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Polycystic ovary syndrome (PCOS) is a multifactorial metabolic and most

common endocrine disorder that its prevalence, depending on different

methods of evaluating PCOS traits, varies from 4% to 21%. Chronic low-

grade inflammation and irregular apoptosis of granulosa cells play a crucial

role in the pathogenesis of PCOS infertility. Mesenchymal stem cells (MSCs)-

derived exosomes and extracellular vesicles (EVs) are lipid bilayer complexes

that act as a means of intercellular transferring of proteins, lipids, DNA and

different types of RNAs. It seems that this nanoparticles have therapeutic effects

on the PCOS ovary such as regulating immunity response, anti-inflammatory

(local and systemic) and suppress of granulosa cells (GCs) apoptosis. Although

there are few studies demonstrating the effects of exosomes on PCOS and their

exact mechanisms is still unknown, in the present study we reviewed the

available studies of the functions of MSC-derived exosome, EVs and

secretome on apoptosis of granulosa cells and inflammation in the ovary.

Therefore, the novel cell-free therapeutic approaches for PCOS were

suggested in this study.
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Introduction

Polycystic ovary syndrome (PCOS) is a multifactorial metabolic disease and common

endocrine condition that leads to increased production of androgens, decreased

production of the estrogens and progesterone and consequences of infertility (Xu and

Qiao, 2022). Common biochemical hallmarks of polycystic ovary syndrome are the
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absence of ovulation with high levels of androgens, luteinizing

hormone (LH), luteinizing hormone/follicle-stimulating

hormone ratios while follicle-stimulating hormone (FSH)

remains normal or low (Eid et al., 2005). The global

prevalence of this disorder varies from 4% to 21% depending

on different methods of evaluating PCOS traits and diagnostic

criteria (Lizneva et al., 2016), which can be recognized as the

most common cause of infertility or failed birth in recent years

(Rotterdam, 2004; Lizneva et al., 2016). It seems the principal

ovarian consequences of PCOS are growth arrest in the early

antral follicles and abnormal folliculogenesis (Franks et al., 2008).

Although the current treatments include various gonadotropin

(Artini et al., 1996), clomiphene citrate (Legro et al., 2007) and

metformin (Sam and Dunaif, 2003), but, it has been pointed out

that each of these treatments have various advantages and

disadvantages (Elnashar et al., 2006; Legro et al., 2007).

Therefore, alternative and non-invasive treatments improving

follicle growth, resumption of oocyte maturation and different

leading factors of PCOS are needed. There is evidence that

mesenchymal stem cells (MSCs) have anti-inflammatory,

fibrogenesis inhibiting, antioxidant, and regenerative effects

(Zhao et al., 2019). These roles can give to the MSCs a

potential therapeutic application in various abnormalities such

as the female reproductive disorders (Mutlu et al., 2015; He et al.,

2018).

In addition to intercellular interactions such as autocrine,

paracrine or endocrine signaling, recently, extracellular vesicles

(EVs) as a new tool for intercellular communication has attracted

the attention of researchers. Although, some researchers consider

the secretion of EVs as a mechanism of the cell to dispose of

useless molecules (Van der Pol et al., 2012). But using the

extracellular vesicles, various active biomolecules including

nucleic acids, proteins and lipids can be transferred from

origin cells to target cells (György et al., 2011; Koniusz et al.,

2016). Precise characterization of the EVs content has opened up

their promising applications in diagnosis and therapy, as well as

the development of innovative drug delivery systems (Barile and

Vassalli, 2017). According to their biosynthesis mechanism and

size, those can be divided in to microvesicles (50–3000 nm),

exosomes (40–100 nm) and apoptotic bodies (800–5000 nm)

(Yamamoto et al., 2016). Origin-based contents, genetic

materials and ability to content shuttling to other cells make

exosomes as an attractive research subject for manipulating the

functions of different cells locally and/or remotely (Han et al.,

2016). In various physiological and pathological processes

including reproduction, gametogenesis, embryogenesis and

differentiation, exosomes are secreted by most cell types into

the extracellular environment and have been detected in various

body fluids (Raposo and Stoorvogel, 2013; Machtinger et al.,

2016) so that they act as a means of transferring proteins, lipids,

DNA and diversity of RNA species between cells (Barile and

Vassalli, 2017). The presence of EVs in reproductive bio-fluids

such as follicular fluid and ovarian fluid shows their role in the

intercellular communication necessary for the proper

functioning of the reproductive system (Machtinger et al.,

2016). Considering the positive role of MSC-derived

exosomes, the goal of this study is to review the available

reports on their role in treatments of the various reproductive

processes and present a potential role of the exosome in in vitro

maturation of oocyte and the improve of infertility in PCOS

women.

Mesenchymal stem cells-derived
exosomes

Growing evidence from a various experimental and clinical

trials support the effectiveness of MSCs on treating different

diseases such as renal fibrosis, cardiovascular disorders,

neurological diseases and female reproductive disorders (Du

and Taylor, 2009; Goradel et al., 2018; Liang et al., 2018; Liu

et al., 2018; Sneddon et al., 2018); these cells can be harvested

from the varieties of tissues including bone marrow, umbilical

cord, adipose tissue, placental tissue, menstrual blood and dental

pulp (Priester et al., 2020).

In spite of the therapeutic potential of MSCs, large-scaleMSC

expansion for clinical use is limited owing to the cells’ capacity to

divide in culture for a limited number of passages. Also, the cells

could be associated with some challenges including difficulty of

their transportation, transplant rejection and commercialization

(Mendt et al., 2019). Therefore, in the recent decades, great

efforts have been taken to find alternatives to reducing problems

of MSCs usage while preserving their positive properties.

MSCs are a massive source for exosome production and are

used in various research fields due to their greater availability and

high proliferative ability (Cheng et al., 2017; Cheng et al., 2021).

Exosomes, which are lipid bilayer nanoparticles that secrete into

the microenvironment from various types of cells especially

mesenchymal stem cells that offer promising therapeutic

potential. In addition to other bioactive molecules that we

have detailed in our previous study (Izadi et al., 2021),

exosomes have various types of signaling molecules such as

mRNA and miRNA (Valadi et al., 2007). Higher biological

stability, easier storage, easier penetration into target tissues

and low immunogenicity are some of the considerable

advantages that make exosomes more useful compared to

their source cells for medical applications (El Andaloussi

et al., 2013; Zhang et al., 2016). Exosomes secreted from

different cells have almost similar protein molecules with

biological activities including immune modulation,

regeneration, and tissue repair and angiogenesis promotion.

Exhibiting the same activities in all MSC-derived exosomes

may be related to the existence of a common protein

signature (van Balkom et al., 2019). Additionally, some types

of MSCs secrete exosomes with unique characteristics (Tang

et al., 2021). Rising evidence suggests that MSCs-derived
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exosomes have immunomodulation, anti-inflammatory

(Urbanelli et al., 2015; Izadi et al., 2021) and anti-apoptosis

effects (Fu et al., 2020; Wen et al., 2020), therapeutic potential of

female reproductive disorders (Liao et al., 2021; Zohrabi et al.,

2022).

Potential applications of MSCs-derived
exosomes in PCOS patient

Many studies have shown that chronic low-grade, increase in

pro-inflammatory cytokines, decrease of anti-inflammatory

cytokines, insulin resistance, hypersensitivity of Helper T-cells

(Th1); Th1-type immunity and the ratio of Th1 to Th2 cells, as

well as Th1 cytokines such as IFN-γ and IL-2 are increased

during immune reactions in PCOS patients (Qin et al., 2016) and

hyperandrogenism play a crucial roles in PCOS pathogenesis

(González et al., 2014a). Moreover, it has been reported that

chronic inflammation in PCOS can lead to poor oocyte quality,

ovarian dysfunction, disrupts oocyte development, and affect

endometrial receptivity (Velez et al., 2021).

Few recent studies have reported that human umbilical

cord mesenchymal stem cells (huMSCs) therapy can improve

ovarian dysfunction by the systemic immunomodulation and

local immune response in the ovary of PCOS patients (Xie

et al., 2019). In a letrozole-induced PCOS mouse model, the

beneficial effect of human bone marrow derived mesenchymal

stem cells (BM-hMSCs)on the partial restoration of ovaries,

the number of corpora lutea, and antral follicles has been

reported (Chugh et al., 2021a). Notably, an increasing number

of studies have discovered that the communication between

MSCs and target tissue such as ovarian microenvironment is

through the exosomes and secretome (Harrell et al., 2019; Xu

et al., 2019). Also, another study reported that huMSCs--

derived exosomes ameliorates the granulosa cells immune

response through the inhibition of NF-κB signaling

pathway in the PCOS (Zhao et al., 2022).

Recently, a study showed that MSCs-derived exosomes

cause the decreased concentration of IL-1β and TNF-α, while
the secretion of TGF-β increased in in vitro culture of

mononuclear cells. Also, it demonstrated that MSCs-

derived exosomes can increase Th2 (Th2-related anti-

inflammatory cytokine such as IL-10 that is reduced in

PCOS patients) and Treg and decrease Th1 (Chen et al.,

2016). Apoptosis plays the key role in follicular atresia and

cyclic growth and regression of follicles in the human ovary

(Tilly, 1996). It has been reported that factors involved in the

induction of apoptosis in the ovaries (Jansen et al., 2004) and

also the number of atretic follicles increase in PCOS patients

(Laven et al., 2001). EVs derived from huMSCs have also

shown anti-apoptotic and fertility recovery effects and

promoted secretive functions of granulosa cells in induced

POI mice (Liu et al., 2020). Also it can reduce ovarian damage

and protect GCs through anti-apoptotic and anti-

inflammatory effects and improve ovarian function in

chemotherapy-induced POF mice (Deng et al., 2021).

Therefore, exosome as a novel cell-free therapeutic strategy

can be used promisingly in diseases of inflammatory origin by

maintaining the immune balance (Chen et al., 2016).

The effects of bioactive compounds in the
MSC-derived exosomes and secretome

Although recently there have beenmany studies on exosomes

as a novel avenue for female infertility treatment, precise

mechanisms of MSCs-derived exosomes on female

reproductive diseases are also unclear. Given that chronic

inflammation is associated with the pathogenesis of PCOS,

there is also a positive feedback loop between inflammation,

androgen production and metabolic disorders in PCOS

(González et al., 2014b; Fox et al., 2019); Since, near to 50%

of PCOS patients show high secretion of androgens (Marti et al.,

2017; McAllister et al., 2019), therefore, the main strategy to treat

PCOS can be suppression of androgen secretion (McAllister

et al., 2019).

It has been reported that cytokine IL-10 that is found in

secretome improves fertility through the suppressing androgen

secretion by ovarian theca cells and reducing inflammation

(Chugh et al., 2021b). Bone morphogenetic proteins (BMPs)

are multifunctional growth factors that play an important role in

folliculogenesis and female fertility; these proteins are secreted by

BM-hMSCs (Yoshino et al., 2011). The theca cells in the ovary

proliferate rapidly and increased androgen production in PCOS

(Bremer, 2010; Zhang et al., 2012), it has been reported that

BMP-2 can inhibit the proliferation of different cells in vitro

(Hardwick et al., 2004; Chen et al., 2012; Zhang et al., 2012).

Another study showed that BMP-2 can treat hyperandrogenemia

in PCOS by suppressing steroidogenesis (Chugh et al., 2021a).

Therefore, BMP-2 may improve the hyper-androgenemia

in PCOS.

In PCOS and other ovarian disorders, the effect of exosome

therapy has been reported to affect apoptosis by delivering

genetic material such as miR-323-3p miR-146a and miR-10a

(Xiao et al., 2016; Zhao et al., 2019), miR-664-5p (Sun et al.,

2019), and miR-21(90).

Mesenchymal stem cells have the ability to secrete a large

number of growth factors such as fibroblast growth factor (FGF),

insulin-like growth factor-1 (IGF-1), VEGF, TGF-β, and EGF

(Labouyrie et al., 1999; Izumida et al., 2005; Yoon et al., 2010)

which may have the effect of reinitiate meiosis and improve

oocyte maturation (Ling et al., 2008). A clinical trial in which the

retrograde injection method was used to transplant MSCs based

on a collagen scaffold into the ovaries of patients with some

ovarian disorders suggests that EVs can be transferred by intra-

ovarian injection (Ding et al., 2018). The biologically active
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molecules and their effects are summarized in Table 1 and

Figure 1.

Potential applications of MSCs-derived
exosomes in enrichment IVM culture
medium

Although in vitro fertilization (IVF) is an effective

treatment for infertility in PCOS women, it is also

associated with an increased risk of ovarian

hyperstimulation syndrome (OHSS) (Shalom-Paz et al.,

2012). Therefore, minimizing the risk of ovarian

stimulation while providing an acceptable fertility success

rate should be the focus of treatment efforts. Currently, to

prevent OHSS, immature oocytes are collected from small

antral follicles within unstimulated or very little stimulated

ovaries then these oocytes are matured in vitro. Patients with

PCOS could potentially benefit from IVM, as it reduces the

risk of OHSS as well as costs (Shalom-Paz et al., 2012; Ho et al.,

2019). But since the IVM and success rate of fertilization of

oocytes matured in vitro is not satisfactory, therefore, to

overcome these limitations faced by IVM, several studies

have been conducted that focus on effects of cultural media

containing various additives for improving oocyte quality (Jee

et al., 2008; Ben-Ami et al., 2011; Blanco et al., 2011; Ishizuka

et al., 2013; Sánchez et al., 2015). Primarily, an optimal culture

medium is needed to increase the efficiency of IVM, which can

TABLE 1 Therapeutic potential of MSC-derived secretome in ovarian and in vitro culture.

Secretome type Bioactive
compounds

Source cell
type

Target cells
or tissue

Effects Ref. No.

Exosome miR-323-3p AMSCs cumulus cells Inhibit apoptosis in GCs, regulation of
steroidogenesis

Zhao et al. (2019)

miR-146a, miR-10a AFSCs GCs Inhibit apoptosis in GCs Xiao et al. (2016)

miR-664-5p BMSC GCs Inhibit apoptosis in GCs Sun et al. (2019)

Conditioned media IL-10 BM-hMSCs intra-ovarian
injection

Reduce inflammation and androgen secretion Chugh et al. (2021b)

BMP-2 BM-hMSCs H295R cells* Reduce Steroidogenesis Chugh et al. (2021a)

EGF, IGF-1 MSCs Oocyte Improve oocyte maturation Ling et al. (2008)

Extracellular vesicle miR-21 AFMSCs GCs Inhibit apoptosis in GCs Thabet et al. (2020)

BMP, Bone morphogenetic proteins; GCs, granulosa, cells; BM-hMSCs, Human bone marrow mesenchymal stem cells; BMSC, Bone mesenchymal stem cell; AMSCs, Adipose

mesenchymal stem cells; AFSCs, Amniotic fluid stem cells; AFMSCs, Amniotic fluid mesenchymal stem cells.

*In vitro cell culture model for androgen production.

FIGURE 1
Effects of MSCs-derived exosomes, EVs, and Conditioned media on inflammation and granulosa cells apoptosis in PCOS and various ovarian
disorders.
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be achieved by better understanding the molecular events that

trigger oocyte maturation (Chian et al., 2004). Before

ovulation, the LH surge triggers a cascade of cellular and

molecular events in the ovarian follicle including resumption

of oocyte meiosis, cumulus expansion, follicular wall rupture,

and cumulus-oocyte mass extrusion (Richards et al., 2002).

Despite mural granulosa cells and external theca cells

expressing high LH receptors, oocyte and cumulus cells

express little or no LH receptors and therefore do not

respond to LH exposure in vitro (PENG et al., 1991).

Therefore, it seems the effects of LH on cumulus-oocytes

may be through the release of the paracrine mediators from

granulosa cells (Conti et al., 2006). Also, recently, it was

reported that LH stimulation of isolated human granulosa

cells causes the increase of EGF-like growth factors (Ben-Ami

et al., 2006; Ben-Ami et al., 2009). Several experimental studies

in animals and cell culture have demonstrated that EGF and

IGF-1 can improve maturation in cumulus surrounded

(Sakaguchi et al., 2000; Sakaguchi et al., 2002) and denuded

oocytes as well as in vitro which is similar to what happens in

vivo (Das et al., 1991; Lonergan et al., 1996).

Given that each oocyte is surrounded by cumulus

granulosa, mural granulosa, theca cells and follicular fluid

to form ovarian follicles as reproductive units, therefore, the

oocyte can be affected by each of these components (Di Pietro,

2016). However, new exosome-based therapeutic approaches

in PCOS are few. Recently, regulation of steroidogenesis,

promotion of cell growth and inhibition of apoptosis in the

cumulus cells by exosomal miR-323-3p has been reported in

the women with PCOS (Zhao et al., 2019). Also, animal studies

revealed beneficial effects of EVs (Liao et al., 2021), exosomes

derived from amniotic fluid stem cells (Xiao et al., 2016) and

bone mesenchymal stem cells (Sun et al., 2019) on various

ovarian disorders and fertility recovery. These nanoparticles

inhibit apoptosis in the damaged granulosa cells through the

delivery of miR-146a, miR-10a (Xiao et al., 2016), miR-664-5p

(Sun et al., 2019), and miR-21(90). Studies have shown that

exosomes derived from huMSCs can increased of Bcl-2 and

caspase-3 whereas decreased the expression of Bax, cleaved

caspase-3, and cleaved poly (ADP-ribose) polymerase (PARP)

to attenuation of cisplatin-induced ovarian granulosa cell

apoptosis in vitro (Sun et al., 2017; Zhang et al., 2020). In

addition, BM-hMSCs conditioned media could regulate the

steroidogenesis, inhibit androgen secretion and suppress

inflammatory pathways in a cellular model (Chugh et al.,

2021a; Chugh et al., 2021b). Moreover, it has been reported

that in vitro maturation of mouse oocytes with or without

cumulus cells can be improved by its co-culture with

conditioned medium of MSCs (Ling et al., 2008).

Therefore, According to the beneficial effects of MSCs-

derived exosomes, EVs and secretome can have the

potential to optimize the culture media for oocyte

maturation in PCOS.

Conclusion

Although the pathogenesis of PCOS is still controversial and

remains unclear, several studies implicate chronic inflammation in

the pathogenesis of PCOS and others implicate irregular granulosa

cell apoptosis in PCOS infertility. In this study, we present a

promising opportunity to develop novel cell-free therapy

approaches to restore fertility in PCOS condition. According to

the recent studies, MSCs-derived exosomes, EVs and secretomes

inhibit inflammation and apoptosis, regulate steroidogenesis and

inhibit androgen production in in vitro as well as in vivo.

Consequently, it is worthwhile to challenge the effectiveness and

efficiency of the exosomes in enriched culture media for improving

oocyte development as well as PCOS treatment.
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