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A B S T R A C T   

Prostate adenocarcinoma (PRAD), driven by both genetic and epigenetic factors, is a common 
malignancy that affects men worldwide. We aimed to identify and characterize differentially 
expressed epigenetic-related genes (ERGs) in PRAD and investigate their potential roles in disease 
progression and prognosis. We used PRAD samples from The Cancer Genome Atlas (TCGA) and 
Gene Expression Omnibus (GEO) to identify prognosis-associated ERGs. Thirteen ERGs with two 
distinct expression profiles were identified through consensus clustering. Gene set variation 
analysis highlighted differences in pathway activities, particularly in the Hedgehog and Notch 
pathways. Higher epigenetic scores correlated with favorable prognosis and improved immuno-
therapeutic response. Experimental validation underscored the importance of CBX3 and KAT2A, 
suggesting their pivotal roles in PRAD. This study provides crucial insights into the epigenetic 
scoring approach and presents a promising prognostic tool, with CBX3 and KAT2A as key players. 
These findings pave the way for targeted and personalized interventions for the treatment of 
PRAD.   

1. Introduction 

Prostate cancer (PCa) ranks as the second most frequently diagnosed malignancy and the fifth leading contributor to cancer-related 
deaths among men globally [1,2]. Currently, diverse treatment modalities are available for PCa [3]. For localized PCa, the conven-
tional approach involves radical prostatectomy. Nevertheless, a substantial subset of patients with PCa, approximately 25–30 %, who 
undergo radical prostatectomy experience progression to advanced disease stages characterized by increased recurrence rates and an 
unfavorable prognosis within a decade [4]. This underscores the pressing need for a comprehensive understanding of the intricate 
etiological mechanisms governing the initiation and progression of PCa. 

Epigenetics involves the exploration of heritable and reversible patterns of gene expression that manifest independent of DNA 
sequence [5]. Epigenetic influences can affect the expression of oncogenes or tumor suppressor genes, ultimately fostering tumori-
genesis [6]. Evaluation of the expression levels of epigenetic factors has the potential to refine prognostic precision and facilitate 
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tailored patient-specific interventions. Thus, a comprehensive exploration using extensive datasets is warranted to establish a broader 
range of epigenetic biomarkers suitable for clinical applications. However, previous studies had some notable limitations, including 
relatively small sample sizes and potential biases inherent in the retrospective design; further large-scale prospective studies are 
needed to enhance statistical power and explore interactions between factors [7]. Additionally, while microarray-based bioinformatics 
analysis offers insights into the molecular mechanisms and potential biomarkers for PCa, further experimental validation of 
epigenetic-related genes (ERGs) at multiple levels is warranted [8,9]. 

In this study, comprehensive analysis of prostate adenocarcinoma (PRAD) samples from The Cancer Genome Atlas (TCGA) and 
Gene Expression Omnibus (GEO) databases identified 13 ERGs that were strongly associated with PRAD prognosis. Application of 
consensus clustering to TCGA-PRAD data revealed two discrete clusters. In addition, gene set variation analysis (GSVA) revealed 
differential activity levels in pathways such as Hedgehog and Notch within these clusters. Based on these 13 key genes, we used an 
epigenetic scoring approach for PRAD from TCGA and found that patients with higher scores had a more favorable prognosis and 
demonstrated increased immunotherapeutic response. We aimed not only to identify key genes that play a role in PRAD, but more 
importantly, we developed a prognostic model based on ERG expression levels to provide more accurate survival prediction for pa-
tients with PRAD, aiming to improve the clinical decision-making process and provide a more personalized basis for patient treatment 
strategies. In addition, by analyzing the role of these genes in the development and treatment response of PRAD, our findings may help 
identify new treatment targets and promote innovative research in PRAD treatment. 

2. Materials and methods 

2.1. Data acquisition 

The data set is preferably from Homo sapiens, including expression profile data from PCa patients. The dataset should contain 
disease and control groups and the number should be greater than 10; data with clear grouping information and not containing gene 
knockout or drug intervention are preferred. In addition, samples with too many negative expression matrix values will be excluded. 
RNA sequencing data, including 553 cases (52 paracancer tissues and 501 tumor samples) and the corresponding clinical information, 
were sourced from the UCSC Xena database (http://genome.ucsc.edu) and standardized into fragments per kilobase per million data 
format [10]. Microarray data, including GSE46602 (503 tumor tissues) [11], GSE69223 (14 paracancer tissues and 36 tumor tissues) 
[12], GSE6919 (81 paracancer tissues and 65 tumor tissues) [13] and GSE141551 (15 paracancer tissues and 15 tumor tissues) [14], 
were downloaded from the GEO database. All the samples were included in the analysis. 

We systematically searched all ERGs in the GeneCards database using the term epigenetic and obtained a total of 391 related genes 
with a relevance score >1.5 as the filtering criterion in GeneCards, and 501 relevant genes were obtained from six reference gene sets 
from the Molecular Signatures Database [15]. Furthermore, we searched PubMed and obtained 720 related genes [16], Eventually, a 
total of 57 epigenetic genes were obtained by taking the intersection of the relevant genes from these three sources (Supplementary 
Table 1). 

2.2. Identification of differentially expressed ERGs 

Gene expression data (TCGA-PRAD, GSE6919, GSE46602, GSE69223, and GSE141551) were processed using the limma package in 
R, including background correction and quantile normalization. Microarray data were processed using the sva package to remove 
batch effect. Principal component analysis (PCA) was used to verify the reproducibility of the data, and the R package ggplot2 was used 
to construct PCA plots. Differentially expressed genes between PRAD and paracancer tissues with |log2 (fold change) | > 0 and 
adjusted P < 0.05 were identified using limma. The identified upregulated and downregulated differentially expressed genes were 
individually overlapped with the ERGs, and this intersection was visually represented using Venn diagrams. The amalgamation of 
these intersections constituted a pool of differentially expressed genes specific to PRAD. Subsequently, distinct comparative plots were 
constructed for both TCGA-PRAD and GEO-PRAD datasets. 

2.3. Enrichment analyses 

Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed using 
the R package clusterProfiler [17], and the filtering criteria for significance were set as P.adj <0.05 and false discovery rate (FDR) (q. 
value) < 0.2. The Benjamini–Hochberg method was used for P-value correction. Moreover, in TCGA-PRAD datasets, we used c2.cp. 
v7.2. symbols.gmt for gene set enrichment analysis (GSEA) to identify the different molecular mechanisms between tumors and normal 
tissues. The parameters used for the GSEA were as follows: seed number, 2022; number of permutations, 10,000; and each gene set was 
required to contain a minimum of five genes and a maximum of 500 genes. The Benjamini–Hochberg method was used for P-value 
correction, and the criteria for identifying significantly enriched gene sets were set as P.adj <0.05 and FDR (q.value) < 0.25. GSVA was 
performed using h.all.v7.5.1. symbols.gmt in the R package GSVA [18]. 

2.4. Construction of ERG signature 

The prognostic model was established to minimize overfitting using the LASSO-penalized Cox regression analysis in the glmnet R 
package [19]. Eventually, four genes and their coefficients were retained, and the minimum criteria determined the penalty parameter 
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(λ). The risk score was obtained using the formula: 

risk score=(0.0171452171253261×DOT1L) + (0.543761947731939×EZH2) + (0.111609967092668×KAT2A)⋯

+ (0.389947150504332×MTA1)

where β represents regression coefficient. The patients with PRAD were divided into high- and low-risk groups based on the median 
risk score. The survival analysis between the two risk groups was performed using the survminer R package, and the receiver operating 
characteristic (ROC) curve analysis was performed via the survival and timeROC R packages. 

2.5. Consensus clustering analysis of ERGs 

Consensus clustering was applied to explore the connections between ERG expression and PRAD subtypes using the k-means 
method. The R package ConsensusClusterPlus was used to determine the number of clusters; the clustering was performed with a range 
of cluster numbers from 2 to 8. The total dataset was repeatedly sampled 1000 times at 80 % of its size. The clusterAlg parameter was 
set to km, and the distance parameter was set to euclidean [20]. The ROC curve was plotted using the pROC R package to calculate the 
area under the curve (AUC) value, which was then used to evaluate the predictive performance of the 13 ERGs for PRAD clusters. The 
correlations between each cluster and progression-free interval (PFI) were analyzed using the survival package. The results were 
presented using Kaplan–Meier graphs. 

2.6. Construction of a predictive nomogram 

To explore the clinical prognostic significance of the identified ERGs in PRAD, we conducted univariate Cox regression analysis 
using the expression profiles of the selected ERGs from TCGA-PRAD dataset. Statistically significant (P < 0.05) genes were subse-
quently chosen for inclusion in a multivariate Cox regression analysis. The analysis involved building a multivariate Cox regression 
model and the findings were presented visually using a forest plot. Based on the outcomes of multivariate Cox regression analysis, we 
constructed a nomogram to predict the probabilities of disease progression-free survival at 1-, 3-, and 5-year intervals for patients with 
PRAD. Finally, we used the rms R package to construct nomogram plots and calibration curve plots. Decision curve analysis (DCA) is a 
straightforward method used to assess clinical predictive models, diagnostic tests, and molecular markers. To evaluate the predictive 
performance of the nomogram model for the 1-, 3-, and 5-year survival outcomes of patients with PRAD, we used the R package ggDCA 
to generate DCA plots. These plots assess the effectiveness of the nomogram model in predicting survival outcomes for specified time 
intervals. 

2.7. Single sample gene set enrichment analysis (ssGSEA) 

The PRAD samples were divided into high and low PRAD groups for further analysis based on their median ERGs scores. 
Kaplan–Meier survival curves were used to examine the effect of the signature on survival. ssGSEA was used to generate an enriched 
fraction of 28 immune cells in each sample. 

2.8. Tumor immune dysfunction and exclusion (TIDE) 

The TIDE is a comprehensive score for tumor immune dysfunction and immune escape. TCGA-PRAD data and the corresponding 
clinical information were estimated using the TIDE algorithm to predict the potential immune checkpoint blockade response. Higher 
scores indicate poorer function [21]. 

2.9. Cell culture 

Human PCa cell lines PC-3 and DU-145 and the benign human prostate epithelial cell line BPH-1 were provided by Procell (Wuhan, 
China). The PC-3, BPH-1, and DU-145 cells were cultured in Dulbecco’s Modified Eagle Medium (DMEM) (Gibico, USA) or 1640 (BI, 
Israel) supplemented with 1 % streptomycin/penicillin and 10 % FBS (BI) under saturated humidity, 37 ◦C, and 5 % CO2. 

2.10. Real-time quantitative polymerase chain reaction (RT-qPCR) 

RNA was extracted using a TRIzol kit (TaKaRa, Japan), and cDNA was synthesized using a reverse transcription kit (Novoprotein, 
China). RT-qPCR was performed using the SYBR Green Mix (Bimake, USA). The primer sequences are listed in Supplementary 
Table S2. Gene expression levels were quantified using the 2− ΔΔCT method. 

2.11. Western blotting 

For total protein extraction, cells were lysed using radioimmunoprecipitation assay (RIPA) buffer supplemented with 1 mmol/L 
phenylmethylsulfonyl fluoride (PMSF) for 15 min on ice and centrifuged at 12,000 rpm for 10 min. The supernatants were collected. 
Total protein quality was measured using the BCA Protein Assay Kit (Elabscience, China) according to the manufacturer’s instructions. 
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Fig. 1. A flow chart of this study.  
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The collected proteins were boiled for 5 min and separated using 10 % sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The 
separated proteins were transferred onto polyvinylidene fluoride membranes. After blocking with Quick Blocker (Beyotime, China) for 
10 min at 25 ◦C, the membranes were incubated with specific primary antibodies (Supplemental Table 3) overnight at 4 ◦C and washed 
three times. The membranes were then incubated with horseradish peroxidase-conjugated secondary antibodies for 1 h at room 
temperature. The binding of each antibody was visualized using enhanced chemiluminescence (ECL), according to the manufacturer’s 
instructions. ImageJ software was used to quantify protein expression. The steps to use the software were as follows: after saving the 
original image, it was opened in the ImageJ software, the quantification areas for bands were defined, and they were quantified along 
with the nearby background. The data were transferred to Excel and the background values were subtracted. The loading-control 

Fig. 2. Differential expression of ERGs in the TCGA-PRAD dataset and GEO-PRAD dataset. 
A. The volcano plot illustrating the differential expression analysis between the PRAD group and the normal group. 
B–C. The Venn diagram displaying the intersection of upregulated and downregulated differentially expressed genes obtained from the TCGA-PRAD 
dataset and ERGs. 
D-E. Group comparison plots showing the expression levels of ERGs in the TCGA-PRAD dataset and the GEO-PRAD dataset. * indicate P < 0.05, ** 
indicate P < 0.01, *** indicate P < 0.001. 
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process was repeated. Normalized integrated density (IntDen) was calculated by dividing the IntDen of the protein by that of the 
control. The mean value of the control group was determined for the fold-change calculation. Finally, the data were statistically 
analyzed and visualized using GraphPad Prism. 

2.12. Immunofluorescence staining 

Immunofluorescence staining was performed as previously described [22]. For paraffin-embedded human PRAD or paracancer 
samples, 5-μm sections were deparaffinized with xylene and ethanol. Antigen retrieval was performed by microwave irradiation in 
citrate buffer (pH 6.0) for 20 min. Sections were then incubated with primary antibodies at 4 ◦C overnight. Anti-rabbit-555 secondary 
antibody was used. Nuclei were stained with DAPI (#H-1200-10; Vector Labs, USA). Images were captured using a KF-FL-400 mi-
croscope (KFBIO, China) using a × 40 objective. 

Fig. 3. Heatmap and GSEA analysis of ERGs. 
A. Heatmap illustrating the expression levels of ERGs in the TCGA-PRAD dataset. 
B. The top 5 major biological features enriched in the GSEA of the TCGA-PRAD dataset. 
C-G. Significantly enriched pathways in the TCGA-PRAD dataset, including WP PATHWAYS REGULATING HIPPO SIGNALING, WP PI3KAKT 
SIGNALING PATHWAY, WP WNT SIGNALING, REACTOME SIGNALING BY NOTCH, and WP MAPK SIGNALING PATHWAY. The selection criteria 
are P.adj <0.05 and false discovery rate (FDR) value (q.value) < 0.25. 

Y. Li et al.                                                                                                                                                                                                               



Heliyon 10 (2024) e30941

7

2.13. Statistical analysis 

All data processing and analyses were performed using R software (version 4.20). Continuous variables are presented as mean ±
standard deviation. The Wilcoxon rank-sum test was used to compare continuous variables between two groups, and an independent 
Student’s t-test was used to assess the statistical significance of normally distributed variables. The Kruskal–Wallis test was used for 
comparisons involving three or more groups. Chi-square test or Fisher’s exact test was used to compare and analyze the statistical 
significance of categorical variables between two groups. Cox regression analysis was used to evaluate the significance of the dif-
ferences in survival time between the two patient groups. Unless otherwise specified, Spearman’s correlation analysis was used to 
calculate the correlation coefficients between different molecules, and all P-values were two-tailed. Statistical significance was set at P 
< 0.05. 

3. Results 

3.1. Identification of differentially expressed genes (DEGs) and differentially expressed ERGs (DEERGs) in PRAD datasets 

Fig. 1 shows a flowchart of this study. Batch effect correction and normalization were performed on the GEO datasets (GSE6919, 
GSE46602, GSE69223, and GSE141551), including 619 PRAD samples and 110 adjacent tissues. The effectiveness of batch-effect 
removal was assessed by comparing the pre- and post-batch-effect-removal datasets using box and PCA plots (Fig. 1A–D). The plots 
indicate that the batch effects in the PRAD dataset were largely eliminated. Furthermore, 501 PRAD samples and 52 paracancer 
samples (control) were obtained from TCGA database for transcriptomic data. The DEGs between the tumor and control groups were 
screened, which revealed 11656 DEGs, including 5992 upregulated and 5664 downregulated genes. Volcano plots were generated for 
the identified genes (Fig. 2A). Next, we drew a Venn diagram to identify the intersection with epigenetic related genes; 37 differentially 
expressed genes were obtained, including 22 upregulated genes (CBX3, CDK2, CHD4, DNMT3A, DNMT3B, DOT1L, EED, EHMT2, 
EZH2, HDAC1, KAT2A, KDM1A, MBD3, MTA1, MTA2, PHF8, SIRT6, SUV39H1, TDG, TET3, TRIM28, UHRF1) and 15 downregulated 
genes (BMI1, CTCF, DEK, HDAC5, KAT2B, MECP2, MPHOSPH8, PHF1, RB1, RBBP7, SIN3A, SIN3B, SIRT1, SMARCA5) (Fig. 2B and C). 
Subsequently, the expression trends and statistical significance of these 37 ERGs were analyzed using group comparison plots in both 
TCGA-PRAD and PRAD dataset (Fig. 2D and E). The results showed that 13 ERGs (CBX3, CDK2, DEK, DOT1L, EZH2, HDAC1, KAT2A, 
KAT2B, MECP2, MTA1, PHF1, PHF8, TRIM28) consistently exhibited significant differential expression and directionality in both 
datasets. 

3.2. Correlation analysis and functional enrichment analysis of DEERGs 

Based on the expression of the 13 ERGs in TCGA-PRAD dataset, correlation analysis was performed using the Spearman algorithm 
to examine the correlation between the expression levels of these 13 ERGs. The results are presented as a correlation heatmap 
(Fig. S2A) and a correlation chord diagram (Fig. S2B). From the correlation heatmap, we selected the four most representative gene 
pairs and visualized their correlation analysis results using correlation scatter plots (Figs. S2C–F). These correlation scatter plots 
revealed significant positive correlations between the expression levels of KAT2A and MTA1 (r = 0.637, P < 0.001, Fig. S2C), as well as 
CBX3 and EZH2 (r = 0.586, P < 0.001, Fig. S2D) in TCGA-PRAD dataset. However, significant negative correlations were observed 
between the expression levels of EZH2 and MECP2 (r = − 0.450, P < 0.001, Fig. S2E) and between KAT2B and TRIM28 (r = − 0.432, P 
< 0.001, Fig. S2F) in TCGA-PRAD dataset. 

A heatmap was used to illustrate the expression levels of the 13 ERGs (CBX3, CDK2, DEK, DOT1L, EZH2, HDAC1, KAT2A, KAT2B, 
MECP2, MTA1, PHF1, PHF8, and TRIM28) in TCGA-PRAD dataset (Fig. 3A). Subsequently, GSEA was performed to investigate 
enriched pathways in this dataset. Significantly enriched gene sets were identified based on the criteria of P.adj <0.05 and false 
discovery rate (FDR) q-value <0.25. The results revealed significant enrichment of genes in pathways such as WP pathways regulating 
Hippo signaling (Fig. 3C), WP PI3KAKT signaling pathway (Fig. 3D), WP WNT signaling (Fig. 3E), reactome signaling by NOTCH 
(Fig. 3F), and the WP MAPK signaling pathway (Fig. 3G) (Supplemental Table 4). These results were further visualized using ridge 
plots (Fig. 3B) and pathway diagrams (Fig. 3C–G). GO functional enrichment analysis was conducted to analyze the biological pro-
cesses, molecular functions, cellular components, and biological pathways associated with the 13 ERGs in relation to PRAD (Sup-
plemental Table 5). The enrichment criteria for selecting the significant terms were set as described above. The results revealed that the 
13 ERGs were mainly enriched in biological processes such as negative regulation of gene expression, epigenetics (GO:0045814), 
positive regulation of gene expression, epigenetics (GO:0045815), and covalent chromatin modification (GO:0016569). Cellular 
components were enriched in the nuclear chromatin (GO:0000790), chromosomal region (GO:0098687), and heterochromatin 
(GO:0000792). Additionally, their molecular functions were enriched in transcription corepressor activity (GO:0003714), histone 
deacetylase binding (GO:0042826), and transcription coactivator activity (GO:0003713) (Figs. S3A–B). 

A combined GO and KEGG enrichment analysis was conducted by incorporating the logFC values of the 13 ERGs. We calculated the 
z-scores for each gene based on their logFC values and constructed a chord diagram (Fig. S3C) and a circular plot (Fig. S3D) to visualize 
the results. The circular plot highlights nuclear chromatin (GO:0000790) as a significantly upregulated cellular component, and the 
representative KEGG pathway, the Notch signaling pathway (hsa04330), is depicted (Fig. S3E). 
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3.3. Construction the ERG-related risk model 

To determine the prognostic value of the 13 ERGs in TCGA-PRAD dataset, we used LASSO regression analysis based on gene 
expression levels to construct a prognostic model (Fig. 4A). The model includes four ERGs (DOT1L, EZH2, KAT2A, and MTA1). The 
LASSO results were visualized using a LASSO variable trace plot (Fig. 4B). Next, we excluded normal samples from TCGA-PRAD dataset 
and divided the remaining cancer samples into high- and low-risk groups based on the median score of the samples in the model 
(Fig. 4C). Subsequently, we observed a highly significant statistical difference in the expression levels of these four ERGs between the 
high- and low-risk groups (Fig. 4D, P < 0.001). To assess the clinical relevance, survival curves were generated using PFI data to stratify 
patients into high- and low-risk groups (Fig. 4E). The findings revealed a significant difference (P < 0.001), indicating that patients in 
the high-risk category exhibited a notably accelerated rate of disease progression compared with those in the low-risk category. 
Furthermore, ROC curves were constructed for the four identified ERGs to discriminate between the high- and low-risk groups 
(Fig. 4F–I). The outcomes illustrated that EZH2 (AUC = 0.900; Fig. 4G) exhibited exceptional accuracy in predicting the outcome 
dichotomy between the high- and low-risk groups. Conversely, DOT1L (AUC = 0.782, Fig. 4F), KAT2A (AUC = 0.823, Fig. 6H), and 
MTA1 (AUC = 0.869, Fig. 4I) exhibited moderate accuracy in predicting outcome dichotomy between the two groups. 

The expression levels and diagnostic efficacy of these four pivotal genes were validated using the GSE116918 dataset. The results 
indicated highly significant differences in the expression of these four ERGs between the high- and low-risk groups (Fig. S4A). Notably, 
EZH2 (AUC = 0.900, Fig. S4C) and MTA1 (AUC = 0.858, Fig. S4E) demonstrated high accuracy in predicting the outcomes in both 
groups. However, our diagnostic model exhibited suboptimal performance for prognostic prediction in the GSE116918 dataset 
(Figs. S4F–G), which was possibly attributable to the inherent heterogeneity observed in PRAD. 

3.4. Identification of ERG clusters in PRAD 

We analyzed the expression data of 13 ERGs in 499 samples from TCGA-PRAD dataset to construct consensus clustering. Based on 
their cumulative distribution function and δ area, we selected k = 2, where the ERGs appeared to be stably clustered (Fig. 5A and B). 
Subsequently, two epigenetic-related subtypes designated as cluster 1 and cluster 2 were obtained (Fig. 5C); cluster 2 exhibited a 
significant correlation with a superior prognosis, whereas cluster 1 showed the poorest survival probability (Fig. 5K). Next, we verified 
the differential expression of these 13 ERGs between the two PRAD subtypes in TCGA dataset (Fig. 5D). In addition to PHF1 and PHF8, 
the expression of the other 11 ERGs was significantly different (P < 0.001) between clusters 1 and 2. In addition, the PCA plot based on 
the two PRAD subtypes demonstrated a clear separation between them (Fig. 5E). 

To explore the correlation between the expression of these 13 ERGs and different PRAD subtypes, we used ROC curves to predict the 
probability of each molecular subtype (Fig. 5F–J). The results indicated that KAT2A (AUC = 0.914) exhibited high accuracy in pre-
dicting the different PRAD subtypes. CBX3 (AUC = 0.784), CDK2 (AUC = 0.703), DOT1L (AUC = 0.833), EZH2 (AUC = 0.825), KAT2B 
(AUC = 0.778), MTA1 (AUC = 0.825), and TRIM28 (AUC = 0.758) demonstrated moderate accuracy in predicting different PRAD 
subtypes. However, DEK (AUC = 0.622), HDAC1 (AUC = 0.609), MECP2 (AUC = 0.609), PHF1 (AUC = 0.538), and PHF8 (AUC =
0.501) showed lower accuracy in predicting the different PRAD subtypes. 

Furthermore, we investigated the differences in the hallmark gene sets between the two PRAD subtypes. GSVA was performed on 
the expression of all genes in the PRAD dataset. GSVA revealed statistically significant differential expression of 44 hallmark gene sets 
between clusters 1 and 2 (P < 0.05, Fig. S5A). To illustrate this further, we selected seven representative hallmark gene sets and plotted 
their expression patterns (Fig. S5B). 

3.5. Construction of ERG-related scores and immune-related analysis 

The ssGSEA algorithm was used to obtain ERG scores for each sample in TCGA-PRAD dataset based on the expression levels of the 
13 ERGs. Subsequently, normal samples were excluded from the dataset and divided into high and low ERG score groups based on the 
median ERG score. We then constructed a group comparison plot to illustrate the differences in the expression of these 13 ERGs 
between the high and low ERG score groups in TCGA-PRAD dataset (Fig. 6A). The expression differences in 10 ERGs (CBX3, CDK2, 
DOT1L, EZH2, HDAC1, KAT2A, KAT2B, MTA1, PHF8, and TRIM28) were statistically significant (P < 0.05). Survival analysis based on 
PFI data for the high and low ERG score groups showed that the difference was highly significant (P = 0.009). Patients in the high ERG 
score group experienced faster disease progression than those in the low ERG score group (Fig. 6B). The correlation between the 13 
ERGs and ERG score groups was analyzed using ROC curves (Fig. 6C–G). Except for poor prediction performance exhibited by DEK 
(AUC = 0.550), HDAC1 (AUC = 0.591), KAT2B (AUC = 0.561), MECP2 (AUC = 0.491), PHF1 (AUC = 0.492), and TRIM28 (AUC =
0.642), the remaining ERGs had a certain accuracy (CBX3 (AUC = 0.727), CDK2 (AUC = 0.776), DOT1L (AUC = 0.753), EZH2 (AUC =
0.790), KAT2A (AUC = 0.736), MTA1 (AUC = 0.756), and PHF8 (AUC = 0.730)) in predicting the ERG score groups. 

Fig. 4. LASSO prognostic modeling of ERGs in TCGA-PRAD. 
A. LASSO regression prognostic model plot for ERGs. 
B–C. Risk factor plot and variable trajectory plot of the LASSO regression prognostic model. 
D. Group comparison plot illustrating the expression levels of ERGs between the high-risk and low-risk groups. 
E. Kaplan-Meier curves of PFI events between the high-risk and low-risk. 
F–I. ROC curves of DOT1L (F), EZH2 (G), KAT2A (H), and MTA1 (I) between the high-risk and low-risk groups in the TCGA-PRAD dataset. *** 
indicate P < 0.001. 
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Fig. 5. Consensus clustering establishes disease subtypes for PRAD. 
A-B. Cumulative distribution function (CDF) plots (A) and Delta area under the CDF curve plots (B) for different numbers of PRAD subtypes. 
C. Consensus clustering (K = 2) results plot for PRAD. 
D. PRAD subtypes cluster1 and cluster2 exhibit differential expression of ERGs. 
E. Principal Component Analysis of PRAD subtypes cluster1 and cluster2. 
F-J. ROC curve results for ERGs in the TCGA-PRAD dataset based on disease subtype grouping (cluster1 and cluster2). 
K. Kaplan-Meier curves of PFI events between disease subgroups (cluster1 and cluster2) in the TCGA-PRAD dataset. *** indicate P < 0.001. 
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Fig. 6. Construction of ERGs scores and immunotherapy analysis. 
A. The expression levels of ERGs between the high and low ERGs score groups in the TCGA-PRAD dataset. 
B. Kaplan-Meier curves of PFI events between the high and low ERGs score groups in the TCGA-PRAD dataset. 
C-G. ROC curve results for ERGs in the TCGA-PRAD dataset based on high and low ERGs score groupings. 
H. Group comparison plot showing TIDE scores between the high and low ERGs score groups in the TCGA-PRAD dataset. 
I. Scatter plot illustrating the correlation between ERGs scores and TIDE scores in the TCGA-PRAD dataset. *** indicate P < 0.001. 
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Fig. 7. Immune infiltration between groups with high and low ERGs scores on the TCGA-PRAD dataset. 
A. The results of ssGSEA immune infiltration analysis between the high and low ERGs score groups in the TCGA-PRAD dataset. 
B–C. Correlation analysis of immune cell infiltration abundance in the low ERGs score group (B) and high ERGs score group (C) of the TCGA-PRAD 
dataset. 
D-E. Correlation heatmap between immune cells and ERGs in the low ERGs score group (D) and high ERGs score group (E) of the TCGA-PRAD 
dataset. * indicate P < 0.05, ** indicate P < 0.01, *** indicate P < 0.001. 
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Fig. 8. Clinical Prognosis Analysis. 
A-B. Forest plot (A) and column chart (B) depicting the results of multivariable Cox regression analysis. 
C-E. Calibration curve plots for 1-year (C), 3-year (D), and 5-year (E) time frames based on the nomogram analysis of the multivariable Cox 
regression model. 
F-G. DCA plots for the 1-year (F), 3-year (G), and 5-year (H) Cox regression prognostic models. The blue line representing the 1-year prognosis is 
closest to the ideal gray line, indicating a better predictive performance of the model for the first year compared to the 3-year and 5-year prognoses. 
(For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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Fig. 9. Value of the risk score for predicting drug sensitivity. 
Drug sensitivity in the high- and low-risk groups was estimated using the oncoPredict algorithm in the TCGA-PRAD dataset. ABT.888 (A), SB590885 
(B), Obatoclax.Mesylate (C), Bosutinib (D), SL.0101.1 (E), PLX4720 (F), Salubrinal (G), Methotrexate (H), Gemcitabine (I), Imatinib (J), AZD6482 
(K), WO2009093972 (L), Bicalutamide (M), KIN001.135 (N), AKT.inhibitor.VIII (O), JNJ.26854165 (P), PHA.665752 (Q), PF.02341066 (R), Z. 
LLNle.CHO (S), LFM.A13 (T). 
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Considering the significant role of immunotherapy in PRAD, we evaluated the TIDE scores for each patient in TCGA dataset, which 
represents sensitivity to immunotherapy. The results showed a difference in TIDE scores between the ERG score groups in patients with 
PRAD (P < 0.01), with the low ERG score group having higher TIDE scores, indicating a poorer immunotherapy response than the high 
ERG score group (Fig. 6H). Additionally, correlation analysis showed a weak negative correlation between TIDE and ERG scores in 
patients with PRAD (Fig. 6I, r = − 0.435, P < 0.001). 

To investigate the differences in immune cell infiltration between the high and low ERG score groups in TCGA-PRAD dataset, we 
performed ssGSEA to calculate the infiltration abundance of 28 immune cell types. The results demonstrated significant differences (P 
< 0.05) in the infiltration abundance of 23 immune cell types between the high and low ERG score groups in TCGA-PRAD dataset 

Fig. 10. Experimental Validation. 
A-E. RT-qPCR analysis of ERGs mRNA expression in BPH-1 cells, 22RV1 cells, and PC-3 cells. Data represent Mean ± SD, n = 6. 
F-G. Western blot and statistics analysis of ERGs protein expression in BPH-1 cells, 22RV1 cells, and PC-3 cells. Data represent Mean ± SD, n = 3. 
H-M. immunofluorescence detection and statistics analysis of the expression of CBX3 and KAT2A in clinical samples. Data represent Mean ± SD, n =
3. ** indicate P < 0.01, *** indicate P < 0.001. 
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(Fig. 7A). These immune cell types included activated B cells, activated CD8 T cells, activated dendritic cells, CD56bright natural killer 
cells, CD56dim natural killer cells, central memory CD4 T cells, effector memory CD8 T cells, eosinophils, immature B cells, immature 
dendritic cells, macrophages, mast cells, myeloid-derived suppressor cells, memory B cells, monocytes, natural killer cells, natural 
killer T cells, neutrophils, plasmacytoid dendritic cells, regulatory T cells, T follicular helper cells, type 1 T helper cells, and type 17 T 
helper cells. Furthermore, correlation analysis revealed correlations among the 25 immune cell types in TCGA-PRAD dataset (Fig. 7B 
and C). We then investigated the correlations between the infiltration abundance of these 23 immune cell types and the expression 
levels of 13 ERGs within the low (Fig. 7D) and high ERG score groups (Fig. 7E). In the low ERG score group, we observed significant 
positive correlations between DEK and MECP2 expression in these 23 immune cell types. In the high ERG score group, significant 
positive correlations were observed between DEK and KAT2B and these 23 immune cell types, whereas DOT1L, EZH2, and KAT2A 
showed significant negative correlations with these immune cell types. 

3.6. Construction of nomogram and calibration curves 

Univariate and multivariate Cox regression analyses were performed to analyze the expression levels of the 13 ERGs in TCGA-PRAD 
dataset and explore their associations with clinical prognosis. First, we conducted univariate Cox regression analysis on the expression 
levels of the 13 ERGs, and factors with P < 0.05 were selected for inclusion in the multivariate Cox regression analysis. A multivariate 
Cox regression model was constructed (Supplemental Table 5) and a forest plot was generated (Fig. 8A) to present the results (Sup-
plemental Table 6). Additionally, a nomogram for predicting the 1-, 3-, and 5-year overall survival (OS) of patients with PRAD was 
developed based on these six significant genes (Fig. 8B). The total score was calculated for each patient by summing the points assigned 
to each variable. Subsequently, the 1-, 3-, and 5-year OS probabilities were estimated by projecting the total score onto the corre-
sponding nomogram scale. Furthermore, we conducted a calibration analysis of the nomogram of the multivariate Cox regression 
model for the 1-year (Fig. 8C), 3-year (Fig. 8D), and 5-year (Fig. 8E) prognoses, and calibration curve plots were generated. DCA was 
used to evaluate the clinical utility of the constructed Cox regression prognostic model for the 1-year (Fig. 8F), 3-year (Fig. 8G), and 5- 
year (Fig. 8H) timeframes. The blue line representing the model’s stability indicates better predictive performance of the model for the 
3-year than for the 1- and 5-year outcomes. 

3.7. Risk model prediction of drug sensitivity 

To assess the predictive capability of our risk score model for drug sensitivity, we conducted a comparative analysis of drug 
sensitivity between the high and low ERG risk groups using the OncoPredict algorithm. As depicted in Fig. 9, the high-risk group 
exhibited notably increased sensitivity to ABT-888, SB590885, obatoclax mesylate, bosutinib, SL01011, PLX4720, salbrinal, metho-
trexate, and gemcitabine (Fig. 9A–I). Conversely, the low-risk group demonstrated an increased sensitivity to imatinib, AZD6482, 
WO2009093972, bicalutamide, KIN001.135, AKT inhibitor VIII, JNJ.26854165, PHA.665752, PF.02341066, Z.LLNle.CHO, and LFM. 
A13 (Fig. 9J-T). 

3.8. Experiment validation 

RT-qPCR was performed to validate ERG expression in BPH-1, 22RV1, and PC-3 cells. Our results demonstrated the upregulation of 
PHF8, CBX3, EZH2, and KAT2A expression in tumor cells, whereas KAT2B expression was downregulated (Fig. 10A–E). Given the 
extensive research conducted on these four genes in tumors, it is imperative to further investigate their expression and function in 
PRAD (Supplemental Table S7). Furthermore, immunoblotting confirmed the increased expression of CBX3 and KAT2A in PCa cells 
(Fig. 10F). Immunofluorescence staining of clinical PCa samples revealed a significant increase in CBX3 and KAT2A expression, 
suggesting their potential biological significance (Fig. 10G–K). These findings highlight the need for further investigations into the 
functional roles of CBX3 and KAT2A in PCa. 

4. Discussion 

Recent advances in epigenomic research have provided new insights into the pathogenesis and potential therapeutic targets in a 
wide range of pathological conditions, including PCa [23,24]. Kathleen et al. identified 1178 differentially methylated loci in 
intermediate-risk PCa relative to benign tissue [25]. This seminal finding underscores the crucial role of epigenetic modification of 
DNA methylation in metastatic PCa development [26]. In this study, we identified 13 ERGs associated with PRAD prognosis through a 
comprehensive analysis of TCGA and GEO datasets. Based on these 13 key genes, we conducted epigenetic scoring of PRAD samples 
from TCGA, which revealed that patients with higher scores exhibited enhanced responses to immunotherapy. This study may assist in 
our understanding of the epigenetic status and antitumor immune response in PRAD and thus provide potential targets for clinical 
therapeutic interventions. 

CBX3 plays a crucial role in the epigenetic regulation of cancer development. Notably, CBX3 expression is elevated in PRAD and has 
shown superiority over the Gleason score as a predictor of biochemical recurrence after radical prostatectomy [27]. Our bioinformatics 
analysis indicated that increased CBX3 expression is closely associated with PCa progression and predicts an unfavorable prognosis. 
Concurrently, our experimental results corroborated the substantial elevation in both the mRNA and protein levels of CBX3 in PCa cell 
lines. Furthermore, this expression trend was consistently reproduced during the validation using clinical specimens. Therefore, CBX3 
has significant potential as a therapeutic target for the epigenetic regulation of PRAD. 
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KAT2A and KAT2B are histone acetyltransferases that primarily act as transcriptional activators. However, the association between 
KAT2B and PRAD has not yet been reported. Lu et al. reported that KAT2A facilitates the translocation of androgen receptors into the 
nucleus, thereby promoting abiraterone resistance in castration-resistant PCa [28]. Our data revealed a significant increase in KAT2A 
expression in both PCa cells and clinical samples. However, the mechanisms underlying resistance to PRAD in this context warrant 
further investigation. 

In recent years, numerous somatic and germline alterations have been identified in the Hippo, PI3K, and MAPK signaling pathways, 
indicating potential factors that contribute to disease initiation, metastasis, and castration resistance [29–31]. Additionally, elevated 
expression of the epigenetic regulator HMGA2 within the tumor microenvironment is associated with the induction of prostatic 
intraepithelial neoplastic lesions, presumably by enhancing paracrine Wnt signaling in adjacent prostatic epithelial cells [32]. Our 
current investigation revealed a noteworthy attenuation of Hippo signaling activity within the framework of PRAD. The 
Hippo-YAP/TAZ signaling axis is an attractive candidate for prospective therapeutic interventions in PCa [33]. Analogous to the Hippo 
signaling cascade, the NOTCH signaling pathway also maintains evolutionary conservation [34]. The Notch signaling pathway plays a 
pivotal role in the development, progression, and metastasis of PCa [35]. This study clearly illustrated a notable elevation in the Notch 
pathway in the context of PRAD. Collectively, these findings suggest that interventions targeting the NOTCH pathway could hold 
promise as an adjuvant therapeutic approach. 

Another significant discovery underscores the prospect of repurposing established pharmaceuticals to enhance the treatment ef-
ficacy in patients with PRAD. Our analysis predicted that certain drugs could exhibit enhanced therapeutic efficacy in patients with 
high risk scores, whereas others demonstrated improved effectiveness in those with low risk scores. Importantly, some of these drugs 
have previously been validated for their therapeutic potential against PRAD. For instance, ABT-888 (veliparib), imatinib, gemcitabine, 
and obatoclax mesylate have shown promising results in inhibiting PCa progression. Additionally, bicalutamide has gained approval as 
an orally active nonsteroidal androgen receptor antagonist and is used as a first-line treatment, particularly in combination with 
luteinizing hormone-releasing hormone analogs or surgical orchiectomy, for the management of advanced PCa. 

Our findings hold great potential for guiding future PCa research by identifying new therapeutic targets and prognostic biomarkers 
and ultimately advancing personalized medical approaches. By understanding the genetic and molecular differences among patients, 
treatment strategies can be tailored to improve patient outcomes and quality of life. Specifically, the modulation and targeting of 
epigenetic-related genes, such as those examined in this study, offer promise for mitigating PCa progression by influencing crucial 
cellular processes and signaling pathways, including the Hippo, PI3K, and Wnt pathways. Additionally, the intricate interplay between 
these genes and tumor-associated immune cells underscores their importance in PCa management. This comprehensive exploration of 
epigenetics in PRAD, including the analysis of key genes, pathways, and immune cell infiltration, provides a foundation for novel 
therapeutic approaches with multifaceted effects encompassing molecular, signaling, and immune-related mechanisms. 

5. Conclusions 

This study provides crucial insights into the epigenetic landscape in PRAD, identifying 13 key genes associated with prognosis. 
Clustering and pathway analyses enhance our understanding of disease heterogeneity. The developed epigenetic scoring approach is a 
promising prognostic tool, with CBX3 and KAT2A validated as key players. These findings will pave the way for targeted and 
personalized interventions for PCa treatment. 
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