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Abstract

Besides the complete genome, different partial genomic sequences of Hepatitis E

virus (HEV) have been used in genotyping studies, making it difficult to compare the

results based on them. No commonly agreed partial region for HEV genotyping has

been determined. In this study, we used a statistical method to evaluate the

phylogenetic performance of each partial genomic sequence from a genome wide,

by comparisons of evolutionary distances between genomic regions and the full-

length genomes of 101 HEV isolates to identify short genomic regions that can

reproduce HEV genotype assignments based on full-length genomes. Several

genomic regions, especially one genomic region at the 39-terminal of the papain-

like cysteine protease domain, were detected to have relatively high phylogenetic

correlations with the full-length genome. Phylogenetic analyses confirmed the

identical performances between these regions and the full-length genome in

genotyping, in which the HEV isolates involved could be divided into reasonable

genotypes. This analysis may be of value in developing a partial sequence-based

consensus classification of HEV species.

Introduction

Hepatitis E virus (HEV) is an important public health concern in developing

countries [1]. It is a non-enveloped, positive-sense, single-stranded RNA virus

that is fecal-orally transmitted through contaminated food and water. It has an

approximately 7.2 kb genome consisting of a short 59-untranslatedregion (UTR),
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three partially overlapping open reading frames (ORFs1–3), and a 39-UTR

terminated by a poly(A) tract [2].

Although only one serotype has been determined until now, HEV displays

extensive genetic diversity [3]. Generally, based on the variability of the full-length

genome sequence among different strains, HEV has been classified into four major

genotypes that infect humans (HEV-1, HEV-2, HEV-3 and HEV-4) and several

additional genotypes like HEV-5 and HEV-6 [1, 3–5]. The later genotypes have

been variously assigned to some HEV strains isolated from species like avian and

rats [6]. As isolates closely related to genotypes 1–4, sequences from wild boars

(WB) have been considered as additional genotypes (namely genotype 5 and

genotype 6 as well) [7] and sequences from rabbits (Rab) appear to be sub-

genotypes from genotype 3 [6]. More recently, the genotype HEV-7 was proposed

to for HEV isolates from camels [6].

In many previous studies, sequence comparisons and phylogenetic analyses

were performed to determine the genotypic distribution of HEV isolates,

extensively based on partial genomic sequences [8–11]. Consequently, different

studies have assigned HEV genotypes based on multiple genomic regions and no

commonly agreed standard classification scheme based on partial genomic regions

has been proposed. The underlying genotyping results are reasonably related to

the genomic regions analyzed and the length of sequences examined, since

different research groups have analyzed different regions of different sizes

[4, 5, 12]. Partly because of the inconsistence of different classification criteria,

subsequent studies have differed in their assignment of some HEV isolates to

genotypes [1, 3, 13]. The sequencing of smaller regions of the genome is simpler

and less time-consuming than whole genome sequencing, and data for various

sequence subsets may be more available than whole-genome sequences for some

isolates. However, the use of different genomic regions with different sizes for

HEV genotyping by different research groups makes it difficult to compare those

results, complicates the use of any classification and sometimes yields

inconsistency in genotyping [1, 3, 12, 13].

Statistical and phylogenetic methods have been used in several studies [3, 13–

16] to investigate the feasibility of using some partial genomic regions to

reproduce phylogenetic referencing based on full-length genomes. And several

genomic regions showing good phylogenetic correlations with the full-length

genomes in HEV genotyping have been found [3, 13–16]. Particularly, in the study

by Zhai et al. [3], the authors have performed a statistical comparison of the

phylogenetic performance of several individual genomic regions having been used

for HEV genotyping and found the MJ-C region in the viral RdRp domain could

provide sufficient information to replace the full-length genome for HEV

genotyping. Another study based on a score method only involved five genomic

fragments in their analysis [16]. However, the genomic regions examined in these

studies were limited, which may not completely reflect the useful phylogenetic

signal for every genomic region in HEV genome. No study has investigated the

phylogenetic performances of different genomic regions from a genome wide to

identify a consensus genomic region that could provide reliable genotype
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referencing. Moreover, the situation has been further compounded by the recent

observation that synonymous substitutions may be saturated in comparisons

between and within HEV genotypes [13], which could confuse classification

results. Thus, a genome-wide investigation of phylogenetic performance that takes

the problem of sequence saturation into consideration for HEV genome is

urgently needed.

In this study, we applied a strategy of calculation of genetic distance matrix

correlations between genomic regions and the full-length genome to compare

phylogenetic performance between them and estimate the feasibility of using the

corresponding individual genomic regions to represent the complete genome in

genotyping [17]. This approach, with a methodology similar to the mirror-tree

strategy [18–20], is based on calculating the correlation coefficient (r-value)

between genetic distance matrices of various genomic regions and that of the

complete genome and thus can evaluate the phylogenetic performance of each

partial sequence without tree constructions. Using a sliding window analysis,

every partial sequence in HEV genome was evaluated, taking sequence saturation

into account. This study may be of value in developing a partial region-based

consensus classification for HEV genotyping.

Materials and Methods

Data selection

Complete genome sequences were obtained from recent phylogenetic analysis

studies [11, 13] and were downloaded from Genebank on February 10, 2014.

Sequences have been removed if there was evidence of recombination, if they

differed from any other sequence of the dataset by ,2% of nucleotide sites

(excluding the hypervariable regions [HVR]) and if too many ambiguous gaps

(.5%) during the alignment were generated when they are added. Totally, 101

sequences were used: DQ459342.1, AB248522.1, EU366959.1, EU360977.1,

EU375463.1, AY723745.1, EF570133.1, M74506.1, M73218.1, AB369687.1,

M94177.1, X98292.1, X99441.1, AF060669.1, AF076239.3,

AJ272108.1,AP003430.1, AF459438.1, AB074915.3, AB089824.1, AB193176.1,

AB197674.1, AB222182.1, AB197673.1, AB222183.1, AB246676.1, AB220974.1,

AB253420.1, AB222184.1, AB236320.1, EF077630.1, AB248520.1, AB290312.1,

AB290313.1, M80581.1, AB074920.3, AB091394.1, AF455784.1, AB369689.1,

AB369691.1, AB369690.1, AB291963.1, AB291967.1, FJ763142.1, JQ013791.1,

EU495148.1, FJ457024.1, AB630970.1, AB291953.1, AB630971.1, JF915746.1,

JQ013792.1, JQ013795.1, JQ013793.1, AB073912.1, AY115488.1, AY594199.1,

DQ279091.2, EU723512.2, EU723514.2, FJ610232.1, EU723513.1, EU723516.1,

AB481227.1, AB481228.1, AB481229.1, FJ998008.1, EU676172.2, GU119960.2,

GU119961.3,AB291960.1, FJ426403.1, AB481226.1, GU188851.1, FJ426404.1,

AB291961.1, GU937805.1, HM152568.1, HM439284.1, GU361892.1, AB291962.1,

FJ527832.2, FJ705359.1, FJ653660.1, FJ906895.1, HQ634346.1, AB591733.1,

AB591734.1, FJ906896.1, FJ956757.1, AB108537.1, AY204877.1, AY575857.1,
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GU206559.1, AB189070.1, AB369688.1, AB602441.1, AB573435.2, AB602440.1,

AY230202.1, AB161719.1.

Data processing and methodology of sliding window analysis

The ORF and protein sequences for each genome were determined using the

genome annotation in GeneBank and verified manually. Three data sets

constructed based on all the sequences were used as reference sequences for

further analysis: data set 1, comprising nucleotide sequences of the completed

genomes; data set 2, comprising of nucleotide sequences of concatenated ORF1/

ORF2 sequences with all the third codon positions removed; and data set 3,

comprising of amino acid sequences of the concatenated ORF1/ORF2 coding

regions.

For each reference data set, overlapping windows with different sizes shifted by

one site were sliding over them, generating continuous partial sequences of the

corresponding sliding windows sizes. For reference data set 1, window sizes of

300,400 and 500 nucleotides were applied to the analysis. For reference data set 2,

window sizes of 300 and 400 nucleotides were used. And for reference data set 3,

the window size was set to 200 amino acids. If not specially defined, all the

positions mentioned in this study were labeled according to the strain SAR55

(GeneBank ID: M80581). The genome region at the start of ORF1 which is

missing in this strain was not used in our analysis.

Calculation of correlations between genetic distance matrices

The extent of agreement between the phylogenetic similarities of two sequences

was assessed using a strategy similar to the mirror-tree approach [17, 19, 21] by

comparing their distance matrices. The extent of agreement between two genetic

matrices is evaluated using Pearson’s correlation coefficient (r-values). As this

method is directly based on the genetic distance matrix between the two sequence

alignments, the resulting r-values can give estimations of phylogenetic relation-

ship in distance-based phylogenetic analyses [18, 19].

As an extension of this method, a strategy of sliding-window was used to

evaluate the phylogenetic correlations between different partial sequences and the

full-length reference sequences from a genome-wide scale. For each sliding

window, the correlation between the sequence within it and the corresponding

data set was calculated as follows:

All data sets were aligned by using the program mafft [22] (–auto) with

reference to the protein sequence alignment. Pair-wise distance matrices of each

sliding window sequence alignment and of the reference data set alignment were

constructed by Mega-CC [23] using p-distance model with gaps completely

deleted. For a partial sequence X within a sliding window and the full-length

reference data set (data set 1 or concatenated data sets) Y, the correlation (r-value)

between genetic distance matrices was calculated according to the following

equation [24]:
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where Xij represents the genetic distance from HEV isolate i to isolate j in the

distance matrix of sliding-window X; X is the mean of all Xij values; Yij represents

the distance of isolate i to isolate j in the distance matrix of reference data set Y; Y
is the mean of all Yij values; and N represents the number of HEV isolates in the

matrices.

All the HEV isolates collected were used in the analyses. For comparison,

phylogenetic trees based on the p-distance obtained were constructed using Mega

5.0 [25] (Neighbor-joining method, with other parameters default).

Results

R-values between partial nucleotide sequences and the complete

genome

Compared with the complete genome sequence, the evolutionary rates of the HEV

isolates can markedly vary among the different genomic regions (Fig. 1 and S1

Fig.). Although the r-values are slightly variable with different sizes, similar

evaluations can be obtained for a given genomic region. For the 300 nucleotide

window, several r-value peaks above 0.96 within different genomic regions (above

the dotted line) could be found throughout the whole genome. The highest peak

was located in the papain-like cysteine protease domain (PCP) of ORF1, with an

r-value of 0.9747 (1548–1848, reference M80581), whereas the lowest value was

located in the hyper-variable region (HVR). And a extensive region flanking the

highest peak, before the HVR, could show very high correlations with the entire

HEV genome (positions 1464–2100), where any continuous sequence region of

300 or more nucleotides could exert a relatively higher r-value with the whole

genome. Another genomic region that has r-values greater than 0.96 is located

within the RNA-dependent RNA polymerase (RdRp) domain (3738–4109).

Though several peaks were found in ORF2, no regions having r-values greater

than those of the PCP domain could be detected. Similar findings were obtained

for all the window-sizes examined.

R-values based on the concatenated first two codon positions and

amino acid sites

For nucleotide sequences of the coding regions, all third codon positions were

excluded from the analyses due to potential mutational saturation. The remaining

data were partitioned by codon positions. As observed for the concatenated first

two sites in ORF1 (Fig. 2), the r-values calculated from reference data set 2 varied
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Fig. 1. Sliding-window analysis of correlations between genomic regions and the full-length genome (data set 1). The r-values were calculated for
overlapping windows of 300 nucleotides (blue) and 400 nucleotides (red) shifted by one nucleotide and plotted against the midpoint of the window. The
nucleotide positions represent the site positions in the alignment. The positions of the three open reading frames are shown along with the approximate
positions within ORF1 of the methyl transferase (MeT), Ydomain (Y), papain-like cysteine protease (PCP), hypervariable region (HVR), X domain (X),
helicase (Hel), and RNA-dependent RNA polymerase (RdRp). The dashed line indicates the r-value 50.96, for better comparison.

doi:10.1371/journal.pone.0115785.g001

Fig. 2. Sliding-window analysis of correlations of the first and second codon positions in ORF1/ORF2
(data set 2). The window sizes and plotting conditions are the same as in Fig. 1. The nucleotide positions
represent the site positions in the alignment of ORF1. The arrow indicates the highest r-value.

doi:10.1371/journal.pone.0115785.g002
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more dramatically than those in the analysis of reference data set 1. The r-values

peaked (r-value 50.9837) in the PCP domain of ORF1 at a window size of 300

nucleotide sites (1672–2122 in ORF1). The genomic regions (1596–2169 in ORF1)

flanking this peak also showed relatively high r-values (.0.98). There were also

several regions of very low r-values, including one near the beginning of ORF1,

one located in the HVR and one located in the helicase (Hel) and RdRp domains

(approximately 3210–3840 in ORF1). For ORF2 (Fig. 3), only the sequence

located at the 59-region, approximately corresponding to the region where ORF2

and ORF3 are encoded by overlapping reading frames could show high r-values,

among which the highest r-value is 0.953 (a window-size of 300).

When sequences approached saturation among some virus isolates, amino acid

sequences may be an alternative way to provide efficient phylogenetic estimation.

We therefore investigated the r-values between partial amino acid sequences in

each protein (coding by ORF1 and ORF2) and the full-length amino acid

sequences of concatenated ORF1/ORF2 respectively (reference data set 3). Sliding-

window analysis revealed that for ORF1 (Fig. 4), r-values peaked at the region of

positions 510–710 in PCP domain (window-size 5200), similar to the peak region

determined by nucleotide analysis. However the region near the beginning of

ORF1 had relatively low r-values with the reference data set 3, while the region at

the end of ORF1 also showed high r-values. For ORF2, reference data set 3

analysis found results similar to the reference data set 2, with high r-values at the

beginning of ORF2.

Phylogenetic analysis

In order to confirm the phylogenetic performances of the short genomic regions

or coding sequences which have the highest r-values in the above analyses,

phylogenetic trees were constructed based on the genomic region at PCP domain

with 400 nucleotide sites in ORF1 (1737–2137), with 400 first two codon sites in

ORF1 (1052–1452), and with the amino acid sites in ORF1 (510–710) respectively.

And as a comparison, the three large-size data sets were also used for tree

constructions. NJ trees based on p-distances of these data sets with a 1000

bootstrap replications were obtained. All the trees based on the reference data sets

showed very similar topologies, all of which classify these HEV stains into the four

known human-related genotypes and two additional groups for WB isolates and

Rab isolates (Fig. 5). The branches leading to genotype groups were supported by

nearly 100% of bootstrap replications in all cases. When the three partial

sequences in ORF1 were used for phylogenetic analyses, similar tree topologies

and genotype groups with reliable bootstraps supported were also observed, with

all the four known genotype virus strains, as well as the variants from Rab and

WB, clearly clustered (Fig. 6). During our analysis, some phylogenetic trees based

on other genomic regions were also constructed. We found significant genotype

inconsistency between trees based on regions of high r-values and those based on

regions of low values. For instance, the tree constructed based on a region in

ORF2 (5605–6004, r-value 50.87) showed a dramatically different topology to the
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complete genome tree, and failed to clearly classify the known genotypes,

particularly for the rabbit strains and WB strains (S2 Fig.).

Discussion

Partial genomic sequences instead of the complete genome have been successfully

applied to genotype referencing for hepatitis B virus [26] and hepatitis C virus

[27]. However, for HEV, no commonly agreed criteria of genotyping have been

proposed. Besides complete genome sequences, a variety of sub-genomic regions

have been used to make taxonomic assignments, which has complicated and

obscured the classification of HEV genotypes [1, 3, 4, 7, 13, 28, 29]. This study

tried to find and demonstrate short consensus genomic regions from a genome

scale that can be alternatively used to reproduce HEV genotype assignments based

on the full-length genome.

By using a genome-wide sliding window analysis, we made comparisons of

phylogenetic correlations (r-values) between all possible partial genomic regions

and the full genome. The r-values are calculated based on the genetic distance

matrices and will give an estimation of genotypic relatedness between sequence

data sets [17–19, 21]. We found the r-values between partial genomic regions and

the complete genome varied over the genome. This observation reasonably

suggested that phylogenetic analyses based on different genomic regions may give

inconsistent phylogenies in some cases and, thus, produce inconsistency in HEV

isolate genotyping, which has been observed by some previous studies

[3, 15, 16, 30] as well as this study (S2 Fig.) when different regions were used Based

on analyses of different window sizes, we found several genomic regions showed

very high r-values with the complete genome, mostly involving regions in ORF1.

Among them, the region located at the 3-terminal of PCP domain (corresponding

Fig. 3. Sliding-window analysis of correlations between the first two codon sites in ORF2 and those in ORF1/ORF2 (data set 2). The window sizes
and plotting conditions are the same as in Fig. 1. The positions represent the site positions in the alignment of ORF2.

doi:10.1371/journal.pone.0115785.g003
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to positions 1548–1848), before the HVR, showed the highest r-value in our

analysis. Our phylogenetic analysis based on this region of 400 nucleotides

demonstrated its highly similar performance in genotyping to that of complete

genome sequence for the HEV isolates examined (Fig. 5 and Fig. 6), from which

all the known genotypes and two additional groups of HEV variants derived from

rabbits [28] and wild boars [7] could be reasonably determined.

These results suggest that the regions having high r-values with the full-length

genome may have the priority to serve as candidates for representing the whole

genome in genotyping of HEV. In the study by Zhai et al. [3], the genomic region

MJ-C (4254–4560 in M73218) has been suggested as the best genomic region for

Fig. 4. Sliding-window analysis of correlations between partial protein sequences and the complete
concatenated protein sequences of ORF1/ORF2 (data set 3). The r-values were calculated for overlapping
windows of 200 amino acids in ORF1 (A) and ORF2 (B) shifted by one amino acid and plotted against the
midpoint of the window. The x-axis represents the positions in the amino acid alignments of ORF1 (A) and
ORF2 (B).

doi:10.1371/journal.pone.0115785.g004
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genotyping. In our study, we also found it is located in a region with very high r-

values (larger than 0.965, window-size 5400 nucleotides) in the RaRd domain.

However, this region did not have the highest r-value in our analysis by a genome-

wide screening. In contrast, there were some regions that failed to provide enough

or reliable phylogenetic signal to reproduce genotyping results based on a full-

length genome analysis. For instance, the HVR had very low r-values and have not

been recommended to serve as a maker region for phylogenetic analyses [13].

Additionally, the difficulty in aligning this region also makes it not suitable to be

used in phylogenetic analysis. However, this does not mean that the HVR region is

not useful for HEV genotyping. Because of the distinctive genotype-specific

sequence motifs in this region, it has unique advantages in genotyping HEV

Fig. 5. Phylogenetic analysis of HEV isolates based on the three reference data sets. Neighbor-joining trees were produced by using nucleotides of
complete genome (data set 1) (A), using of nucleotides concatenated first and second codon sites of ORF1/ORF2 (data set2) (B), using amino acids of
concatenated protein sequences of ORF1/ORF2 (data set 3) (C). Bootstraps values (.70) and scale bars are shown.

doi:10.1371/journal.pone.0115785.g005
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isolates just by examining the sequence signatures specific to HEV genotypes

rather than traditional phylogenetic analysis [31].

Phylogenetic relationships can be obscured by the analyses based on sequences

which involve extensive substitutions that have become saturated. For HEV,

comparisons between the HEV genotypes infecting humans have been reported to

approach saturation at synonymous sites throughout the genome [13]. Thus, the

genotype classification of HEV isolates and its variants may sometimes be more

accurate when these mutation saturation sites are excluded from phylogenetic

analyses. In our analysis, we found phylogenetic trees produced by using distances

at the first and second codon sites or amino acid sites of concatenated ORF1/

Fig. 6. Phylogenetic analysis of HEV isolates based on ORF1 regions with the highest r-values. Neighbor-joining trees were produced by using
nucleotides of the genomic region at PCP domain with a length of 400 nucleotides (1737–2137) (A), 400 first two codon sites (1052–1452) (B), and the
amino acid sequences (510–710) (C). Bootstraps values (.70) and scale bars are shown.

doi:10.1371/journal.pone.0115785.g006
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ORF2 were very similar to the tree constructed based on the complete genome

sequence, with no inconsistency in genotyping and sub-typing. This implies that

sequence saturation at third codon position may have a limited impact on the

phylogenetic analysis of these HVE isolates. In ORF1, using the specific sequence

lengths in this study, a region overlapping with the best region in the analysis of

reference data set 1 had the highest r-value in reference data set 2, and nearly

corresponded to the best region in the analysis in reference data set 3. Moreover,

all the trees constructed based on the regions having highest r-values in the

respective analyses of the reference data set 2 and the reference data set 3 gave

reasonable inferences for HEV sequence relationships (Fig. 6). Thus, in our

analysis, the region in the PCP domains can reproduce genotypic taxonomic

assignments determined by the complete genome sequence, even when sequence

saturation is taken into consideration. However, according to the results based on

reference data sets 2 and 3, some partial sequence sites from the concatenated first

two codon site sequences or amino acid sequences may not provide enough and

reliable phylogenetic signal for genotyping, especially in some regions in ORF2. In

ORF2, some regions (Fig. 1, Fig. 2, and Fig. 3) showed relatively low r-values with

their reference data sets, and may give unreliable genotyping results inconsistent

with those of their reference data sets, especially when the amino acid sequences

or the first two codon sites were used. It is reasonable that some regions, such as

parts of MeT domain and Y domain, are evolutionarily highly conserved, leading

to dramatically reduced divergence at non-synonymous sites and less phylogenetic

signal for grouping [13]. This phenomenon suggests that some highly conserved

regions of HEV provide only very limited phylogenetic signal, due to infrequent

non-synonymous site mutations, and therefore may not be suitable for

phylogenetic analyses.

Nevertheless, the method in present study based on calculation of correlations

between genetic matrices of partial genomic regions and genome references may

be inappropriate for classifying HEV subtypes, as some studies of complete

genome sequences have reported that it is not possible to define discrete

boundaries that distinguish sub-genotypes with consistency [1, 6, 13, 15].

Conclusions

Collectively, when considering different levels of phylogenetic analyses (nucleo-

tides, concatenated first two codon sites and amino acids), the genomic region in

the PCP domain of ORF1, (1548–1848 in the genome nucleotide sequence, 1114–

1414 in the concatenated first two codon sites of ORF1, and 510–710 in the

protein sequence of ORF1) and its flanking sequences, can provide efficient

phylogenetic signal to reproduce genotyping results of the HEV full-length

genome and may have the potential to serve as a consensus genomic region for

future HEV genotyping, even when the synonymous sites among viral isolates are

saturated. Moreover, it is worthy to note that the genomic region lengths are not

limited to those used in this study and this study may also provide a useful tool
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based on calculating the evolutionary rate correlations to evaluate the

phylogenetic performances of different genomic regions of different lengths that

may be varied in a specific genotype analysis.

Supporting Information

S1 Fig. Sliding-window analysis (window-size 5500) of r-values between

genomic regions and the full-length genome (data set 1). The r-values were

calculated for overlapping windows of 500 nucleotides shifted by one nucleotide

and plotted against the midpoint of the window. The nucleotide positions

represent the site positions in the alignment. The positions of the three open

reading frames are shown along with the approximate positions within ORF1 of

the methyl transferase (MeT), Ydomain (Y), papain-like cysteine protease (PCP),

hypervariable region (HVR), X domain (X), helicase (Hel), and RNA-dependent

RNA polymerase (RdRp).

doi:10.1371/journal.pone.0115785.s001 (PDF)

S2 Fig. Phylogenetic analysis of HEV isolates based on a region with a low r-

value. Neighbor-joining trees were produced by using nucleotides of a region in

ORF2 (5605–6004). Bootstraps values (.70) and scale bars are shown.

doi:10.1371/journal.pone.0115785.s002 (TIF)
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