Scientific Article

Meta-analysis and Critical Review: Association **Between Radio-induced Lymphopenia and Overall Survival in Solid Cancers**

www.advancesradonc.org

Yasmine El Houat, MD,* Christophe Massard, MD, PhD, Veronique Quillien, MD, Renaud de Crevoisier, MD, PhD, and Joël Castelli, MD, PhD

Centre Eugène Marquis, Rennes, France

Received 16 June 2022; accepted 12 July 2022

Abstract

Purpose: Immune system modulation, with the use of immune checkpoint inhibitors, has drastically changed the field of oncology. Strong preclinical data indicate that radiation therapy (RT) may enhance the response rate to such drugs via in situ vaccination, although these data do not consider immune radiotoxicity. This meta-analysis investigates whether radio-induced lymphopenia (RIL) is associated with overall survival (OS).

Methods and Materials: A systematic literature search and quantitative analysis were planned, conducted, and reported per the Preferred Reporting Items for Systematic Reviews and Meta-analyses and Quality of Reporting of Meta-analyses checklists. The literature from January 1990 to March 2021 was searched to identify clinical studies with OS data in patients treated with RT and presenting with lymphopenia. A random-effect model was employed for the meta-analysis. Heterogeneity was assessed using the I^2 statistic. Publication bias was estimated using a P-curve analysis.

Results: A total of 56 studies with 13 223 patients and 11 types of cancers were selected. The mean follow-up time was 35.9 months. Over a third of patients had RIL (37.25%). After removing outlying studies (n = 14), the between-study heterogeneity variance was estimated at $t^2 = 0.018$ (P = .01) with an I^2 value of 36.0% (95% confidence interval, 6%-56%). The results showed that RIL was significantly associated with worse OS (hazard ratio: 1.70; 95% confidence interval, 1.55-1.86; P < .01; 95% prediction interval, 1.27-2.26). A subgroup analysis was performed based on the type of primary tumor, and a difference between the subgroups was found (P <.01). Based on the P-curve analysis, a significant evidential value was found, and no significant publication bias was identified among the studies.

Conclusions: RIL is a significant prognostic factor for mortality in virtually all solid cancers. Pooled-effect estimates indicate a significantly reduced risk of death in patients without RIL. Tailoring RT regimens to spare the immune system and updating dosimetric constraints for new organs at risk, such as major blood vessels, organs with rich blood supplies, bones, and all lymph node areas, may improve prognoses.

© 2022 The Authors. Published by Elsevier Inc. on behalf of American Society for Radiation Oncology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Disclosures: The authors declare no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Data sharing statement: Research data are stored in an institutional repository and will be shared upon request to the corresponding author.

Introduction

*Corresponding author: Yasmine El Houat, MD; E-mail:

Since the 1950s, oncologists have described the abscopal effect, which refers to the systemic effects of radiation

https://doi.org/10.1016/j.adro.2022.101038

vasminelhouat@hotmail.com

2452-1094/© 2022 The Authors. Published by Elsevier Inc. on behalf of American Society for Radiation Oncology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Sources of support: This work had no specific funding.

on out-of-field tumor deposits.¹ Later, through the use of murine models, the abscopal effect was found to be mediated by immune mechanisms.^{2,3} Historically, our comprehension of radio-induced cell death was DNA-centered; however, new molecular biology techniques challenge the ubiquity of this model.^{4,5} Radiation has an effect on virtually all cellular organelles, and can cause apoptosis, autophagy, or senescence without direct DNA damage.⁵ These cellular effects have molecular consequences that mobilize the immune system. This phenomenon is known as immunogenic cell death or in situ vaccination.

Exploration of the immune antitumor response has revealed concrete clinical repercussions with the use of drugs, such as the checkpoint inhibitors (CPIs).⁶ CPIs target, for example, programmed cell death protein 1 (PD-1), which belongs to the superfamily of B7 immunoglobulins. These molecules are expressed on the T-cell membrane, and either amplify or diminish the immune response.⁷ Programmed death-ligand 1 (PD-L1) can be upregulated in certain tumor cells; thus, transmitting an antiapoptotic signal and protecting tumor cells from Tcell attack.^{8,9} Antibodies against PD-1 or PD-L1 have shown major therapeutic success in melanoma, kidney cancer, and lung cancer, because they permit a T-cellmediated immune response.¹⁰ Strong preclinical data suggest that radiation therapy (RT) may enhance the response rate to CPIs via in situ vaccination,¹¹ although these data do not consider radio-induced lymphopenia (RIL).

Indeed, immune cells (specifically lymphocytes) are described as one of the most radiosensitive cells in the body, which can be counterintuitive considering that lymphocytes are well-differentiated and nondividing cells. In the 1950s, Trowell¹² showed that the dose required to produce 50% pyknotic nuclei in circulating lymphocytes within 5 hours ranged from 1.6 Gy to 0.4 Gy. More recent studies^{13,14} corroborated the very high radiosensitivity of lymphocytes demonstrated by Trowell using modern techniques. Overall, the authors concurred that immune cells die at doses >2 Gy per fraction.

If the balance between immunotoxicity and immune stimulation seems uncertain, RIL may have a clear clinical effect. RIL was described first when x-rays were

discovered. Indeed, after exposing virtually any body part through x-rays, a decline in circulating lymphocytes was observed,¹⁵ and then most noticeably studied in cerebral irradiation in the early 1980s. The skull contains hardly any bone marrow and has no lymph nodes; however, several children undergoing prophylactic cranial radiation for lymphoblastic acute leukemia developed lymphopenia. Lymphocyte drops were correlated with the number of fractions administered.¹⁶ Later, other studies showed a trend toward inferior clinical outcomes (overall survival [OS] and progression-free survival) in patients treated for solid cancers and presenting with RIL. Moreover, several published studies found that RIL's association with OS was independent of pretreatment prognostic factors, tumor histology, chemotherapy regimen, or corticosteroid use.¹⁷⁻¹⁹

The aim of this study was to formally determine whether RIL is correlated with OS in solid cancers. All available clinical data were systematically reviewed and processed in this meta-analysis.

Methods and Materials

A systematic literature search and quantitative analysis were planned, conducted, and reported per the Preferred Reporting Items for Systematic Reviews and Meta-analyses and Quality of Reporting of Meta-analyses checklists (Appendix Tables 1 and 2). The search was performed on February 2021, and articles published from 1990 to this date were retrieved. We reviewed all papers published since 1990, because nearly 90% of articles related to our subject were issued after 1989, but we decided to process only articles dated after 2010 to have more up-to-date RT techniques and chemotherapy regimens. The PubMed (National Institutes of Health), Cochrane Central (Cochrane collaboration), Embase (Elsevier), and Web of Science databases were queried with the search terms "radiotherapy", "radiation therapy", "lymphopenia", and "cancer."

Furthermore, conference proceedings from the American Society of Radiation Oncology, European Society of Therapeutic Radiation Oncology, European Society of

 Table 1
 Description of patients, intervention, comparison, and outcome strategy

CRITERION	DESCRIPTION
PATIENTS	Patients treated with RT for malignant disease, with at least 6 mo follow up who had lymphocyte count monitoring during or after RT
INTERVENTION	Quantitative analysis of absolute lymphocyte count or lymphocyte count relative to neutrophil count during or after RT
COMPARISON	Predictive value of lymphocyte count during or after RT
OUTCOME	Prognosis: Overall survival
Abbreviation: RT, radiation therapy	Ι.

First author	Year	Cancer	Number (n = 13,223)	RT technique	Radiation regimen, median, Gy	Follow-up time, median, mo	Biomarker	Threshold for lymphopenia	OCEBM score
Grossman ^{44,*}	2011	GBM	96	CFRT	60	12	TLC at 2 mo	CTCAE, version 4.0, thresh- old; lymphocytes <500/µL	2
Mendez ¹⁸	2016	GBM	76	CFRT	45	ND	TLC at 2 mo	CTCAE, version 4.0, thresh- old; lymphocytes $<500/\mu$ L	3
Rudra ^{45,} *	2018	GBM	210	CFRT	57	15.4	TLC at week 12	CTCAE, version 4.0, thresh- old; lymphocytes $<500/\mu$ L	2
Ye ⁴⁶	2019	GBM	148	CFRT	57	32.8	TLC <1 G/L during treatment	TLC <1 G/L during treatment	3
Campian ⁵⁰	2014	H&N	56	CFRT	57	12	TLC 2 mo after treatment initiation	CTCAE, version 4.0, thresh- old; lymphocytes $<500/\mu$ L	3
Li ^{51,*}	2017	H&N	249	CFRT	69	ND	PLR 3 mo after end of treatment	Optimum cutoff values deter- mined by ROC curve; PLR >2.5	2
Liu ^{52,} *	2018	H&N	181	CFRT	69	60	TLC 3 mo after treatment	Optimum cutoff values deter- mined by ROC curve; lym- phocytes <390/µL	2
Lin ⁵³	2019	H&N	108	CFRT	67.5	37	TLC and NLR 3 mo after treatment initiation	CTCAE, version 4.0, threshold; lymphocytes $<500/\mu$ L	3
Ng ⁵⁴	2020	H&N	850	CFRT	70	59	TLC during treatment	CTCAE, version 4.0, thresh- old; lymphocytes $<500/\mu$ L	3
Liu ⁵⁵	2020	H&N	207	CFRT	69	82	NLR 3 mo after treatment minus NLR before treatment	Optimum cutoff values deter- mined by ROC curve	3
Hyder ⁵⁹	2016	Esophagus	83	CFRT	53.4	29.3	NLR after treatment	Relative NLR change from diagnosis to after surgery	3
Davuluri ⁶⁰	2017	Esophagus	504	CFRT	50.4	32.1	Nadir TLC during treatment	CTCAE, version 4.0, thresh- old; lymphocytes $<500/\mu$ L	
Deng ⁶¹	2019	Esophagus	325	CFRT	50.4	65.5	TLC up to 3 mo after treatment	CTCAE, version 4.0, thresh- old; lymphocytes $<500/\mu$ L	3
Chen ^{67,} *	2019	Esophagus	64	CFRT	60	11.8	TLC and lymphocyte sub- types after treatment	Optimum cutoff values deter- mined by ROC curve	2
Wang ⁶²	2020	Esophagus	189	CFRT	59	46	Nadir TLC during treatment	Optimum cutoff values deter- mined by ROC curve	3
								(continued o	on next bag

ω

Table 2 (Continued)									
First author	Year	Cancer	Number (n = 13,223)	RT technique	Radiation regimen, median, Gy	Follow-up time, median, mo	Biomarker	Threshold for lymphopenia	OCEBM score
So ⁶³	2020	Esophagus	92	CFRT	41.4	16.9	Nadir TLC during treatment	Optimum cutoff values deter- mined by ROC curve	3
Campian ¹⁷	2013	NSCLC	47	CFRT	60	ND	TLC at 2 mo after treatment	CTCAE, version 4.0, thresh- old; lymphocytes $<500/\mu$ L	3
Tang ³⁵	2014	NSCLC	711	CFRT	66	51	TLC after treatment	CTCAE, version 4.0, thresh- old; lymphocytes <500/µL	3
Deng ³⁶	2017	SCLC	320	ND	NA	39.1	NLR during and after treatment	Optimum cutoff values deter- mined by ROC curve	4
Luo ²⁷	2018	NSCLC	63	SBRT	48	29.5	NLR 1-3 d before treatment	Optimum cutoff values deter- mined by ROC curve	3
Cho ³⁷	2016	SCLC	73	CFRT	59	22	TLC after treatment	Optimum cutoff values deter- mined by ROC curve; lym- phocytes <297/µL	3
Contreras ²²	2018	NSCLC	290	CFRT	66	17	NLR at 4 mo after treatment	Optimum cutoff values deter- mined by ROC curve	3
Zhao ^{38,} *	2020	NSCLCL	76	CFRT	64	ND	Nadir TLC during treatment	Optimum cutoff values deter- mined by ROC curve and lymphocytes <500/µL	2
Wang ³⁹	2019	SCLC	226	ND	NA	23	TLC directly after treat- ment and at 3 mo after treatment	Optimum cutoff values deter- mined by ROC curve	3
Zhao ⁴⁰	2019	NSCLC	107	SBRT	50-60	22	1 wk afer treatment TLC	Lymphocytes $< 800/\mu$ L	3
Xia ³⁴	2020	NSCLC	244	CFRT	>60	15.5	1 mo after treatment NLR	Optimum cutoff values deter- mined by ROC curve	3
Shaverdian ⁴¹	2016	NSCLC	83	SBRT	61	28.9	NLR within 2 mo before treatment	Optimum cutoff values deter- mined by ROC curve and lymphocytes <1000/µL	3
Matiello ^{33,} *	2020	NSCLC	46	CFRT	72.3	13	Baseline TLC minus TLC at 6 mo	No definition of immunosuppression	2
Balmanoukian ⁴⁸	2012	Pancreas	53	CFRT	50.4	16	TLC 2 mo after treatment	CTCAE, version 4.0, threshold; lymphocytes $<500/\mu$ L	3
								(continued	on next page)

4

Table 2 (Continu	able 2 (Continued)									
First author	Year	Cancer	Number (n = 13,223)	RT technique	Radiation regimen, median, Gy	Follow-up time, median, mo	Biomarker	Threshold for lymphopenia	OCEBM score	
Wild ¹⁹	2015	Pancreas	101	CFRT	50.4	10.1	TLC at 2 mo after treatment	CTCAE, version 4.0, thresh- old; lymphocytes $<500/\mu$ L	3	
Chadha ⁴⁹	2017	Pancreas	162	CFRT	59.5	12	TLC after treatment	Lymphocytes $<200/\mu$ L	3	
Zhao ⁷¹	2017	HCC	69	CFRT	54	30	Nadir TLC during treatment	Lymphocytes $<450/\mu$ L	3	
Zhuang ⁷²	2019	HCC	78	SBRT	48	32	2 mo posttreatment TLC	Lymphocytes $<450/\mu$ L	3	
Onal ²⁹	2018	Cervix uteri	95	CFRT; BRT	50.4	68	TLC at least 3 mo after treatment	CTCAE, version 4.0, thresh- old; lymphocytes $<500/\mu$ L	3	
Taguchi ⁶⁸	2020	Cervix uteri	131	CFRT; BRT	50.4	44	6 mo posttreatment TCL	Optimum cutoff values deter- mined by ROC curve	3	
Moon ^{56,} ∗	2016	H&N	153	CFRT	70	39.5	2 mo posttreatment NLR	Optimum cutoff values deter- mined by ROC curve	2	
Wu ⁶⁹	2016	Cervix uteri	47	CFRT; BRT	NA	25	2 mo posttreatment TLC	CTCAE, version 4.03, threshold; TLC <500/ μ L	3	
Jensen ⁵⁷	2017	H&N	114	CFRT	70	50	TLC during treatment	CTCAE, version 4.03, threshold	3	
Lin ²⁵	2018	H&N	57	CFRT	66	69.6	From 16-56 wk after start RT initiation	CTCAE, version 4.03, thresh- old and optimum cutoff val- ues determined by ROC curve	3	
Byun ⁷³	2019	HCC	920	CFRT; SBRT	60	15.8	3 mo after RT initiation	CTCAE, version 4.03, threshold	3	
Byun ³²	2019	Glioblastoma	336	CFRT	60	19.3	Within 3 mo after RT initiation	CTCAE, version 4.03, threshold	3	
Nuradh ⁴²	2019	Lung	216	CFRT	55.4	36	Earliest TLC after RT completion	CTCAE, version 4.03, threshold	3	
Sherry ³⁰	2019	Esophagus	93	CFRT	50.4	19.2	At least 1 wk after treat- ment completion	Optimum cutoff values deter- mined by ROC curve	3	
Zhang ⁷⁴	2019	HCC	184	CFRT or SBRT	75	21.9	TLC during RT and 1 mo after RT completion	Optimum cutoff values deter- mined by ROC curve	3	
Abravan ⁴³	2020	Lung and esophageal	584	CFRT	54.6	17.4	TLC during RT	CTCAE, version 4.03, threshold	3	

UI ze)

Fable 2 (Continued)										
First author	Year	Cancer	Number (n = 13,223)	RT technique	Radiation regimen, median, Gy	Follow-up time, median, mo	Biomarker	Threshold for lymphopenia	OCEBM score	
Ahn ⁴⁷	2020	Glioblastoma	97	CFRT	60	ND	TLC 1 mo after treatment	Cutoff value based on previ- ous studies	3	
Gutkin ²³	2020	Breast	99	ND	ND	44	1 y after RT completion	TLC <1000/ μ L	3	
Holub ⁷⁰	2020	Endometrial & cervix uteri	139	CFRT; BRT	52	40.5	TLC within 3 mo of treat- ment completion	TLC <1000/µL	3	
Lee ²⁴	2020	Pancreas	285	CFRT	49.56	12	1-3 mo after treatment	CTCAE, version 5.0, threshold	3	
Lee ⁷⁵	2020	Anal canal	140	CFRT	43	55	2 mo after treatment	CTCAE, version 5.0, threshold	3	
McLaughlin ²⁸	2020	NSCLC	40	SBRT	50	ND	Within 6 mo after treatment	CTCAE, version 5.0, threshold	3	
Patil ⁵⁸	2020	H&N	532	CFRT	70	39.13	TLC from treatment initi- ation to 6 wk of treatment	CTCAE, version 4.0, threshold	3	
Sun ³¹	2020	Breast	598	CFRT	50	57.6	During and 1 mo after RT completion	CTCAE, version 4.0, threshold	3	
Wu ⁶⁴	2019	Esophagus	105	CFRT	50	19.2	After RT completion	CTCAE, version 4.0, threshold	4	
Xu ⁶⁵	2020	Esophagus	488	CFRT	50.4	29.6	During RT and 1 mo after treatment	CTCAE, version 4.0, threshold	3	
Peter ⁶⁶	2020	Esophagus	860	CFRT	50.4	49	During RT	CTCAE, version 4.0, threshold; TLC <200/ μ L	3	
Abbreviations: BR cellular carcinoms cyte ratio; ROC, r * Prospective stu	<i>Abbreviations:</i> BRT, brachytherapy; CFRT, conventionally fractionated radiation therapy; CTCAE, Common Terminology Criteria for Adverse Events; GBM, glioblastoma; H&N, head and neck; HCC, hepato- cellular carcinoma; NA, not available; ND, no data; NLR, neutrophil-to-lymphocyte ratio; NSCLC, non-small cell lung cancer; OCEBM, Oxford Center for Evidence Based Medicine; PLR, platelet-to-lympho- cyte ratio; ROC, receiver operating characteristic; RT, radiation therapy; SBRT= stereotactic body radiation therapy; SCLC, small cell lung cancer; TLC, total lymphocyte count.									

6

Therapeutic Radiation Oncology, and American Society of Clinical Oncology were probed for any additional articles. The articles retrieved from the initial search were imported into reference manager software (EndNote X9, version 3.3). Duplicates were excluded, and the titles of articles were assessed. Papers found to be relevant to the topic were shortlisted, and the selected full-length papers were reviewed according to the eligibility criteria. The references of the included studies were manually searched for additional studies. References from review articles were assessed for cross-references. Abstracts and other unfinished works were excluded. All selected articles were reviewed by YEH and JC.

Eligibility criteria

The patients, intervention, comparison, and outcome criteria for the review are shown in Table 1. Any prospective clinical trial, retrospective study, or cohort study on solid malignancies in humans was eligible. RT had to be part of the treatment, and the intent was curative in either a neoadjuvant, definitive, or adjuvant setting. The study was required to have data on OS and lymphocyte count measurements, whether absolute or relative to the polynuclear neutrophil or platelet count. Studies without clinical information, preclinical models, and studies on lymphopenia in patients undergoing immunotherapy, chemotherapy, or surgery alone were excluded. Studies reporting outcomes in patients infected with the human immunodeficiency virus or those with immunodeficient states were also rejected. No limit was set for the minimum follow-up time. Articles focusing on advanced disease stages or palliative therapy were excluded. Studies reporting only pre-RT lymphocyte counts were excluded.

The selected studies were assessed for risk of bias on the basis of the following 5 variables: Retrospective versus prospective study design, sufficient descriptions of lymphocyte count data collection and treatment modality, uniform inclusion criteria, incomplete outcome data, and number of patients included (studies with <40 patients were automatically excluded). The risk of bias was classified as high if no was the response for \geq 3 criteria. The level of evidence was scored according to the Oxford Center for Evidence-Based Medicine (OCEBM) 2011 level of evidence guide²⁰, as follows: Systematic review of inception cohort studies, inception cohort studies, cohort study or control arm of a randomized trial, and case series or case-control studies or poor-quality prognostic cohort studies.

Statistical analysis

Categorical variables are presented as percentages, and continuous variables are presented as medians. When not

7

available, confidence intervals (CIs) of hazard ratios (HRs) were calculated with the *P* value and the population number for each group. HRs and mean differences were plotted with the generic inverse variance method, and depicted in forest plots comparing patients with and without RIL. When neither the population number nor the HR was published, the study was excluded from the final analysis. P < .05 was considered statistically significant.

We anticipated considerable between-study heterogeneity; thus, a random-effect model was used to pool effect sizes. The restricted maximum likelihood estimator was used to calculate the heterogeneity variance t^2 for analysis. We used Knapp—Hartung adjustments to calculate the CI around the pooled effect. Study heterogeneity was assessed using the inconsistency index (I^2), and prediction intervals were used to calculate the estimated betweenstudy heterogeneity variance t^2 . The presence of outlying cases within the selected studies was assessed using a generic outlier removal process that excluded every study with a CI that did not overlap with the CI of the pooled effect.

Publication bias was appraised with funnel plots, tested for asymmetry through Egger's test, and adjusted with the trim-and-fill method. Due to the limitation of the trimand-fill method when the between-study heterogeneity is large,²¹ publication bias was also assessed using the *P*curve method to test for right-skewness and flatness. All statistical analyses were performed using R, version 4.0.5 (Shake and Throw) using the Meta Package.

Results

We reviewed 195 papers reporting studies published between 2005 and 2021. Of these 195 papers, we selected 56 studies, 8 of which were prospective. The review process is depicted in the Preferred Reporting Items for Systematic Reviews and Meta-Analyses chart in Fig. 1. The 56 studies reported outcomes for 13,223 patients. Eight articles addressed stereotactic RT. Most papers studied lung cancer (n = 15), esophageal cancer (n = 10), head and neck cancer (n = 10), and pancreatic cancer (n = 4). The mean follow-up time was 32.9 months (range, 10.1-82 months) for the 50 studies reporting these data. The number of patients with RIL was 4926 (37.25% of entire population).

The mean radiation dose, biomarkers used to analyze RIL, and thresholds to define lymphopenia are shown in Table 2. Most articles used the lymphocyte count at 2 to 3 months after treatment to characterize the relationship between RIL and survival. The results for all studies showed that RIL was significantly associated with worse OS with an HR of 1.74 (95% CI, 1.54-1.97; P < .01) and a nonsignificant predicted interval (95% CI, 0.85-3.6). The between-study heterogeneity variance was estimated at

Figure 1 Preferred Reporting Items for Systematic Reviews and Meta-Analyses flowchart of retrieved studies OS, overall survival.

 $t^2 = 0.12$ (*P* < .01), with an I^2 value of 88% (95% CI, 85%-90%; Appendix Fig. 1).

Using a generic outlier removal process, we identified 14 outlying studies because their CI did not overlap with the CI of the pooled effect.^{18,22-34} Without outliers, the between-study heterogeneity was significantly less important, with a variance of $t^2 = 0.018$ (95% CI, 0.002-1.13) and a I^2 value of 36% (95% CI, 6%-56%). The HR for OS was 1.70 (95% CI, 1.55-1.86; P < .01), with a predicted interval of 2.13 (95% CI, 1.27-2.26), showing that RIL is a prognostic factor for poor OS (Fig. 2). The results for all studies with and without outliers are compared in Table 3. Due to the high between-study heterogeneity, a funnel plot was computed without outlying studies (Appendix Fig. 2). Funnel plot asymmetry was tested with Egger's test (Suppl. Table 1). The Egger's test indicated the presence of funnel plot asymmetry. The trim-and-fill method added 14 studies, and the HR was still significant (HR: 1.56; 95% CI, 1.40-1.74; *P* < .0001; Appendix Fig. 3).

The *P*-curve analysis showed the presence of evidential value for the main analysis (Suppl. Fig. 1A) and the analysis without outliers (Suppl. Fig. 1B). From the group of studies without outliers, a subgroup analysis was performed based on the type of primary tumor. The studies were divided into 6 groups: Lung cancer,^{17,35-43} glioblastoma,⁴⁴⁻⁴⁷ pancreatic cancer,^{19,48,49} head and neck cancer,⁵⁰⁻⁵⁸ esophageal cancer,^{30,43,59-67} and various. The various group included studies on cervical and

endometrial cancer⁶⁸⁻⁷⁰ hepatocellular carcinoma⁷¹⁻⁷⁴ and anal cancer⁷⁵ because each entity was represented <3articles. A forest plot of studies without outliers, stratified by the 6 subgroups, is depicted in Fig. 2. A forest plot of all studies (with outliers) divided into the 6 subgroups is depicted in Appendix Fig. 4.

When dividing the studies into cancer subtypes, the analysis showed a significant HR of 1.57 (95% CI, 1.36-1.82; 95% prediction interval [PI], 1.36-1.82) for lung cancer and a low between-study heterogeneity of 20% (Fig. 2). The analysis processed 1026 patients who showed RIL and 1036 patients without RIL. Of note, of the 15 studies on lung cancer, 3 exclusively analyzed small cell lung cancer (SCLC),^{36,37,39} and 1 investigated both SCLC and non-small cell lung cancer (NSCLC).⁴² Among the SCLC studies, only 2 reported treatment with no chemotherapy.^{36,42} For NSCLC, 4 studies did not select patients treated with chemotherapy.^{27,28,41,76} Among the 15 articles, 2 were prospective.^{33,76} For esophageal cancer, the analysis showed significantly poorer OS for the 801 patients showing RIL, with an HR of 1.44 (95% CI, 1.25-1.66; 95% PI, 1.25-1.67) and low between-study heterogeneity ($I^2 = 25\%$; Fig. 2). Among the 9 remaining studies without outliers, only 1 did not determine precisely whether patients received chemotherapy.⁵⁹ One article was a prospective study.⁶⁷

For head and neck cancer, 10 studies reported outcomes for 1167 patients presenting with RIL. The analysis

Advances in Radiation Oncology: March-April 2023

Study Cancer = Esophagus	No RIL	RIL	Hazard Ratio	HR	95%-CI	Weight
Hvder 2016				4.67	[1.34: 16.24]	0.4%
Davuluri 2017	370	134	H	1.35	[1.02; 1.78]	4.6%
Deng 2019	135	190		1.40	[1.04; 1.89]	4.3%
Chen 2019	32	32		3.98	[1.09; 14.56]	0.4%
Sherry 2019	49	19		2.08	[1.39, 3.10]	0.0%
So 2020	45		i i i i i i i i i i i i i i i i i i i	1.33	[1.04; 1.72]	5.1%
Wu Y-F 2019		1.40		1.24	[0.40; 3.88]	0.5%
Xu 2020			置	1.28	[1.00; 1.64]	5.2%
Peter 2020	538	322		1.49	[1.23; 1.80]	6.4%
Random enects model Prediction interval	1∠34	801		1.44	[1.25; 1.00]	29.9%
Heterogeneity: $l^2 = 25\%$, $\tau^2 =$	< 0.0001, p = 0.22				[neoi noi]	
Cancer = Glioblastoma						
Grossman 2011	58	38		1.66	[1.05; 2.63]	2.4%
Mendez 2016				2.80	[2.10; 3.74]	0.0%
Rudra 2018	50	160	100	1.80	[1.18; 2.75]	2.7%
Bvun 2019	218	118	T.	1.04	[0.81: 1.34]	0.0%
Ahn 2020	53	44	BPGH WACH	1.97	[1.58; 2.46]	5.7%
Random effects model	458	429	•	1.86	[1.64; 2.10]	13.8%
Prediction interval			1		[1.57; 2.20]	
Heterogeneity: $I^{-} = 0\%$, $\tau^{-} = 0$	0, <i>p</i> = 0.89					
Cancer = H&N	0.250	1000		1.2.2.2.2		10000
Campian 2014	22	34	+ +	5.75	[1.04; 31.69]	0.2%
LI 2017	149	100	<u> </u>	1.90	[0.98; 3.70]	1.3%
Liu L-1 2018	95	19		3.79	[1.75, 8.20]	1.0%
Liu J 2020	163	44		2.89	[2.00; 4.18]	0.0%
Moon 2016	77	76	÷	3.22	[1.44; 7.22]	0.9%
Jensen 2017	98	16		2.34	[0.77; 7.09]	0.5%
Lin 2018	41	16		12.02	[3.02; 47.78]	0.0%
Ng 2020	147	703		1.30	[0.85; 1.99]	2.7%
Paul 2020 Random effects model	1340	1167		2.15	[0.56, 3.08]	0.9%
Prediction interval	1546	1107		2.110	[0.93: 4.95]	.0.070
Heterogeneity: l^2 = 36%, τ^2 =	0.0888, <i>p</i> = 0.14				L	
Cancer = Various						
Byun HK 2019	116	804	青	1.40	[1.02; 1.92]	4.1%
Lee 2020	129	11	1	3.73	[1.33; 10.47]	0.6%
Sun 2020	294	304		1.06	[2.38, 15.41]	0.0%
Onal 2018	85	10		4.59	[1.99: 10.60]	0.0%
Taguchi 2020			÷	3.06	[1.48; 6.33]	1.1%
Wu 2016	22	25	<u> </u>	2.27	[1.07; 4.83]	1.1%
Holub 2020	55	84	青	1.35	[0.87; 2.09]	2.6%
Zhao Q, Xu X 2017	32	37		3.12	[1.46; 6.70]	1.0%
Zhuang 2019 Zhang 2019			÷	2.86	[1.05, 46.71]	1.6%
Random effects model	806	1301	\$	2.21	[1.51; 3.25]	12.3%
Prediction interval					[0.89; 5.49]	
Heterogeneity: $l^2 = 52\%$, $\tau^2 =$	0.1114, p = 0.04					
Cancer = Lung						
Campian JL 2013	24	23	<u>++</u>	1.70	[0.80; 3.61]	1.1%
Tang 2013		407		1.69	[1.06; 2.72]	2.3%
Deng 2017	123	197		1.35	[1.02, 1.79]	4.0%
Cho 2016	58	15		2.62	[1.19: 5.75]	1.0%
Contreras 2018	193	97		1.02	[1.01; 1.02]	0.0%
Zhao Q, Chen G 2020	49	27	÷	5.91	[1.50; 23.24]	0.3%
Wang X 2019	138	88	100	2.06	[1.47; 2.88]	3.7%
Zhao Q, Li T 2019 Via 2020	48	59		2.1/	[1.20; 3.92]	1.6%
Shaverdian 2016	25	58		1.04	[1.01, 1.07]	4.5%
Matiello 2020	20	50		1.20	[1.02: 1.42]	0.0%
Nuradh 2019	118	98		1.37	[1.01; 1.86]	4.1%
Abravan 2020	234	350		1.50	[1.22; 1.84]	6.1%
McLaughlin 2020	26	14		1.05	[0.94; 1.18]	0.0%
Random effects model	1036	1020	<u> </u>	1.57	[1.30; 1.82]	29.4%
Heterogeneity: $l^2 = 20\%$, $\tau^2 =$	< 0.0001, p = 0.26				[1.50, 1.02]	
Cancer = Pancreas						
Balmanoukian 2012	29	24		2.20	[1.17; 4.13]	1.5%
Wild 2013	55	46	÷	2.88	[1.53; 5.41]	1.5%
Chadha 2017	118	44		1.66	[1.11; 2.48]	2.9%
Lee BM 2020	197	88		2.78	[2.16; 3.57]	0.0%
Random enects model	299	202		2.04	[1.02; 4.08]	5.9%
Heterogeneity: $l^2 = 9\%$, $\tau^2 = 0$	0.0163, <i>p</i> = 0.33				[outof shiot]	
Random effects model	5273	4926	6	1.70	[1.55; 1.86]	100.0%
Prediction interval	1000				[1.27; 2.26]	
Heterogeneity: $l^2 = 36\%$, $\tau^2 =$	0.0180, p = 0.01		0.1 0.5 1 2 10			

Figure 2 Forest plot of subgroup analysis for overall survival in patients presenting with radio-induced lymphopenia compared with patients without lymphopenia, stratified by cancer groups, without outlying studies.

Analysis	Hazard ratio	95% confidence interval	P-value	95% prediction interval	I ² , %	I2 95% confidence
Main analysis	1.74	1.54-1.97	< .01	0.85-3.6	88	85-90
Analysis without outliers	1.70	1.55-1.86	< .01	1.27-2.26	36	6-56
Removed as outliers. ^{18,22-34}						

Table 3 Results from analysis with and without outlying studies

showed that RIL was associated with worse OS, with an HR of 2.15 (95% IC, 1.46-3.18; 95% PI, 0.93-4.95) and moderate between-study heterogeneity of 36% (Fig. 2). Only 1 study did not report whether the selected patients received chemoradiotherapy or not;⁵⁷ otherwise, all other data were collected from patients receiving chemoradio-therapy. Three papers were prospective in nature.^{51,52,56} The 4 pancreatic cancer studies included 202 patients with RIL among a population of 601 patients. RIL was significantly associated with worse OS, with an HR of 2.04 (95% CI, 1.02-4.08; 95% PI, 0.15-27.87) and very low between-study heterogeneity ($I^2 = 9\%$; Fig. 2). All patients presenting with RIL also received systemic treatment.

Six studies investigated glioblastoma, with a population of 429 patients presenting with RIL among 887 patients. RIL was significantly associated with death, with an HR of 1.86 (95% CI, 1.64-2.10; 95% PI, 1.57-2.20; Fig. 2). The I² and t^2 in the glioblastoma group were too low to be generated. The 429 patients presenting with RIL were also treated with concomitant systemic therapy. Two glioblastoma papers were prospective in nature.^{44,45} Finally, the last group of patients presented outcomes for hepatocellu-lar carcinoma,^{32,71,72,74} cervical^{29,68,69} and endometrial cancer,⁷⁰ breast cancer,^{23,31} and anal cancer.⁷⁵ In this group, only 3 papers reported data for patients treated with RT alone.^{71,72,74} The analysis shows that RIL is associated with poor OS in this group (HR: 2.21; 95% CI, 1.51-3.25; 95% PI, 0.89-5.49) and, as expected, moderate between-study heterogeneity of 52% (Fig. 2). A difference between the subgroups was found (P < .01; Fig. 2).

Discussion

According to our study, RIL seem to have an effect on survival outcomes, regardless of the localization of the radiation. All 6 subgroups of cancer showed that lymphopenia was a significant prognostic factor for poor OS. Three of the subgroups (head and neck, pancreas, and mixed pathologies group), although showing an association between RIL and death, had a statistically nonsignificant prediction interval, probably due to a lack of power in the analysis. After removing outlying studies, the low between-study heterogeneity and absence of publication bias support the robustness of these results.

Preclinical data have shown that the abscopal effect is, in fact, mediated by immune mechanisms.^{2,3} However,

RT can be a double-edged sword. Even if numerous molecular and cellular effects of RT lead to immune stimulation, radiation has been described also to be immunosuppressive. For example, radiation can upregulate PD-L1 expression in tumor and T cells, preventing an adequate antitumor response.⁷⁷ Lymphopenia, has been shown to be a prognostic factor for poor survival for patients receiving immunotherapy. A few papers showed that patients with lymphopenia before and during treatment with immunotherapy demonstrated significantly poorer outcomes.⁷⁸⁻⁸⁰ However, whether a decline in the number and function of lymphocytes decreases the efficacy of immunotherapeutic agents or if lymphopenia is mainly a good biologic surrogate for performance status as shown in previous papers remains uncertain.^{30,56}

The mechanisms of interaction between the immune stimulatory and suppressive effects of RT remain to be fully understood. We hypothesize that RIL could tilt the balance toward immune suppression and significantly diminish any hope of potentializing immunotherapy with RT; however, the results of this meta-analysis need to be interpreted with caution. Indeed, these results do not imply that a better OS was obtained by abscopal effect in the group of patients not showing RIL, but only indicate that patients showing RIL during treatment seem to have poorer OS than those not having lymphopenia. Nevertheless, the preclinical data mentioned previously and the results of this analysis hint that a better understanding of the mechanisms of RIL and protecting the antitumor immune response during radiation could help us understand the process by which RT may potentiate immunotherapy or create an out-of-field response.

Arguably, RIL is first a function of field size,⁸¹ fractionation,⁸² and overall treatment time.³⁸ Second, RIL could be explained also by the radiation dose received by hematopoietic and lymphopoietic organs. For example, the heart, lungs, liver, prominent blood vessels, and body, represent structures with abundant blood circulation, and the spleen, bone marrow, thymus, and lymph nodes are the proper lymphoid and hematopoietic organs.

For the first set of organs, the literature already alludes to a significant association between radiation to the heart,^{22,34,40} lungs,^{34,40} and body and lymphopenia.³⁴ The effect of radiation on proper lymphoid structures was evaluated in a study comparing leukocyte counts before, during, and 3 months after the beginning of treatment for 23 patients receiving pelvic radiation (70-78 Gy to the prostate and seminal vesicles, with or without 50.4 Gy to pelvic lymph node areas) with a control group not receiving RT.⁸³ The study showed a significantly lower lymphocyte count associated with lymph node irradiation. The same question was asked for Berg lymph node radiation, with the same results.⁸⁴ Furthermore, radiation to the spleen was also assessed and showed that in some cohorts, the median cumulative spleen dose of patients with grade \geq 3 lymphopenia was only 9.8 Gy,⁴⁹ and that a mean spleen dose >2.27 Gy had an approximate 14-fold increase in the risk of severe lymphopenia.⁸⁵ The dose to the bone marrow was also linked significantly to lymphopenia in a study of patients with esophageal cancer.⁸⁶

A few authors have tried to combine the different plausible components of RIL into 1 mathematical model to estimate the effective dose to circulating immune cells (EDIC) to help risk-stratify patients and predict disease outcomes. In esophageal cancer, a study of 488 patients treated with concurrent chemoradiotherapy concurred that the EDIC was strongly associated with severe lymphopenia, especially when >4 Gy.⁶⁵ A similar paper, of 464 NSCLCs reported that EDIC >7.3 Gy was significantly associated with a greater reduction in local tumor control.⁸⁷ Considering EDIC instead of dose constraints to organs at risk of the immune system might be a more rounded approach to RIL, even if EDIC does not consider all alleged contributors of RIL, such as field size and overall treatment time.

This analysis has several limitations. First, because we colligated >11 types of cancers and >13,000 patients, the population we analyzed had mixed histologic data and mixed stages of disease. However, after removing outlying studies, the between-study heterogeneity was acceptable at 35%, and a significant effect of RIL on OS was found in all cancer subtypes. The included studies were published between 1991 and 2020, resulting in the inclusion of out-dated RT techniques and old chemotherapy regimens, which is why we did not analyze the role of RT doses and techniques or chemotherapy on RIL. Treatment modality and dose—volume histogram constraints might differ between studies, which can influence the occurrence of lymphopenia, but because this is not an individual patient data meta-analysis, their input is impossible to assess.

Additionally, considering that the effect of RIL on survival was our main focus, the means by which lymphopenia may occur is beyond the scope of this paper. We focused only on OS without considering other important clinical endpoints (eg, local control or disease-free survival), because OS might be the least subject to bias, especially considering the primarily retrospective data. Furthermore, the studies did not all use the same definition of lymphopenia. Some used lymphocyte count relative to the neutrophil count, others used a selected cutoff value for the absolute lymphocyte count or neutrophil to lymphocyte ratio that was optimal for survival prediction based on receiver operating characteristic curves and the most used the Common Terminology Criteria for Adverse Events, version 4.0 or 5.0, thresholds. When determining the most discriminating biomarker for survival prediction, most studies used lymphocyte count (relative or absolute) 2 to 3 months after the end of RT, but no consensus regarding when blood sampling would be the most relevant was established.

Finally, this meta-analysis did not employ an individual patient data approach; therefore, we were not able to pool the raw data from each participant from each included study, which might be considered the ideal approach in meta-analysis statistical models.

Conclusions

This meta-analysis confirms that RIL is a significant prognostic factor for survival in virtually all solid cancers. Pooled-effect estimates indicate a significantly reduced risk of death in patients without RIL. Tailoring RT regimens to spare the immune system and updating dosimetric constraints for new organs at risk, such as major blood vessels, organs with rich blood supplies, bones, and all lymph node areas, may be important to improve prognoses.

Supplementary materials

Supplementary material associated with this article can be found in the online version at doi:10.1016/j.adro. 2022.101038.

References

- 1. Mole RH. Whole body irradiation; radiobiology or medicine? *Br J Radiol*. 1953;26:234-241.
- Camphausen K, Moses MA, Ménard C, et al. Radiation abscopal antitumor effect is mediated through p53. *Cancer Res.* 2003;63: 1990-1993.
- Demaria S, Ng B, Devitt ML, et al. Ionizing radiation inhibition of distant untreated tumors (abscopal effect) is immune mediated. *Int J Radiat Oncol Biol Phys.* 2004;58:862-870.
- 4. Prise KM, Schettino G, Folkard M, Held KD. New insights on cell death from radiation exposure. *Lancet Oncol.* 2005;6:520-528.
- Wang JS, Wang HJ, Qian HL. Biological effects of radiation on cancer cells. *Mil Med Res.* 2018;5:20.
- Shevtsov M, Sato H, Multhoff G, Shibata A. Novel approaches to improve the efficacy of immuno-radiotherapy. *Front Oncol.* 2019;9:156.
- Youngnak P, Kozono Y, Kozono H, et al. Differential binding properties of B7-H1 and B7-DC to programmed death-1. *Biochem Biophys Res Commun.* 2003;307:672-677.
- Azuma T, Yao S, Zhu G, Flies AS, Flies SJ, Chen L. B7-H1 is a ubiquitous antiapoptotic receptor on cancer cells. *Blood*. 2008;111:3635-3643.
- Dong H, Strome SE, Salomao DR, et al. Tumor-associated B7-H1 promotes T-cell apoptosis: A potential mechanism of immune evasion. *Nat Med.* 2002;8:793-800.

- Topalian SL, Hodi FS, Brahmer JR, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med. 2012;366:2443-2454.
- Pilones KA, Vanpouille-Box C, Demaria S. Combination of radiotherapy and immune checkpoint inhibitors. *Semin Radiat Oncol.* 2015;25:28-33.
- Trowell OA. The sensitivity of lymphocytes to ionising radiation. J Pathol Bacteriol. 1952;64:687-704.
- 13. Heylmann D, Badura J, Becker H, Fahrer J, Kaina B. Sensitivity of CD3/CD28-stimulated versus non-stimulated lymphocytes to ionizing radiation and genotoxic anticancer drugs: Key role of ATM in the differential radiation response. *Cell Death Dis.* 2018;9:1053.
- 14. Falcke SE, Rühle PF, Deloch L, Fietkau R, Frey B, Gaipl US. Clinically relevant radiation exposure differentially impacts forms of cell death in human cells of the innate and adaptive immune system. *Int J Mol Sci.* 2018;19:3574.
- Shohan J. Some theoretical considerations on the present status of roentgen therapy. *Boston Med Surg J.* 1916;175:321-327.
- MacLennan IC, Kay HE. Analysis of treatment in childhood leukemia. IV. The critical association between dose fractionation and immunosuppression induced by cranial irradiation. *Cancer*. 1978;41:108-111.
- Campian JL, Ye X, Brock M, Grossman SA. Treatment-related lymphopenia in patients with stage III non-small-cell lung cancer. *Cancer Invest*. 2013;31:183-188.
- Mendez JS, Govindan A, Leong J, Gao F, Huang J, Campian JL. Association between treatment-related lymphopenia and overall survival in elderly patients with newly diagnosed glioblastoma. J Neurooncol. 2016;127:329-335.
- Wild AT, Ye X, Ellsworth SG, et al. The association between chemoradiation-related lymphopenia and clinical outcomes in patients with locally advanced pancreatic adenocarcinoma. *Am J Clin Oncol.* 2015;38:259-265.
- Oxford Centre for Evidence-Based Medicine. OCEBM levels of evidence. Available at: https://www.cebm.ox.ac.uk/resources/levels-ofevidence/ocebm-levels-of-evidence. Accessed July 12, 2021.
- Peters JL, Sutton AJ, Jones DR, Abrams KR, Rushton L. Performance of the trim and fill method in the presence of publication bias and between-study heterogeneity. *Stat Med.* 2007;26:4544-4562.
- 22. Contreras JA, Lin AJ, Weiner A, et al. Cardiac dose is associated with immunosuppression and poor survival in locally advanced non-small cell lung cancer. *Radiother Oncol.* 2018;128:498-504.
- Gutkin PM, Kozak MM, von Eyben R, Horst KC. Lymphopenia and clinical outcomes in patients with residual nodal disease after neoadjuvant chemotherapy for breast cancer. *Cancer Causes Control.* 2020;31:1021-1026.
- 24. Lee BM, Byun HK, Seong J. Significance of lymphocyte recovery from treatment-related lymphopenia in locally advanced pancreatic cancer. *Radiother Oncol.* 2020;151:82-87.
- Lin AJ, Rao YJ, Chin RI, et al. Post-operative radiation effects on lymphopenia, neutrophil to lymphocyte ratio, and clinical outcomes in palatine tonsil cancers. Oral Oncol. 2018;86:1-7.
- **26.** Liu J, Ma F, Sun B, et al. Predictive value of lymphocyte-related blood parameters at the time point of lymphocyte nadir during radiotherapy in breast cancer. *Onco Targets Ther.* 2020;13:151-161.
- Luo H, Ge H, Cui Y, et al. Systemic inflammation biomarkers predict survival in patients of early stage non-small cell lung cancer treated with stereotactic ablative radiotherapy–A single center experience. J Cancer. 2018;9:182-188.
- McLaughlin MF, Alam M, Smith L, Ryckman J, Lin C, Baine MJ. Stereotactic body radiation therapy mitigates radiation induced lymphopenia in early stage non-small cell lung cancer. *PLoS One*. 2020;15: e0241505.
- 29. Onal C, Yildirim BA, Guler OC, Mertsoylu H. The utility of pretreatment and posttreatment lymphopenia in cervical squamous cell

carcinoma patients treated with definitive chemoradiotherapy. Int J Gynecol Cancer. 2018;28:1553-1559.

- 30. Sherry AD, Newman NB, Anderson JL, Osmundson EC. Systemic inflammatory dynamics during chemoradiotherapy predict response, relapse, metastasis, and survival in esophageal carcinoma [e-pub ahead of print]. J Surg Oncol. 2022. https://doi.org/10.1002/ jso.25793. Accessed November 2.
- 31. Sun GY, Wang SL, Song YW, et al. Radiation-induced lymphopenia predicts poorer prognosis in patients with breast cancer: A post hoc analysis of a randomized controlled trial of postmastectomy hypofractionated radiation therapy. *Int J Radiat Oncol Biol Phys.* 2020;108:277-285.
- 32. Byun HK, Kim N, Yoon HI, et al. Clinical predictors of radiationinduced lymphopenia in patients receiving chemoradiation for glioblastoma: Clinical usefulness of intensity-modulated radiotherapy in the immuno-oncology era. *Radiat Oncol.* 2019;14:51.
- 33. Matiello J, Dal Pra A, Zardo L, Silva R, Berton DC. Impacts of postradiotherapy lymphocyte count on progression-free and overall survival in patients with stage III lung cancer. *Thorac Cancer*. 2020;11:3139-3144.
- **34.** Xia WY, Zhu XR, Feng W, et al. Neutrophil-lymphocyte ratio and platelet-lymphocyte ratio associations with heart and body dose and their effects on patient outcomes in locally advanced non-small cell lung cancer treated with definitive radiotherapy. *Transl Lung Cancer Res.* 2020;9:1996-2007.
- 35. Tang C, Liao Z, Gomez D, et al. Lymphopenia association with gross tumor volume and lung V5 and its effects on non-small cell lung cancer patient outcomes. *Int J Radiat Oncol Biol Phys.* 2014;89: 1084-91.
- 36. Deng M, Ma X, Liang X, Zhu C, Wang M. Are pretreatment neutrophil-lymphocyte ratio and platelet-lymphocyte ratio useful in predicting the outcomes of patients with small-cell lung cancer? *Oncotarget*. 2017;8(23):37200-7.
- Cho O, Oh YT, Chun M, Noh OK, Lee HW. Radiation-related lymphopenia as a new prognostic factor in limited-stage small cell lung cancer. *Tumour Biol.* 2016;37:971-8.
- 38. Zhao Q, Chen G, Ye L, et al. Treatment-duration is related to changes in peripheral lymphocyte counts during definitive radiotherapy for unresectable stage III NSCLC. *Radiat Oncol.* 2019;14:86.
- 39. Wang X, Lu J, Teng F, Yu J. Lymphopenia association with accelerated hyperfractionation and its effects on limited-stage small cell lung cancer patients' clinical outcomes. *Ann Transl Med.* 2019;7:385.
- 40. Zhao Q, Li T, Chen G, Zeng Z, He J. Prognosis and Risk Factors of Radiation-Induced Lymphopenia in Early-Stage Lung Cancer Treated With Stereotactic Body Radiation Therapy. *Front Oncol.* 2019;9:1488.
- 41. Shaverdian N, Veruttipong D, Wang J, Schaue D, Kupelian P, Lee P. Pretreatment Immune Parameters Predict for Overall Survival and Toxicity in Early-Stage Non-Small-Cell Lung Cancer Patients Treated With Stereotactic Body Radiation Therapy. *Clin Lung Cancer*. 2016;17:39-46.
- 42. Joseph N, McWilliam A, Kennedy J, et al. Post-treatment lymphocytopaenia, integral body dose and overall survival in lung cancer patients treated with radical radiotherapy. *Radiother Oncol.* 2019;135:115-9.
- 43. Abravan A, Faivre-Finn C, Kennedy J, McWilliam A, van Herk M. Radiotherapy-Related Lymphopenia Affects Overall Survival in Patients With Lung Cancer. J Thorac Oncol. 2020;15:1624-35.
- **44.** Grossman SA, Ye X, Lesser G, et al. Immunosuppression in patients with high-grade gliomas treated with radiation and temozolomide. *Clin Cancer Res.* 2011;17:5473-80.
- Rudra S, Hui C, Rao YJ, et al. Effect of Radiation Treatment Volume Reduction on Lymphopenia in Patients Receiving Chemoradiotherapy for Glioblastoma. *Int J Radiat Oncol Biol Phys.* 2018;101:217-25.

- 46. Ye LL, Fan XW, Hu CS, et al. Dosimetry of the brain and hypothalamus predicting acute lymphopenia and the survival of glioma patients with postoperative radiotherapy. *Cancer Med.* 2019;8:2759-68.
- 47. Ahn S, Park JS, Jang J, et al. The association between total lymphocyte count after concomitant chemoradiation and overall survival in patients with newly diagnosed glioblastoma. *J Clin Neurosci.* 2020;71:21-5.
- 48. Balmanoukian A, Ye X, Herman J, Laheru D, Grossman SA. The association between treatment-related lymphopenia and survival in newly diagnosed patients with resected adenocarcinoma of the pancreas. *Cancer Invest.* 2012;30:571-6.
- 49. Chadha AS, Liu G, Chen HC, et al. Does Unintentional Splenic Radiation Predict Outcomes After Pancreatic Cancer Radiation Therapy? Int J Radiat Oncol Biol Phys. 2017;97:323-32.
- 50. Campian JL, Sarai G, Ye X, Marur S, Grossman SA. Association between severe treatment-related lymphopenia and progression-free survival in patients with newly diagnosed squamous cell head and neck cancer. *Head Neck*. 2014;36:1747-53.
- Li XH, Chang H, Xu BQ, et al. An inflammatory biomarker-based nomogram to predict prognosis of patients with nasopharyngeal carcinoma: an analysis of a prospective study. *Cancer Med.* 2017;6:310-9.
- 52. Liu LT, Chen QY, Tang LQ, et al. The Prognostic Value of Treatment-Related Lymphopenia in Nasopharyngeal Carcinoma Patients. *Cancer Res Treat.* 2018;50:19-29.
- 53. Lin AJ, Gang M, Rao YJ, et al. Association of Posttreatment Lymphopenia and Elevated Neutrophil-to-Lymphocyte Ratio With Poor Clinical Outcomes in Patients With Human Papillomavirus-Negative Oropharyngeal Cancers. JAMA Otolaryngol Head Neck Surg. 2019;145:413-21.
- Ng SP, Bahig H, Jethanandani A, et al. Lymphopenia during radiotherapy in patients with oropharyngeal cancer. *Radiother Oncol.* 2020;145:95-100.
- 55. Liu J, Wei C, Tang H, Liu Y, Liu W, Lin C. The prognostic value of the ratio of neutrophils to lymphocytes before and after intensity modulated radiotherapy for patients with nasopharyngeal carcinoma. *Medicine (Baltimore)*. 2020;99:e18545.
- 56. Moon H, Roh JL, Lee SW, et al. Prognostic value of nutritional and hematologic markers in head and neck squamous cell carcinoma treated by chemoradiotherapy. *Radiother Oncol.* 2016;118:330-4.
- Jensen GL, Blanchard P, Gunn GB, et al. Prognostic impact of leukocyte counts before and during radiotherapy for oropharyngeal cancer. *Clin Transl Radiat Oncol.* 2017;7:28-35.
- Patil VM, Singh GK, Noronha V, et al. Lymphopenia during chemoradiation—foe or friend. *Ecancermedicalscience [Internet]*. 24 sept 2020. [cité 9 mai 2021];14. Disponible sur; https://www.ncbi.nlm. nih.gov/pmc/articles/PMC7581337/.
- 59. Hyder J, Boggs DH, Hanna A, Suntharalingam M, Chuong MD. Changes in neutrophil-to-lymphocyte and platelet-to-lymphocyte ratios during chemoradiation predict for survival and pathologic complete response in trimodality esophageal cancer patients. J Gastrointest Oncol. 2016;7:189-95.
- 60. Davuluri R, Jiang W, Fang P, et al. Lymphocyte Nadir and Esophageal Cancer Survival Outcomes After Chemoradiation Therapy. *Int J Radiat Oncol Biol Phys.* 2017;99:128-35.
- Deng W, Xu C, Liu A, et al. The relationship of lymphocyte recovery and prognosis of esophageal cancer patients with severe radiationinduced lymphopenia after chemoradiation therapy. *Radiother Oncol.* 2019;133:9-15.
- 62. Wang X, Zhao Z, Wang P, Geng X, Zhu L, Li M. Low Lymphocyte Count Is Associated With Radiotherapy Parameters and Affects the Outcomes of Esophageal Squamous Cell Carcinoma Patients. *Front* Oncol [Internet]. 23 juin 2020. [cité 20 juin 2021];10. Disponible sur; https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7324641/.
- **63.** So TH, Chan SK, Chan WL, et al. Lymphopenia and Radiation Dose to Circulating Lymphocytes With Neoadjuvant Chemoradiation in

Esophageal Squamous Cell Carcinoma. *Adv Radiat Oncol.* 2020;5:880-8.

- 64. Wu YF, Chu SC, Chang BS, Cheng YT, Wang TF. Hematologic Markers as Prognostic Factors in Nonmetastatic Esophageal Cancer Patients under Concurrent Chemoradiotherapy. *Biomed Res Int.* 2019;2019: 1263050.
- 65. Xu C, Jin JY, Zhang M, et al. The impact of the effective dose to immune cells on lymphopenia and survival of esophageal cancer after chemoradiotherapy. *Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology [Internet].* mai 2020. [cité 9 mai 2021];146. Disponible sur; https://pubmed. ncbi.nlm.nih.gov/32182504/.
- **66.** van Rossum PSN, Deng W, Routman DM, et al. Prediction of Severe Lymphopenia During Chemoradiation Therapy for Esophageal Cancer: Development and Validation of a Pretreatment Nomogram. *Pract Radiat Oncol.* 2020;10:e16-26.
- 67. Chen X, Zhang W, Qian D, et al. Chemoradiotherapy-Induced CD4 + and CD8+ T-Cell Alterations to Predict Patient Outcomes in Esophageal Squamous Cell Carcinoma. *Front Oncol.* 2019;9:73.
- **68.** Taguchi A, Furusawa A, Ito K, et al. Postradiotherapy persistent lymphopenia as a poor prognostic factor in patients with cervical cancer receiving radiotherapy: a single-center, retrospective study. *Int J Clin Oncol.* 2020;25:955-62.
- **69.** Wu ES, Oduyebo T, Cobb LP, et al. Lymphopenia and its association with survival in patients with locally advanced cervical cancer. *Gynecol Oncol.* 2016;140:76-82.
- **70.** Holub K, Vargas A, Biete A. Radiation-induced lymphopenia: the main aspects to consider in immunotherapy trials for endometrial and cervical cancer patients. *Clin Transl Oncol.* 2020;22:2040-8.
- Zhao Q, Xu X, Yue J, et al. Minimum absolute lymphocyte counts during radiation are associated with a worse prognosis in patients with unresectable hepatocellular carcinoma. *Therap Adv Gastroenterol.* 2017;10:231-41.
- 72. Zhuang Y, Yuan BY, Chen GW, et al. Association Between Circulating Lymphocyte Populations and Outcome After Stereotactic Body Radiation Therapy in Patients With Hepatocellular Carcinoma. *Front Oncol.* 2019;9:896.
- 73. Byun HK, Kim N, Park S, Seong J. Acute severe lymphopenia by radiotherapy is associated with reduced overall survival in hepatocellular carcinoma. *Strahlenther Onkol.* 2019;195:1007-17.
- 74. Zhang HG, Yang P, Jiang T, et al. Lymphopenia Is Associated with Gross Target Volumes and Fractions in Hepatocellular Carcinoma Patients Treated with External Beam Radiation Therapy and Also Indicates Worse Overall Survival. *Can J Gastroenterol Hepatol.* 2019;2019: 9691067.
- 75. Lee G, Kim DW, Muralidhar V, et al. Chemoradiation-Related Lymphopenia and Its Association with Survival in Patients with Squamous Cell Carcinoma of the Anal Canal. Oncologist. 2020;25:1015-22.
- 76. Zhao Q, Li T, Chen G, Zeng Z, He J. Prognosis and Risk Factors of Radiation-Induced Lymphopenia in Early-Stage Lung Cancer Treated With Stereotactic Body Radiation Therapy. *Front Oncol* [Internet]. 24 janv 2020. [cité 10 mars 2020];9. Disponible sur; https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6993213/.
- Gandhi S, Chandna S. Radiation-induced inflammatory cascade and its reverberating crosstalks as potential cause of post-radiotherapy second malignancies. *Cancer Metastasis Rev.* 2017;36:375-93.
- Cho Y, Park S, Byun HK, et al. Impact of Treatment-Related Lymphopenia on Immunotherapy for Advanced Non-Small Cell Lung Cancer. *Int J Radiat Oncol Biol Phys.* 2019;105:1065-73.
- 79. Ku GY, Yuan J, Page DB, et al. Single-institution experience with ipilimumab in advanced melanoma patients in the compassionate use setting: lymphocyte count after 2 doses correlates with survival. *Cancer*. 2010;116:1767-75.
- 80. Diehl A, Yarchoan M, Hopkins A, Jaffee E, Grossman SA. Relationships between lymphocyte counts and treatment-related toxicities

and clinical responses in patients with solid tumors treated with PD-1 checkpoint inhibitors. *Oncotarget*. 2017;8: 114268-80.

- 81. Yovino S, Kleinberg L, Grossman SA, Narayanan M, Ford E. The Etiology of Treatment-related Lymphopenia in Patients with Malignant Gliomas: Modeling Radiation Dose to Circulating Lymphocytes Explains Clinical Observations and Suggests Methods of Modifying the Impact of Radiation on Immune Cells. *Cancer Invest.* 2013;31:140-4.
- 82. Ellsworth SG, Yalamanchali A, Zhang H, Grossman SA, Hobbs R, Jin JY. Comprehensive Analysis of the Kinetics of Radiation-Induced Lymphocyte Loss in Patients Treated with External Beam Radiation Therapy. *Radiat Res.* 2020;193:73-81.
- Eckert F, Schaedle P, Zips D, et al. Impact of curative radiotherapy on the immune status of patients with localized prostate cancer. *Oncoimmunology*. 2018;7: e1496881.

- 84. Standish LJ, Torkelson C, et al. Immune defects in breast cancer patients after radiotherapy. J Soc Integr Oncol. 2008;6:110-21.
- **85.** Liu J, Zhao Q, Deng W, et al. Radiation-related lymphopenia is associated with spleen irradiation dose during radiotherapy in patients with hepatocellular carcinoma. *Radiat Oncol.* 2017;12:90.
- 86. Anderson JL, Newman NB, Anderson C, Sherry AD, Yock AD, Osmundson EC. Mean cardiopulmonary dose and vertebral marrow dose differentially predict lineage-specific leukopenia kinetics during radiotherapy for esophageal cancer. *Radiother Oncol.* nov 2020; 152:169-76.
- 87. Jin JY, Hu C, Xiao Y, et al. Higher Radiation Dose to Immune System is Correlated With Poorer Survival in Patients With Stage III Non-small Cell Lung Cancer: A Secondary Study of a Phase 3 Cooperative Group Trial (NRG Oncology RTOG 0617). International Journal of Radiation Oncology, Biology, Physics. 2017;99:S151-2.