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Abstract

In the recent few years, an increasing number of studies have shown that microRNAs (miR-

NAs) play critical roles in many fundamental and important biological processes. As one of

pathogenetic factors, the molecular mechanisms underlying human complex diseases still

have not been completely understood from the perspective of miRNA. Predicting potential

miRNA-disease associations makes important contributions to understanding the pathogen-

esis of diseases, developing new drugs, and formulating individualized diagnosis and treat-

ment for diverse human complex diseases. Instead of only depending on expensive and

time-consuming biological experiments, computational prediction models are effective by

predicting potential miRNA-disease associations, prioritizing candidate miRNAs for the

investigated diseases, and selecting those miRNAs with higher association probabilities for

further experimental validation. In this study, Path-Based MiRNA-Disease Association

(PBMDA) prediction model was proposed by integrating known human miRNA-disease

associations, miRNA functional similarity, disease semantic similarity, and Gaussian inter-

action profile kernel similarity for miRNAs and diseases. This model constructed a heteroge-

neous graph consisting of three interlinked sub-graphs and further adopted depth-first

search algorithm to infer potential miRNA-disease associations. As a result, PBMDA

achieved reliable performance in the frameworks of both local and global LOOCV (AUCs of

0.8341 and 0.9169, respectively) and 5-fold cross validation (average AUC of 0.9172). In

the cases studies of three important human diseases, 88% (Esophageal Neoplasms), 88%

(Kidney Neoplasms) and 90% (Colon Neoplasms) of top-50 predicted miRNAs have been

manually confirmed by previous experimental reports from literatures. Through the compari-

son performance between PBMDA and other previous models in case studies, the reliable

performance also demonstrates that PBMDA could serve as a powerful computational tool

to accelerate the identification of disease-miRNA associations.
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Author summary

Identification of miRNA-disease associations is considered as a key way for the develop-

ment of pathology, diagnose and therapy. Computational prediction models contribute to

discovering the underlying disease-related miRNAs on a large scale. Based on the assump-

tion that functionally related miRNAs tend to be involved in phenotypically similar dis-

ease and vice versa, the model of PBMDA was developed to prioritize the underlying

miRNA-disease associations by adopting a special depth-first search algorithm in a het-

erogeneous graph, which was composed of known miRNA-disease association network,

miRNA similarity network, and disease similarity network. Through leave-one-out cross

validation and 5-fold cross validation, the promising results demonstrated the effective-

ness of the proposed model. We further implemented the case studies of three important

human complex diseases, 88%, 88% and 90% of top-50 predicted miRNA-disease associa-

tions have been manually confirmed based on recent experimental reports. It is antici-

pated that PBMDA could prioritize the most potential miRNA-disease associations on a

large scale for advancing the progress of biological experiment validation in the future,

which could further contribute to the understanding of complex disease mechanisms.

Introduction

MicroRNAs (miRNAs) are an abundant class of small (20~25 nucleotides) endogenous non-

coding RNAs, which were normally deemed as negative gene regulators by suppressing the

expression of messenger RNAs (mRNAs) in a sequence-specific manner and repressing the

protein translation of their target genes [1–4]. Since the two members of the miRNA family

(i.e., lin-4 and let-7) were firstly discovered [5–7], mounting biological observations and stud-

ies have indicated that miRNAs play important roles in many important biological processes.

To date, 2588 miRNAs have been discovered in the human genome [8]. With the advances in

molecular biology and biotechnology, miRNAs have been proven to influence many important

physiological processes such as cell growth [9], immune reaction [10], cell differentiation [11],

cell development [9], cell cycle regulation [12], inflammation [13], cell apoptosis [14], stress

response [9,15], and tumor invasion [16]. In addition, emerging evidences imply the strong

links between miRNAs and diseases. For examples, miR-129, miR-142-5p, and miR-25 were

found to be differentially expressed in all pediatric brain tumor types [17]. MiR-145 was

observed to target the insulin receptor substrate-1 and restrain the growth of colon cancer cells

[18]. MiR-23/27/24 clusters were involved in angiogenesis and endothelial apoptosis, which

has potential therapeutic applications in both of vascular disorders and ischemic heart disease

[19]. Therefore, the accumulating miRNA-disease associations could be utilized for the patho-

logical classification, individualized diagnosis, and disease treatment [20].

Some databases (e.g. HMDD [21] and miR2Disease [22]) have been constructed for pro-

viding accumulating insights into the relationship between miRNAs and diseases. To date,

HMDD has already collected 10368 entries including 572 miRNAs and 378 diseases, which

shed some light on the molecular mechanisms of diseases. The existing knowledge of miRNA-

disease associations mainly comes from previous biological experiments. However, only

depending on the traditional biological experiments is time-consuming and costly, therefore

unpractical to detect miRNA-disease associations on a large scale in a short term. For address-

ing these challenges, increasing attentions have been devoted to developing computational

models to predict potential miRNA-disease associations by integrating various experimentally

confirmed and heterogeneous datasets [23–29].

miRNA-disease association prediction
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For predicting or prioritizing disease-related miRNAs, there have been some computational

methods proposed, which are mostly based on the assumption that functionally related miR-

NAs tend to be involved in phenotypically similar diseases and vice versa. For examples, Jiang

et al. [30] constructed functionally related miRNA network and human phenome-micro-

RNAome network and prioritized the potential miRNA-disease associations according to the

cumulative hypergeometric distribution. However, this method excessively depended on the

predicted miRNA-target associations which include a high rate of false-positive and high false-

negative results. Xuan et al. [31] presented the prediction model of HDMP based on the most

weighted similar neighbors to predict potential disease-associated miRNAs. This method inte-

grated the information content of disease terms and phenotype similarity between diseases to

infer the functional similarity of miRNA pairs. However, it becomes invalid when no known

associated miRNA is available for diseases which are less investigated. Mørk et al. [32] devel-

oped a protein-driven method called miRPD for inferring miRNA-disease associations by

calculating the product of the two scoring functions, which were calculated based on the

miRNA-protein and protein-disease associations. These three aforementioned methods only

considered miRNA neighbor information in their ranking system, which can be summarized

as traditional local network similarity measure-based computational models. Some methods

were mainly proposed based on the more effective global network similarity measure rather

than traditional local network similarity measures. For example, Chen et al. [33] proposed

the computational model of Random Walk with Restart for MiRNA-Disease Association

(RWRMDA) to identify novel disease-related miRNAs by implementing random walks on

the miRNA-miRNA functional similarity network. However, this model cannot work for new

diseases without any known related miRNAs. Similarly, Xuan et.al. [34] developed a computa-

tional model of MIRNAs associated with Diseases Prediction (MIDP) and its extension version

named MIDPE for the diseases with known related miRNAs and without any known related

miRNAs, respectively. They established the transition matrices between the labeled and unla-

beled nodes for exploring the prior information of nodes and the different ranges of topolo-

gies. Shi et.al. [35] also performed random walk analysis to explore the relationships between

miRNAs and diseases by calculating the functional associations between miRNA targets and

disease genes in protein-protein interaction networks. Later, Chen et al. [36] developed the

method of Within and Between Score for MiRNA-Disease Association prediction (WBSMDA)

to uncover the potential miRNA-disease associations by integrating several heterogeneous bio-

logical datasets, which improves the prediction accuracy of previous classical computational

models. By calculating and combining Within-Score and Between-Score, WBSMDA can work

for new diseases without any known related miRNAs and new miRNAs without associated dis-

eases. Some proposed machine learning-based models demonstrated their power in this field.

Based on the assumption that aberrant regulations of target mRNAs occur because their miR-

NAs are implicated in a specific disease, Xu et al. [37] prioritized novel disease-related miR-

NAs by constructing the MiRNA Target-Dysregulated Network (MTDN). In addition, they

built a support vector machine (SVM) based supervised classifier to distinguish prostate cancer

and non-prostate cancer related miRNAs by combining four topological features extracted

from MTDN. However, the prediction performance suffered from unavailable verified nega-

tive miRNA-disease association samples. A semi-supervised method called Regularized Least

Squares for MiRNA-Disease Association (RLSMDA) was developed by Chen et al. [38]. Con-

sidering obtaining verified negative samples (i.e. those disease-miRNA pairs without any

known association evidences) is difficult and even impossible, cost functions were defined and

minimized in the framework of Regularized Least Squares (RLS). Then the optimal classifiers

in the disease and miRNA spaces were yielded and combined to obtain the final predictive

results. Chen et al. [39] also developed the model of Restricted Boltzmann Machine (RBM) for

miRNA-disease association prediction
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multiple types of miRNA-disease association prediction (RBMMMDA) for predicting various

types of miRNA-disease associations. Based on the known miRNA-disease association net-

work, RBMs were constructed and trained by Contrastive Divergence (CD) algorithm. Finally,

this model implemented prediction by calculating conditional probabilities.

The knowledge on miRNAs provides valuable information for the prevention, diagnosis

and treatment of human diseases. There is an urgent need to accelerate the identification of

disease-miRNA associations for further studies on pathology as well as drug development.

We here proposed a novel Path-Based MiRNA-Disease Association (PBMDA) prediction

method by constructing a heterogeneous graph consisting of three interlinked sub-graphs (i.e.,

miRNA-miRNA similarity network, disease-disease similarity network and known miRNA-

disease association network). Integrating different types of heterogeneous biological datasets

allows that PBMDA could be applied to the new diseases with no known associated miRNAs

and the new miRNAs with no known associated diseases. In addition, the proposed method

can simultaneously prioritize all unknown miRNAs for all the investigated diseases.

In this work, three evaluation frameworks, including global leave-one-out cross validation

(global LOOCV), local leave-one-out cross validation (local LOOCV) and 5-fold cross vali-

dation (5-fold CV), were implemented to evaluate the prediction performance of PBMDA.

When performing on the HMDD database, PBMDA obtained the best performance in the

frameworks of both local and global LOOCV (AUCs of 0.8341 and 0.9169, respectively) and

5-fold cross validation (average AUC of 0.9172) compared with several state-of-the-art com-

putational models [31,33,36]. To further evaluate the performance of PBMDA, we imple-

mented case studies of three important human diseases. As a result, most of top-50 predicted

disease-related miRNAs (44/50 for Esophageal Neoplasms; 44/50 for Kidney Neoplasms; 45/50

for Colon Neoplasms) were verified by previously published literatures, respectively. Besides,

9 out of top-10 predicted obesity-related were manually validated based on the published liter-

atures. Our model also represents an improvement to the prediction accuracy through the

comparison performance between PBMDA and other previous representative models in case

studies. A simulation experiment also proves the applicability of our model to a new disease

(no known associated miRNAs).

Materials and methods

Human miRNA-disease associations

HMDD database (http://www.cuilab.cn/hmdd) has collected 5430 experimentally verified

human miRNA-disease associations (see S1 Table), involving 495 miRNAs and 383 diseases

(see S2 and S3 Tables). The adjacency matrix Y is constructed to describe the confirmed associ-

ations between miRNA and disease. Namely, if miRNA m(i) is recorded to be associated with

disease d(j), the entity Y(i,j) is equal to 1, otherwise 0. For further description in detail, the

investigated numbers of miRNAs and diseases in our study are represented by variables nm
and nd, respectively. To evaluate the prediction lists for case studies, another two independent

databases (i.e. dbDEMC [40] and miR2Disease [22]) are utilized for validation.

MiRNA functional similarity

According to previous literature [41], it could be concluded that miRNAs with similar func-

tions are more likely associated with similar diseases. Under this assumption, miRNA func-

tional similarity score was calculated (http://www.cuilab.cn/files/images/cuilab/misim.zip).

We therefore utilized these data to construct miRNA functional similarity symmetric matrix

FS (see S4 Table), in which the entity FS(m(i),m(j)) indicates how is miRNA m(i) functionally

similar to another miRNA m(j).

miRNA-disease association prediction
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Disease semantic similarity

Mesh database (http://www.ncbi.nlm.nih.gov/), a strict system for disease classification, is

available for effectively researching the relationship between different diseases. Disease could

be transformed into corresponding Directed Acyclic Graph (DAG), such as DAG(D) = (T(D),

E(D)), where T(D) indicates the node set including node D and its ancestor nodes, and E(D) is

the edge set of corresponding direct links from a parent node to a child node, which represents

the relationship between different diseases [41]. Based on disease DAG, the contribution of

disease term d to the semantic value of disease D and the semantic value of disease D itself can

be formulated by the following two equations, respectively.

DDðdÞ ¼ 1 if d ¼ D

DDðdÞ ¼ maxfD�DDðd0Þjd0 2 children of dg if d 6¼ D
ð1Þ

(

DVðDÞ ¼
X

d2TðDÞ

DDðdÞ ð2Þ

Where4 is a the semantic contribution decay factor, which shows that as the distances

between disease D and its ancestor diseases increases, their contribution to the semantic value

of disease D progressively decreases. Accordingly, disease D locates in the 0th layer, the contri-

bution to the semantic value of disease D itself was defined as 1. The contribution of its ances-

tor disease should be multiplied by the semantic contribution decay factor. Therefore,4

should be assigned a value between 0 and 1, and that this value was set as 0.5 here according to

some previous important literatures [42,43]. Based on this way to measure disease semantic

similarity, it should be considered that two diseases sharing more common parts of their

DAGs should obtain higher semantic similarity. Under this assumption, the semantic similar-

ity between two diseases d(i) and d(j) can be calculated as:

SSðdðiÞ; dðjÞÞ ¼

X

t2TðdðiÞÞ\TðdðjÞÞ
ðDdðiÞðtÞ þ DdðjÞðtÞÞ

DVðdðiÞÞ þ DVðdðjÞÞ
ð3Þ

where the entity SS(d(i),d(j)) in row i column j represents the disease semantic similarity

between d(i) and d(j).

Gaussian interaction profile kernel similarity for diseases

According to the basic assumption that two miRNAs with more functional similarity tend to

be more associated with similar diseases, the topologic information of the known miRNA-dis-

ease association network could be used to measure disease similarity. We therefore introduce

Gaussian interaction profile kernel for calculating the network topologic similarity between

diseases. A binary vector IP(d(i)), i.e. the ith column of matrix Y, is recorded as the interaction

profiles of disease d(i) for representing associations between d(i) itself and each miRNA. We

then utilized Eq (4) to compute Gaussian kernel similarity between disease d(i) and disease d
(j) based on their interaction profiles.

KDðdðiÞ; dðjÞÞ ¼ expð� gdkIPðdðiÞÞ � IPðdðjÞÞk2
Þ ð4Þ

where parameter γd is a regulation parameter of the kernel bandwidth. As a symmetric matrix,

KD represents the Gaussian interaction profile kernel similarity for all investigated diseases.

Parameter γd is needed to be updated by using a new bandwidth parameter γ’
d divided by the

average value of associations with miRNAs for all diseases. Based on the previous successful

miRNA-disease association prediction
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research about lncRNA-disease association prediction [44], γ’
d is set to 1 for controlling the

kernel bandwidth. So γd can be formulated as:

gd ¼ g
0

d=
1

nd

Xnd

i¼1

kIPðdðiÞÞk2

 !

ð5Þ

Gaussian interaction profile kernel similarity for miRNAs

Similarly, we also calculated the Gaussian interaction profile kernel similarity for miRNAs,

which can be calculated by Eqs (6) and (7):

KMðmðiÞ;mðjÞÞ ¼ expð� gmkIPðmðiÞÞ � IPðmðjÞÞk2
Þ ð6Þ

gm ¼ g
0

m=
1

nm

Xnm

i¼1

kIPðmðiÞÞk2

 !

ð7Þ

where γ’
m = 1 and KM is a symmetric matrix, whose entity KM(m(i),m(j)) denotes the Gauss-

ian interaction profile kernel similarity between miRNA m(i) and miRNA m(j).

Integrated similarity for miRNA and disease

MiRNA functional similarity and disease semantic similarity are the primary data to construct

the disease and miRNA similarity matrix. However, these matrices have the problem of spar-

sity, so we calculated the Gaussian interaction profile kernel similarity based on the known

miRNA-disease associations for calculating the similarity of those disease-disease or miRNA-

miRNA pairs without corresponding disease semantic similarity or miRNA functional similar-

ity. For constructing two integrated similarity matrix (i.e., miRNA similarity matrix Sm and

disease similarity matrix Sd), we integrated miRNA functional similarity, disease semantic sim-

ilarity, and Gaussian interaction profile kernel similarity for miRNAs and diseases by judging

whether miRNA m(i)/disease d(i) has functional/semantic similarity with another miRNA m
(j)/disease d(j) or not.

SmðmðiÞ;mðjÞÞ ¼
FSðmðiÞ;mðjÞÞ mðiÞ and mðjÞ has functional similarity

KMðmðiÞ;mðjÞÞ otherwise
ð8Þ

(

SdðdðiÞ; dðjÞÞ ¼
SSðdðiÞ; dðjÞÞ dðiÞ and dðjÞ has semantic similarity

KDðdðiÞ; dðjÞÞ otherwise
ð9Þ

(

PBMDA

For prioritizing the most possible potential miRNA-disease associations, we here devised a

novel Path-Based MiRNA-Disease Association (PBMDA) prediction method (See Fig 1). For

eliminating the node sets with the weak interaction, we set the threshold variable T to 0.5

based on the previous literature research [45], which means we did not take such links into

consideration if the similarity between these nodes was less than 0.5. So that three weighted

miRNA-disease association prediction
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Fig 1. Flowchart of PBMDA. Three networks were integrated to construct a heterogeneous graph and the potential miRNA-disease associations could

be effectively inferred by the scoring system.

https://doi.org/10.1371/journal.pcbi.1005455.g001

miRNA-disease association prediction
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matrixes can be represented as:

WmiRNA� miRNA ¼

(
0 SmðmðiÞ;mðjÞÞ < T

SmðmðiÞ;mðjÞÞ otherwise

Wdisease� disease ¼

(
0 SdðdðiÞ; dðjÞÞ < T

SdðdðiÞ; dðjÞÞ otherwise

WmiRNA� disease ¼ Yðmi; djÞ 0 � i � nm; 0 � j � nd

ð10Þ

In this way, we constructed a heterogeneous graph with lots of paths, which consisted of

these three weighted matrixes. A path was defined as a connection between a miRNA and a

disease. Furthermore, all paths between a miRNA and a disease must be acyclic to avoid the

visited nodes from being traversed repeatedly. A specific depth-first search algorithm was

adopted to traverse all paths in the graph, which is easy to be implemented as a recursive algo-

rithm. For saving time, we set a parameter L to limit the maximum length of paths. According

to previous literature research [45] and comparison experiments, we found that it was suitable

to set L = 3 after trying different values from 2 to 4 increasingly, i.e. one path was not allowed

to include more than three edges. Based on the assumption that if more paths are found to

connect a miRNA and a disease, they are more likely to have associations, the accumulative

contributions from all paths between a miRNA-disease pair could be integrated as a final

score. Accordingly, the scoring formula can be defined as Eq (11) with the exponential decay

function Fdecay(p), which is depended on the path between a specific miRNA mi and a specific

disease dj:

scoreðmi; djÞ
0<i�nm;0<j�nd

¼
Xn

w¼1

ð
Y

pwÞ
FdecayðpwÞ

ð11Þ

where p = {p1,p2,. . .,pn} is a set of paths linking up a miRNA mi and a disease dj, and ∏pw repre-

sents the product of the weight of the all the edges in path pw obtained from the Eq (10).

Generally, longer paths between a miRNA and a disease should have less confidence to

directly demonstrate their relationship, i.e. the contributions from the longer path should be

cut down more sharply. So the decay function Fdecay(p) can be calculated as follows:

FdecayðpÞ ¼ a� lenðpÞ ð12Þ

where parameter α is a decay factor, which was set 2.26, according to previous literature

research [45], and len(p) is the length of path p. After traversing all paths in the graph,

each miRNA-disease pair could obtain a final score representing the association confidence

between this miRNA and disease, i.e. the higher score they obtain, the more closely related

they should be. As an example in Fig 1, the score value of miRNA1 (m1) and disease1 (d1) is cal-

culated as: 1.02.26�1 <m1$ d1 > + (1.0 � 0.7)2.26�2 <m1$ d2$ d1 > + (0.8 � 1.0)2.26�2 <m1

$m3$ d1 > + (0.7 � 1.0 � 0.9)2.26�3 <m1$m2$ d3$ d1 >� 1.6078. The edge between d4

and d1 is not taken into consideration, because its weight is less than threshold T. The code

and data of PBMDA is freely available at http://www.escience.cn/system/file?fileId=84394.

LOOCV and 5-fold CV

To evaluate the predictive performance of PBMDA, we implemented LOOCV and 5-fold

CV based on known miRNA-disease associations downloaded from HMDD database [21].

LOOCV could be divided into two evaluation frameworks based on the ranking scope (i.e.,

miRNA-disease association prediction
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global LOOCV considers all investigated diseases while local LOOCV only includes a given

disease). They both followed the common framework of LOOCV, i.e. each known miRNA-dis-

ease association was left in turns served as a test sample and other known miRNA-disease asso-

ciations were regarded as training samples. Test sample was ranked among the candidate

miRNA-disease associations without any known association evidences. The test samples with

higher ranks than the specific threshold would be considered as successful predictions. In the

framework of 5-fold CV, all known verified miRNA-disease associations were randomly divided

into five uncrossed groups, of which one was regarded as testing samples and the other four

were used for training in turns. In this paper, we randomly implemented 100 divisions of all

known verified miRNA-disease associations to reduce bias brought by sample divisions. The

receiver operating characteristic (ROC) curves were drawn for performance evaluation by cal-

culating true positive rate (TPR, sensitivity) and false positive rate (FPR, 1-specificity) based on

the varying threshold. Sensitivity indicates the percentage of the positive test samples which are

ranked higher than the given threshold; specificity indicates the percentage of candidate samples

which are ranked lower than the given threshold. In this way, the ROC curves were plotted

based on TPR versus FPR. The areas under ROC curves (AUCs) were also calculated for a

numerical evaluation of model performance. AUC = 0.5 denotes a purely random prediction

while AUC = 1 denotes a perfect prediction. As a result, the reliable AUCs of 0.9169 and 0.8341

in the frameworks of global and local LOOCV were obtained by PBMDA. Furthermore, the

average and the standard deviation of AUC in the framework of 5-fold CV are 0.9172 and

0.0007, respectively. It is anticipated that PBMDA could serve as an effective and robust compu-

tational prediction model.

Results

Performance comparison with other methods

We further compared the prediction performance of PBMDA model with four state-of-the-

art computational prediction models (i.e., WBSMDA [36], RLSMDA [38], HDMP [31] and

RWRMDA [33]). RWRMDA and HDMP are the representational methods in this domain.

They were often chosen as benchmarking methods to validate the later developed methods,

such as: MIDP [35] and Shi’s method [36]. RLSMDA was a semi-supervised learning method

based on the framework of Regularized Least Squares (RLS) representing a good try in machine

learning algorithm. WBSMDA was a newly published method representing the current level

of computational prediction models in this domain. The performance comparisons in the

framework of global and local LOOCV were shown in Fig 2. As a result, PBMDA, WBSMDA,

RLSMDA and HDMP achieved AUCs of 0.9169, 0.8030, 0.8426 and 0.8366 in the framework of

global LOOCV, respectively. When implementing the local LOOCV, we also obtain the best

prediction performance based on PBMDA with AUC of 0.8341. The other methods (WBSMDA,

RWRMDA, HDMP, and RLSMDA) obtained AUCs of 0.8031, 0.7891, 0.7702 and 0.6953,

respectively. In addition, 5-fold CV was implemented on PBMDA, WBSMDA, RLSMDA and

HDMP with average AUC value of 0.9172+/-0.0007, 0.8185+/-0.0009, 0.8569+/-0.0020 and

0.8342+/-0.0010, respectively, which was observed that PBMDA obtained the best performance

based on 5-fold CV. In conclusion, PBMDA significantly improves prediction performance of

previous computational models by demonstrating its reliable and robust performance from

these evaluation frameworks.

Effects of parameters

For simplicity, the maximum path length L and weight threshold T were respectively selected

3 and 0.5 for the prediction. It is possible to obtain the better prediction performance by
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adjusting these parameters values. 5-fold CV was implemented over 100 times for further

evaluation. As a result, given T = 0.5, the average AUC respectively equals to 0.7726+/-0.0016

(when L = 2) and 0.9172+/-0.0007 (when L = 3). It seemed that, the performance of our model

could be affected by being restrained with the insufficient neighbor length in each path. Be-

cause it took too long to run the program, we did not complete the experiment when L = 4. It

seems that as L increases, the computational complexity represents an exponential growth.

However, we also implemented 5-fold CV 100 times based on our model and a smaller dataset

(HMDD v1.0, 1395 known miRNA-disease associations involved in 271 miRNAs and 137 dis-

eases) for testing performance with increasing L (L = 2~4) and fixed T (T = 0.5). As we can see

in Table 1, the prediction accuracy of proposed model is deceased with the increasing L based

on a smaller dataset. It is assumed that the increasing L tends to cause overfitting problems for

a small network dataset. Therefore, it is not necessary to obtain the improvement of prediction

accuracy by increasing the path length L. We should take the size of a network dataset into

consideration when selecting parameter L. It seems like that L should be generally increased,

Fig 2. The comparison results between PBMDA and other four computational models in terms of global LOOCV and local LOOCV.

https://doi.org/10.1371/journal.pcbi.1005455.g002

Table 1. Five-fold CV experiment results of changing a parameter L when T = 0.5 based on a smaller dataset (HMDD v1.0).

L 2 3 4

Average AUC 0.9175+/-0.0022 0.8823+/-0.0021 0.8443+/-0.0019

https://doi.org/10.1371/journal.pcbi.1005455.t001
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as the network dataset becomes larger. Nevertheless, it does not need to select a too high

numerical value for L for avoiding overfitting. Considering the reliable performance of three

maximum limited lengths for each path (i.e., L = 3), there is no necessity to select L = 4 in this

study. This setting also helps reduce the run-time of computational model to travel all possible

paths.

We also implemented a series of 5-fold CV experiments with the increasing T values to

obtain the optimal setting (see Table 2). It is showed that, the selection of T value cannot

greatly affect the accuracy of PBMDA, which demonstrates a strong robustness on this param-

eter. So we made a better trade-off to set T = 0.5.

Case studies

Many miRNAs in the top rank were predicted to have associations with digestive system and

urinary system. It seems that miRNA functional expression is closely related to the dysfunction

of both digestive system and urinary system. We attempted to explore their potential relation-

ships and what a role of miRNA plays in disease mechanisms of digestive and urinary system.

Esophagus and colon belong to digestive system, while kidney belongs to urinary system.

Therefore, to further evaluate the prediction performance of PBMDA, Esophageal Neoplasms,
Kidney Neoplasms and Colon Neoplasms were investigated to infer their underlying associated

miRNAs. Two independent databases (i.e., dbDEMC [40] and miR2Disease [22]) were used as

benchmark datasets to verify the predictive results. The quantitative statistics demonstrates the

reasonability of this benchmarking method (see Table 3). Besides, miR2Disease and dbDEMC

are commonly utilized to be benchmark datasets in this domain, such as HDMP and MIDP

models. It is worthwhile to note that, the predicted miRNA-disease associations were not

included in HMDD database, including those highly-ranked disease-related miRNAs listed in

Tables 4–7. For the sake of space, this article only mentions these three cancers. Actually, our

model can make a successful prediction for almost all of given important diseases. We also

present the verification of top-50 prediction list for those important diseases investigated by

other previous computational models, such as: prostate neoplasms, breast neoplasms and lung

neoplasms in HDMP (see Table 8 and S5 Table). Although HMDD database included plentiful

Table 2. Five-fold CV experiment results of changing a parameter T when L = 3.

T value Average AUCs Standard deviation

0.2 0.9174 0.0007

0.3 0.9174 0.0007

0.4 0.9173 0.0007

0.5 0.9172 0.0007

0.6 0.9168 0.0007

0.7 0.9158 0.0007

0.8 0.9138 0.0009

https://doi.org/10.1371/journal.pcbi.1005455.t002

Table 3. The quantitative statistics between test dataset (HMDD) and benchmark datasets (miR2Disease and dbDEMC).

Database Total associations without

repetition

abbr. A

Redundant associations removed

from HMDD

abbr. B

Remainder

associations

(A-B)

Percentage of remainder

associations
A� B
5430
� 100%

HMDD 5430 / / /

miR2Disease 2875 232 2643 48.7%

dbDEMC 1815 546 1269 23.4%

https://doi.org/10.1371/journal.pcbi.1005455.t003
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of known miRNA-disease associations, there were still many other miRNA-disease associa-

tions existing in other two independent benchmark databases, which were not overlapped in

HMDD database. So that, we utilized the known miRNA-disease associations (included in

HMDD) to prioritize the novel miRNA-disease associations (not included in HMDD), and

evaluated the prediction performance of PBMDA by observing how many these novel associa-

tions were matched by other two independent benchmark databases.

Esophageal Neoplasms is one of the most common digestive carcinomas with poor progno-

sis. With the growth of the tumor, patients could cause corresponding symptoms, such as diffi-

cult or painful swallowing, weight loss and coughing up blood. Cisplatin-based chemotherapy

is the main approach for the treatment of Esophageal Neoplasms but the chemotherapy

response is difficultly detected. Some studies suggested that miRNAs could be considered as

effective prognostic biomarkers for Esophageal Neoplasms. For examples, hsa-let-7 can be con-

sidered as a prognostic biomarker for measuring the response to chemotherapy. In addition,

when a recurrence of disease happens, patients have relatively higher expression of mature

hsa-miR-143 and mature hsa-miR-145 than normal people. A case study of Esophageal Neo-
plasms was implemented on PBMDA for yielding the most probable related miRNAs (see

Table 4). As a result, 9 of top-10 and 44 of top-50 candidates were confirmed to have associa-

tions with Esophageal Neoplasms based on previous experimental literatures. For examples, the

overexpression of hsa-miR-17 (1st in the prediction list) cluster can accelerate the cellular

Table 4. PBMDA was applied to Esophageal Neoplasms to predict the potential disease-related miRNAs, and 44 of top-50 predicted miRNAs have

been confirmed according to recent experimental literatures.

Top 1–25 Top 26–50

miRNA Evidence miRNA Evidence

hsa-mir-17 dbdemc hsa-mir-195 dbdemc

hsa-mir-125b dbdemc hsa-let-7g dbdemc

hsa-mir-221 dbdemc hsa-mir-124 dbdemc

hsa-mir-16 dbdemc hsa-let-7i dbdemc

hsa-mir-18a dbdemc hsa-mir-125a dbdemc

hsa-mir-200b dbdemc hsa-mir-24 dbdemc

hsa-mir-19b dbdemc hsa-mir-106b dbdemc

hsa-mir-1 dbdemc hsa-mir-93 dbdemc

hsa-mir-218 unconfirmed hsa-mir-30c dbdemc

hsa-mir-222 dbdemc hsa-mir-199b dbdemc

hsa-mir-182 dbdemc hsa-mir-224 dbdemc

hsa-let-7d dbdemc hsa-mir-106a dbdemc

hsa-mir-29a dbdemc hsa-mir-107 dbdemc;miR2Disease

hsa-mir-181a dbdemc hsa-mir-127 dbdemc

hsa-mir-29b dbdemc hsa-mir-429 dbdemc

hsa-mir-146b dbdemc hsa-mir-27b dbdemc

hsa-mir-10b dbdemc hsa-mir-103a unconfirmed

hsa-mir-181b dbdemc hsa-mir-96 dbdemc

hsa-mir-133b dbdemc hsa-mir-18b dbdemc

hsa-mir-9 dbdemc hsa-mir-151a unconfirmed

hsa-let-7e dbdemc hsa-mir-122 unconfirmed

hsa-mir-142 dbdemc hsa-mir-135a dbdemc

hsa-mir-30a dbdemc hsa-mir-302b dbdemc

hsa-let-7f unconfirmed hsa-mir-335 dbdemc

hsa-mir-7 dbdemc hsa-mir-138 unconfirmed

https://doi.org/10.1371/journal.pcbi.1005455.t004
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growth in Esophageal Neoplasms [46]. Previous research showed that hsa-miR-125b (2nd in the

prediction list) can promote cell proliferation in Esophageal Neoplasms by influencing the tar-

get transcripts: CYP24, ERBB2 and ERBB3 [47]. Moreover, hsa-miR-221 (3rd in the prediction

list) can be regarded as a useful diagnostic marker for measuring the sensitivity to the treat-

ment of Esophageal Neoplasms [48].

Kidney Neoplasms is the most rapidly increasing tumor type in incidence rate, especially

among black persons. And more than 80 percent of patients are found to have renal-cell carci-

noma (RCC). Recent studies found that patients with RCC usually have overexpression of

miR-34a, which plays a critical role in slowing the growth of RCC. Besides, MiRs-141/200c
were considered as the most down-regulated miRNAs in RCC by targeting ZEB2, which is a

type of transcriptional repressor [49,50]. In order to identify potential disease-miRNA associa-

tions, we implemented the case study of Kidney Neoplasms. The existing experimental litera-

tures have demonstrated 9 of top-10 and 44 of top-50 potential miRNA candidates were

correctly associated with this important human disease (see Table 5). For example, miR-155
(1st in the prediction list), miR-126 (4th in the prediction list) and miR-20a (5th in the predic-

tion list) were identified to be upregulated in clear-cell type human renal cell carcinoma

(ccRCC), relative to normal kidney samples [51,52]. Furthermore, it was found that miR-145
(2nd in the prediction list) and miR-146a (3rd in the prediction list) with over expression sup-

press their target mRNA and protein expression of the STAT-1 pathway in kidney tissues [53].

Table 5. PBMDA was applied to Kidney Neoplasms to predict the potential disease-related miRNAs, and 44 of top-50 predicted miRNAs have been

confirmed according to recent experimental literatures.

Top 1–25 Top 26–50

miRNA Evidence miRNA Evidence

hsa-mir-155 dbdemc hsa-mir-205 unconfirmed

hsa-mir-145 dbdemc hsa-mir-19b dbdemc;miR2Disease

hsa-mir-146a dbdemc hsa-mir-181a dbdemc

hsa-mir-126 dbdemc;miR2Disease hsa-mir-218 dbdemc

hsa-mir-125b unconfirmed hsa-let-7c dbdemc

hsa-mir-20a dbdemc;miR2Disease hsa-mir-222 dbdemc

hsa-mir-17 dbdemc;miR2Disease hsa-mir-203 dbdemc

hsa-mir-34a dbdemc hsa-mir-9 dbdemc

hsa-mir-16 dbdemc hsa-mir-34c dbdemc

hsa-mir-200b dbdemc;miR2Disease hsa-mir-10b dbdemc

hsa-let-7a dbdemc hsa-mir-146b dbdemc

hsa-mir-221 unconfirmed hsa-mir-182 dbdemc;miR2Disease

hsa-mir-143 dbdemc hsa-mir-375 dbdemc

hsa-mir-92a unconfirmed hsa-let-7d dbdemc

hsa-mir-200a dbdemc hsa-mir-27a dbdemc;miR2Disease

hsa-mir-31 dbdemc hsa-mir-34b dbdemc

hsa-mir-18a dbdemc hsa-mir-101 dbdemc;miR2Disease

hsa-mir-19a dbdemc;miR2Disease hsa-mir-181b dbdemc

hsa-mir-223 dbdemc hsa-mir-106b dbdemc;miR2Disease

hsa-mir-29a dbdemc;miR2Disease hsa-mir-142 unconfirmed

hsa-mir-29b dbdemc;miR2Disease hsa-mir-29c dbdemc;miR2Disease

hsa-mir-1 dbdemc hsa-mir-195 dbdemc

hsa-let-7b unconfirmed hsa-mir-183 dbdemc

hsa-mir-210 dbdemc;miR2Disease hsa-mir-486 dbdemc

hsa-mir-199a dbdemc;miR2Disease hsa-mir-196a dbdemc

https://doi.org/10.1371/journal.pcbi.1005455.t005

miRNA-disease association prediction

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005455 March 24, 2017 13 / 22

https://doi.org/10.1371/journal.pcbi.1005455.t005
https://doi.org/10.1371/journal.pcbi.1005455


Colon Neoplasms maintains the second leading cause of cancer-related death in the United

States [54]. Although chemotherapy has important therapeutic value, surgery is still the only

curative way for the treatment of Colon Neoplasms. There is an urgent need to find potential

biomarkers, which have a strong response to the clinical observations. By using in situ hy-

bridization technique, researchers have confirmed that miR-21 has high expression levels in

colonic carcinoma cells [55]. What’s more, let-7 functions as a potential growth suppressor in

human colon cancer tumors and cell lines [56]. Identifying more miRNAs associated with

Colon Neoplasms helps accurately evaluate the clinical outcomes. Therefore, we implemented

the case study of Colon Neoplasms based on PBMDA. In the prediction list, 9 of top-10 and 45

of top-50 predicted miRNAs obtained confirmation of their associations with Colon Neoplasms
based on recent experimental literatures (see Table 6). For examples, preclinical research

showed that the expression of miR-21 (1st in the prediction list) is related to clinicopathologic

features of colorectal cancer [57]. Experimental studies also found that miR-20a (2nd in the

prediction list) shows significantly higher expression in colon cancer tissues than normal tis-

sues [58]. MiR-18a (3rd in the prediction list) is considered as a colon tumor suppressor by tar-

geting on K-Ras (mRNA) to influence cell proliferation and anchorage-independent growth

[59]. What’s more, miR-34a (6th in the prediction list) has important potential to be used as

potential diagnostic and prognostic biomarker by using its expression at different stages of

Colon Neoplasms [60].

Table 6. PBMDA was applied to Colon Neoplasms to predict the potential disease-related miRNAs, and 45 of top-50 predicted miRNAs have been

confirmed according to recent experimental literatures.

Top 1–25 Top 26–50

miRNA Evidence miRNA Evidence

hsa-mir-21 dbdemc;miR2Disease hsa-mir-181a dbdemc;miR2Disease

hsa-mir-20a dbdemc;miR2Disease hsa-mir-223 dbdemc;miR2Disease

hsa-mir-155 dbdemc;miR2Disease hsa-let-7c dbdemc

hsa-mir-146a dbdemc hsa-mir-199a unconfirmed

hsa-mir-18a dbdemc;miR2Disease hsa-mir-34c miR2Disease

hsa-mir-34a dbdemc;miR2Disease hsa-mir-9 dbdemc;miR2Disease

hsa-mir-143 dbdemc;miR2Disease hsa-let-7d dbdemc

hsa-mir-125b dbdemc hsa-mir-15a dbdemc

hsa-mir-92a unconfirmed hsa-mir-10b dbdemc;miR2Disease

hsa-mir-19b dbdemc;miR2Disease hsa-mir-181b dbdemc;miR2Disease

hsa-mir-16 dbdemc hsa-mir-106b dbdemc;miR2Disease

hsa-mir-221 dbdemc;miR2Disease hsa-mir-34b dbdemc;miR2Disease

hsa-mir-19a dbdemc;miR2Disease hsa-mir-205 dbdemc

hsa-let-7a dbdemc;miR2Disease hsa-mir-200a unconfirmed

hsa-mir-200c dbdemc;miR2Disease hsa-mir-203 dbdemc;miR2Disease

hsa-mir-31 dbdemc;miR2Disease hsa-mir-27a miR2Disease

hsa-mir-200b dbdemc hsa-mir-30a miR2Disease

hsa-mir-29b dbdemc;miR2Disease hsa-mir-133b dbdemc;miR2Disease

hsa-mir-182 dbdemc;miR2Disease hsa-mir-101 unconfirmed

hsa-mir-218 dbdemc hsa-mir-183 dbdemc;miR2Disease

hsa-mir-222 dbdemc hsa-let-7e dbdemc

hsa-let-7b dbdemc hsa-mir-196a dbdemc;miR2Disease

hsa-mir-29a dbdemc;miR2Disease hsa-let-7f dbdemc;miR2Disease

hsa-mir-210 dbdemc hsa-mir-142 unconfirmed

hsa-mir-1 dbdemc;miR2Disease hsa-mir-148a dbdemc

https://doi.org/10.1371/journal.pcbi.1005455.t006
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Considering that most cancers are characterized by some extent of genetic and genomic

modifications, so the fact that cancers are associated with miRNA dysregulation is perhaps

an obvious form of validation, which inspired us to know whether PBMDA can achieve the

similar effectiveness for another disease type, such as obesity. Because there is only one entry

corresponding to the miRNA-obesity association in both HMDD and the two independent

benchmark databases (i.e., dbDEMC [40] and miR2Disease [22]), we decided to manually vali-

date the top-10 predicted obesity-related miRNAs based on the published literatures. As we

can see the validation results from Table 7, 9 out of top-10 predicted miRNAs have been dem-

onstrated to be associated with obesity, which demonstrated that PBMDA also work effectively

for other diseases.

Because only WBSMDA and PBMDA chose the latest version of HMDD for the prediction,

we decided to compare the performance between PBMDA and WBSMDA by observing how

many top-50 predicted miRNA-disease associations have been confirmed by dbdemc and

miR2Disease databases for these three important diseases. Their validation results were com-

pared in Table 9. As we can see from this table, PBMDA perform better than WBSMDA in

general.

Besides, we have also implemented PBMDA on the older version of HMDD (v1.0) for fur-

ther comparison between PBMDA and another three compared computational models, i.e.

HDMP, RWRMDA and RLSMDA. For a fair comparison, we only took those top-50 predicted

associations verified by three benchmark databases (i.e. HMDD v2.0, dbDEMC and miR2Di-

sease) into consideration. Namely, those predicted associations additionally verified by extra

literatures were not included. Besides, we could only compare performance between PBMDA

and other compared models for those given diseases, whose verification was published in their

articles, e.g. prostatic, breast and lung neoplasms in HDMP. Based on these comparison results

(see Table 10), our model generally improves prediction performance for various selected dis-

eases, relative to other compared computational models.

Table 7. Nine out of top-10 predicted obesity-related miRNAs have been manually validated by the published literatures.

MiRNA Prediction score Evidence(PMID)

hsa-mir-20a 223.20 25014161;19348006

hsa-mir-155 222.22 23991091

hsa-mir-145 211.36 22688341

hsa-mir-34a 210.45 22988100

hsa-mir-146a 202.54 23396142

hsa-mir-125b 201.68 23396142

hsa-mir-92a 194.21 22688341

hsa-mir-126 184.72 24749062

hsa-mir-19b 180.86 26658372

hsa-mir-16 175.44 unconfirmed

https://doi.org/10.1371/journal.pcbi.1005455.t007

Table 8. Verification of top-50 prediction list for several important human diseases.

Diseases The verification of top-50 prediction list

Prostate neoplasms 43

Breast neoplasms 33

Lung neoplasms 32

Colon neoplasms 45

Lymphoma 45

Hepatocellular cancer 17

https://doi.org/10.1371/journal.pcbi.1005455.t008
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To prove the applicability of our model to a new disease (no known associated miRNAs),

we selected Glioblastoma for further verification. We removed all records about Glioblastoma
from the known miRNA-disease association network derived from HMDD and that Glioblas-
toma could be regarded as a new disease. We implemented our model for prediction and then

the prediction result about Glioblastoma was yielded. Similarly, we verified top-50 predicted

miRNA-disease associations by HMDD, dbDEMC and miR2Disease (see Table 11). Fifteen

out of top-20 and 37 out of top-50 predicted miRNAs have been verified to be associated with

Glioblastoma by HMDD, dbDEMC and miR2Disease. Based on these prediction results, we

can safely conclude that PBMDA can still achieve the reliable prediction performance for a

new disease. Most importantly, it also demonstrates that our model is indeed applicable to a

new disease.

As a global computational model, PBMDA was also implemented to simultaneously priori-

tize the potential miRNAs for all investigated diseases. Owing to the limited prior knowledge,

some promising disease-related miRNAs have not been validated yet. We therefore listed the

top-100 potential associations in S6 Table.

Discussions

With the great amount of researches, it was found that miRNAs play increasingly significant

roles in many physiological processes including complex human diseases. Researchers attempt

to identify disease-related miRNAs as valuable biomarkers for clinical measure, diagnosis,

prognosis and treatment. The biological experiment-based verification is not only time-con-

suming but also expensive, which boosts the development of computational predictive models.

A novel Path-Based MiRNA-Disease Association (PBMDA) computational prediction model

was proposed here by integrating heterogeneous biological networks. PBMDA could construct

a heterogeneous graph by padding internal connections, including miRNA-miRNA similarity,

disease-disease similarity and known miRNA-disease associations. MiRNA-miRNA similarity

and disease-disease similarity are inferred from Gaussian interaction profile kernel similarity

for miRNA and disease, miRNA functional similarity network, and disease semantic similarity

Table 9. Performance comparison between PBMDA and WBSMDA in case studies of three important diseases in top-50 prediction list based on

the latest version of HMDD (v2.0).

Esophageal Neoplasms Kidney Neoplasms Colon Neoplasms

PBMDA 44 44 45

WBSMDA 29 39 45

https://doi.org/10.1371/journal.pcbi.1005455.t009

Table 10. We implemented PBMDA model on the older version of HMDD (v1.0) for further comparison between PBMDA and another three repre-

sentative computational models, i.e. HDMP, RWRMDA and RLSMDA. For these given diseases, their top-50 prediction lists have been verified by three

benchmark databases (i.e. HMDD v2.0, dbDEMC and miR2Disease).

Prostatic neoplasms Breast neoplasms Lung neoplasms

PBMDA 44 48 41

HDMP 38 43 38

Breast neoplasms Colon neoplasms Lung neoplasms

PBMDA 48 38 41

RWRMDA 48 33 43

Hepatocellular cancer Colon cancer

PBMDA 38 38

RLSMDA 40 36

https://doi.org/10.1371/journal.pcbi.1005455.t010
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network. Compared with four state-of-the-art computational models, PBMDA achieved the

highest AUCs of 0.9169, 0.8341 and 0.9172+/-0.0007 in the evaluation frameworks of global

LOOCV, local LOOCV and 5-fold CV, respectively, demonstrating the most reliable predic-

tion performance. In the case studies of three important human complex diseases, 44, 44, and

45 of top-50 predicted miRNAs of Esophageal Neoplasms, Kidney Neoplasms and Colon Neo-
plasms have been experimentally supported by the previous experimental literatures, respec-

tively. By manually validating the predicted obesity-related miRNAs based on the published

literatures, 9 out of top-10 predicted miRNAs have been demonstrated to be associated with

obesity. Furthermore, through the comparison performance between PBMDA and other pre-

vious models in case studies, it is anticipated that PBMDA would significantly accelerate the

identification of miRNA-disease associations. We are planning to provide a standalone tool or

webserver for users in the future. This study is aimed to firstly propose the computational

model for the next schedule.

There are several major factors contributing to the high prediction performance of PBMDA.

First, reliable biological datasets were utilized to establish an integrated similarity network,

which represents three relationships (i.e., miRNA-miRNA similarity, disease-disease similarity,

and miRNA-disease associations). Second, as a path-based model, PBMDA can effectively take

advantage of topological information implied in the integrated heterogeneous network. Third,

Table 11. We removed all records about Glioblastoma from the known miRNA-disease association network derived from HMDD and implemented

our model for prediction. Fifteen out of top-20 and 37 out of top-50 predicted miRNAs have been verified to be associated with Glioblastoma by HMDD,

miR2Disease and dbDEMC databases.

Top 1–25 Top 26–50

miRNA Evidence miRNA Evidence

hsa-mir-21 HMDD;miR2Disease;dbDEMC hsa-mir-574 unconfirmed

hsa-mir-155 HMDD;dbDEMC hsa-mir-208a HMDD

hsa-mir-222 HMDD;miR2Disease;dbDEMC hsa-mir-181a HMDD;miR2Disease;dbDEMC

hsa-mir-221 HMDD;miR2Disease;dbDEMC hsa-mir-181c HMDD;miR2Disease;dbDEMC

hsa-mir-122 unconfirmed hsa-mir-132 dbDEMC

hsa-mir-199a dbDEMC hsa-mir-214 dbDEMC

hsa-mir-205 HMDD;dbDEMC hsa-mir-125b HMDD;miR2Disease

hsa-mir-451a HMDD hsa-mir-25 HMDD;miR2Disease;dbDEMC

hsa-mir-93 unconfirmed hsa-mir-182 dbDEMC

hsa-mir-451 miR2Disease hsa-mir-181b HMDD;miR2Disease;dbDEMC

hsa-mir-142 HMDD;dbDEMC hsa-mir-1 unconfirmed

hsa-mir-206 HMDD;dbDEMC hsa-mir-9 HMDD;miR2Disease;dbDEMC

hsa-mir-34a HMDD;miR2Disease;dbDEMC hsa-mir-641 unconfirmed

hsa-mir-27a unconfirmed hsa-mir-1287 unconfirmed

hsa-mir-210 HMDD;dbDEMC hsa-mir-1286 unconfirmed

hsa-mir-10b HMDD;miR2Disease;dbDEMC hsa-mir-22 HMDD

hsa-mir-23b HMDD;miR2Disease hsa-mir-1290 unconfirmed

hsa-mir-320c unconfirmed hsa-mir-432 dbDEMC

hsa-mir-30b unconfirmed hsa-mir-197 miR2Disease;dbDEMC

hsa-mir-27b HMDD hsa-mir-19a HMDD;dbDEMC

hsa-mir-193b unconfirmed hsa-mir-34c dbDEMC

hsa-mir-16 HMDD;dbDEMC hsa-mir-106b unconfirmed

hsa-mir-15a HMDD;dbDEMC hsa-mir-19b HMDD;dbDEMC

hsa-mir-17 HMDD;dbDEMC hsa-mir-18a HMDD;dbDEMC

hsa-mir-29a HMDD hsa-mir-95 HMDD;dbDEMC

https://doi.org/10.1371/journal.pcbi.1005455.t011
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PBMDA can be applied for new disease (no known associated miRNAs) and new miRNAs

(no known associated diseases), which greatly improves the practicability and reliability of the

PBMDA. Depending on the disease semantic similarity and miRNA functional similarity, we

can construct the disease-disease and miRNA-miRNA similarity network. Depth-first search

algorithm can be used to assign the scores to the paths like: diseasenew$disease$miRNA and

miRNAnew$miRNA$disease. In this way, the unverified disease-miRNA associations includ-

ing new diseases and/or new miRNAs also can be prioritized based on their aggregated scores.

Fourth, the model of PBMDA can be easily introduced together with other biological informa-

tion (e.g. various miRNA-related interactions and disease phenotypic similarity [61,62]) for fur-

ther improving the quality of the integrated heterogeneous network. Last but not least, PBMDA

could simultaneously prioritize candidate miRNAs for all investigated diseases.

There is still a vast potential to boost the prediction performance of PBMDA, which still

have some limitations. For examples, the miRNA-disease associations obtained from HMDD

database are far from enough, which greatly influences the performance of our approach. The

disease semantic similarity and miRNA functional similarity have problem of sparsity, which

was remedied by integrating the Gaussian interaction profile kernel similarity inferred from

the known miRNA-disease associations. It inevitably did bring the predicted error to the con-

structed heterogeneous graph. Finally, the distance-decay function in our approach is relatively

simple, and it could be reconstructed based on the machine learning methods.
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