duration of

prestudy aromatase inhibition [54, 71]. Nevertheless, when

the data were corrected for duration of previous AI therapy,

the study did determine that changes in circulating endo-

thelial cell (CEC) levels may be a biomarker of response or

progression on anti-angiogenic therapy [71]. Based on

these findings, a randomized, double-blind, placebo-con-

trolled trial of bevacizumab combined with endocrine

therapy in patients with ER+ or PR+ metastatic breast

cancer has been initiated by the Cancer and Leukemia

Group B (CALGB) (see Fig. 2) [54]. The primary end

point of the trial is progression-free survival.

Letrozole plus trastuzumab produced durable responses

in about one in four patients with ER/PR+, HER2+ meta-

static breast cancer, but early progression occurred in one

Table 1 Summary of letrozole in combination with growth factor signaling inhibitors in preclinical models

Target for growth

factor inhibitor

Combination regimen Summary of key findings References

EGFR/HER2 Letrozole + AEE78 Combination enhanced antiproliferative effects in MCF-7 (ER+ HER2–),

ZR75.1 (ER+ HER2+), and BT474 (ER+ HER2+) cell lines

[42]

Partial restoration of growth inhibitory effects of letrozole in refractory cell lines

(LTLT-Ca; long-term letrozole treated)

[43]

mTOR Letrozole + RAD001

(everolimus)

Letrozole + RAD001 significantly increased apoptosis compared with either

agent alone

[50]

Co-treatment increased sensitivity to letrozole in resistant MCF-7 cells with

constitutively active Akt

[48]

RAD001 increased antiproliferative effects of letrozole in MCF-7 Arom 1 cell line [47]

IGFBP Letrozole + rhIGFBP-3 rhIGFBP-3 Enhanced letrozole activity in MCF-7-Ca cells in vitro and in vivo [51]

rhIGFBP recombinant human insulin-like growth factor binding protein
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in two patients [59]. This suggests that common resistance

pathways may be responsible for relapse [59]. Targeting

multiple pathways may reduce the risk of resistance. The

combination of letrozole and the dual EGFR/HER2 inhib-

itor lapatinib was found to be feasible and well-tolerated in

a phase I study [60], and this regimen is currently being

compared with letrozole plus placebo in a phase III study in

women with ER/PR+ advanced or metastatic breast cancer

[61] (see Fig. 3). Future studies will focus on finding the

right combination or sequence of agents for different

patients in specific treatment settings. Furthermore, studies

in the neoadjuvant setting in patients with locally advanced

breast cancer will allow correlative biomarker assessment,

such as the proliferation marker Ki-67, to determine the

efficacy of combination therapies. For example, everolimus

and letrozole are being studied as preoperative therapy of

Table 2 Clinical studies of letrozole and inhibitors of growth factor signaling pathways

Target for growth

factor inhibitor

Combination regimen Study type and patient population Summary of key findings References

HER2 Letrozole + trastuzumab Phase II

Metastatic BC, postmenopausal,

ER+ and/or PR+, HER2+ (n = 31)

ORR 26%; median TTP 5.8 months [59]

EGFR/HER2 Letrozole + lapatinib Phase I

Advanced BC (ER+ or PR+) or other

tumors (n = 36)

Letrozole + lapatinib safely combined

at recommended single agent

doses

[60]

Phase III

Advanced/metastatic BC (n = 1,200

target accrual)

Ongoing trial; primary end point TTP [61]

mTOR Letrozole + RAD-001

(everolimus)

Phase Ib

Advanced BC pts with suboptimal

response to letrozole (n = 6)

RAD001 pharmacokinetics not altered

by letrozole

[62]

Phase II

Presurgical therapy in patients with

newly diagnosed ER+ BC (n = 255

planned)

Ongoing trial of efficacy and

biomarkers

[63]

Letrozole + CCI-779

(temsirolimus)

Phase II

Advanced or metastatic BC (n = 92)

No difference in ORR, but trend to

longer PFS with

letrozole + temsirolimus (30 mg)

[64]

Phase III

Advanced or metastatic breast cancer

(n = 1,236 planned)

Terminated [65]

Farnesyl transferase Letrozole + tipifarnib Randomized phase II

Advanced or metastatic BC that has

progressed on tamoxifen (n = 121)

ORR 38% for letrozole and 26% for

letrozole + tipifarnib (NS)

[66]

Randomized, placebo-controlled

phase II

Advanced or metastatic BC that has

progressed on antiestrogen therapy

(n = 120)

No longer recruiting [67]

VEGF Letrozole + bevacizumab

(anti-VEGF monoclonal

antibody)

Phase II

Metastatic BC, postmenopausal,

candidates for AI (n = 28)

Letrozole + bevacizumab is

well-tolerated

[54]

Endocrine therapy

(tamoxifen or aromatase

inhibitor) + bevacizumab

Phase III placebo-controlled

First-line therapy in ER+/PR+

Metastatic BC (n = TBC)

Planned trial Planned

CALGB

trial [54]

Bcr-abl Letrozole + imatinib Phase II

Metastatic BC, postmenopausal

ER+ and/or PR+ (n = 15)

Letrozole + imatinib is feasible [68]

BC breast cancer, ORR overall response rate, TTP time to progression, PFS progression-free survival, AI aromatase inhibitor, TBC to be

confirmed
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primary breast cancer in postmenopausal women [63]. In

this phase II trial, patients are randomized to receive le-

trozole in combination with everolimus or placebo, an

adaptive design strategy, so that identification of biomar-

kers can be used to optimize patient selection for a future

phase III trial of first-line combination therapy in patients

with advanced breast cancer. Even if a biomarker is not

identified, the trial is adequately powered to demonstrate a

statistically significant difference in treatment effect of the

combination in the overall population.

Combination strategies may also change the conven-

tional approach for treatment selection based on HR status.

Interestingly, it has been suggested that treatment of

HER2+, ER– metastatic breast cancer with trastuzumab

may transform the tumor phenotype to become hormone

responsive [72]. The hypothesis-generating study found

that three of ten patients demonstrated ER overexpression

at 9, 12, and 37 weeks, respectively, following the initia-

tion of trastuzumab. Two of these patients were

subsequently treated with endocrine therapy alone and one

received letrozole for 3 years without evidence of pro-

gression. Further trials of letrozole used in combination

with trastuzumab or sequentially in patients with HER2+,

ER– tumors appear warranted.

Microarray/gene profiling studies and optimization of

treatment with letrozole

The growing importance of biomarkers in oncology has

been reflected in the US Food and Drug Administration

(FDA), the National Cancer Institute (NCI), and the Cen-

ters for Medicare and Medicaid Services (CMS) Oncology

Biomarker Qualification Initiative (OBQI), designed to

improve the development of cancer therapies and the out-

comes for cancer patients through biomarker development

and evaluation [73]. Not only are biomarkers potentially

useful as prognostic and predictive factors but they also

serve as surrogate end points for long-term outcomes. For

example, Dowsett et al. found that changes in Ki-67 in the

neoadjuvant setting may be used to predict likely benefit

(improved disease-free and overall survival) of AIs in the

adjuvant setting [74], potentially expediting clinical

development. Therefore, identifying biomarkers that pre-

dict endocrine resistance is essential for the optimal use of

letrozole. In addition, biomarker studies that help to

delineate the oncogenic pathways may be particularly

useful for the development of novel combination therapies

with letrozole.

Gene expression analysis of tumors represents a novel

approach for biomarker development that promises to

increase the understanding of breast cancer heterogeneity

and facilitate the development of individualized treatment

strategies. Microarray analysis, such as the Affymetrix

Human Genome Gene Chips, is an exciting development in

breast cancer diagnostics that allows the expression of

genes in tumors to be quantified using RNA retrieved from

breast cancer biopsies. Using cDNA microarray and

unsupervised clustering analysis, ER+ breast cancer can be

subdivided into at least two subtypes, luminal A and

luminal B, with distinct gene expression patterns and

clinical outcomes [75–77]. Supervised analysis, comparing

gene expression patterns between tumors that relapsed and

those that did not, generated a ‘‘gene signature’’ as an

independent prognostic parameter for lymph-node negative

disease [78, 79]. The National Surgical Adjuvant Breast

and Bowel Project (NSABP) has developed a multigene

profiling assay, using reverse transcriptase polymerase

chain reaction (RT-PCR) to quantify the expression of 21

genes [80]. The 21-gene assay (Oncotype DX, Genomic

Health) can predict risk of recurrence in patients with HR+

early breast cancer receiving tamoxifen [80, 81] or che-

motherapy [82]. Naderi et al. [83] have also reported

validation of gene expression signatures that may have

predictive value in the clinic. Furthermore, newly identified

Hormone receptor-positive
postmenopausal women

with metastatic breast cancer

Randomize

Letrozole
+ placebo

Letrozole
+ lapatinib

Fig. 3 Letrozole and lapatinib phase III trial design. Target recruit-

ment: 1,280 patients

Estrogren receptor-positive 
or progesterone receptor-
positive metastatic breast 
cancer first-line treatment

±measurable
postmenopausal or
ovarian suppression

Endocrine therapy + bevacizumab
(15 mg/kg IV Q3wk)

Endocrine therapy + placebo

Fig. 2 Planned CALGB trial of first-line endocrine therapy (tamo-

xifen or aromatase inhibitor) with or without bevacizumab
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interactions between ER and other signaling pathways have

been studied using microarray analysis [84, 85]. For

example, Bex1 and Bex2 genes have been identified as

novel breast cancer-related genes and identify a subtype of

ER+ tumors associated with estrogen response and nuclear

factor kappa B (NF-jB) pathways [84]. Advances in gene

profiling will provide further insights into tumor biology

and improve prediction of likely response to specific

therapies in the clinic.

Microarray analysis has shown to be valuable in pre-

dicting response to neoadjuvant endocrine therapy and was

used in a study of neoadjuvant letrozole 2.5 mg/day

administered to postmenopausal women with large oper-

able or locally advanced breast cancers for 3 months [86,

87]. Changes in patterns of gene expression were assessed

from tissue samples taken at diagnosis, 14 days, and

3 months (N = 58). Changes in gene expression level with

treatment were identified as early as 14 days and involved

classical markers of estrogen action (trefoil factors 1 and

3, LIV-1, KIAA0101) as well as tumor proliferation (cy-

clin D1, cyclin B2, CSK2, cell division cycle 2). The

objective clinical response to neoadjuvant letrozole was

71% (N = 52 assessable). Of note, the observed changes

in gene expression, when clustered, were predictive of

response in all cases except one, whereas classical markers

of estrogen action were not predictive [87]. In another

study, postmenopausal women with primary operable

breast cancer were randomized to 2 weeks of presurgical

treatment with letrozole 2.5 mg/day or anastrozole 1 mg/

day [88]. Microarray gene expression profiling (Break-

through Centre cDNA chips) of biopsies taken before and

during treatment identified differences in gene expression

patterns between the two AIs, although the clinical sig-

nificance of these preliminary findings remains to be

clarified. Itoh et al. [89] also found differences between

letrozole, anastrozole, and tamoxifen using microarray

analysis on MCF-7 cells stably transfected with the aro-

matase gene (MCF-7Aro). Gene expression patterns

revealed a high correlation between the AIs (letrozole and

anastrozole) and a clear difference between AIs and

tamoxifen [89].

Emerging data therefore suggest that estrogen-respon-

sive genes are candidate biomarkers [90] and may be useful

in the clinic as predictive factors of benefit from AI treat-

ment [89]. The value of gene expression profiling is now

being evaluated in prospective studies. MINDACT

(Microarray In Node negative Disease may Avoid Che-

moTherapy), an ongoing three-part randomized trial of

6,000 patients with node-negative breast cancer, is com-

paring the efficacy of selection of breast cancer patients for

adjuvant chemotherapy based on either clinical criteria or

the 70-gene microarray prognosis profile [91]. In one part

of the trial, 3,500 node-negative, HR+ positive patients will

be randomized to receive either 7 years of letrozole or

2 years of tamoxifen followed by 5 years of letrozole. In

the US, the TAILORx Trial [92] is comparing hormone

therapy with or without combination chemotherapy as

adjuvant therapy for node-negative, ER+ breast cancer.

The objective of this randomized phase III trial is to

determine the best individual therapy using Oncotype DX

gene profiling.

One of the more recent advances in transcriptional

profiling addresses its potential application as an identifi-

cation tool for ‘‘oncogenic pathway signatures’’ that could

be used to guide targeted therapy. Oncogenic pathway

signatures, developed in cell-line models, have been shown

to predict sensitivity to therapeutic agents in vitro [93].

This offers an opportunity to identify pathway-specific

drugs in endocrine therapy-resistant tumors and creates an

opportunity for the rational design of combination therapy

with letrozole. In addition to the RNA-based gene

expression profiling approach, high throughput analysis at

the DNA level, such as genome-wide microarray compar-

ative genomic hybridization (aCGH) and DNA sequencing,

has made it possible to decipher the genetic anomalies that

drive a particular tumor phenotype. The use of these

molecular approaches for biomarker development is still in

its infancy but is now feasible with recent advances in

genomic technologies.

Conclusions

Hormone-sensitive breast cancer can be regarded as a

chronic disease with a persistent risk of escape from

effective endocrine control. Activation of growth factor

signaling pathways has been implicated in progression of

HR+ breast cancer to an estrogen-independent phenotype

and the development of resistance to endocrine therapy,

particularly tamoxifen. It has been hypothesized that

combining endocrine therapy with targeted signal trans-

duction inhibitors may circumvent hormone-independent

signaling pathways, so that patients may experience pro-

longed disease control.

Letrozole is one of the most potent AIs. As such, it may

be more effective than tamoxifen for patients with tumor

profiles associated with a high risk of developing hormone

resistance (e.g., tumors with HER2 gene amplification) and

represents an ideal combination partner for agents that

inhibit growth signaling pathways implicated in hormone

resistance. The efficacy of letrozole is currently being

investigated with a variety of signal transduction inhibitors

with different mechanisms of action, including monoclonal

antibodies against HER family receptors, receptor tyrosine

kinase inhibitors, and downstream signaling pathway

inhibitors.
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Gene expression profiling has been validated as a useful

new tool to predict risk of relapse in patients treated with

hormone therapy and chemotherapy. This approach will

help physicians to identify which patient will likely benefit

from specific therapies, such as letrozole. Tailoring therapy

to individual patient profiles (clinical, histologic, patho-

logic, and genetic) will become more sophisticated in the

future, helping to maximize the benefits of endocrine

therapy throughout the breast cancer continuum; letrozole

will undoubtedly become an integral part of the next gen-

eration of tailored combination regimens for the treatment

of breast cancer.
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