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Heat shock proteins (HSPs) have been known for decades for their ability to protect cells under stressful conditions. In the 1980s a
new role was ascribed for several HSPs given their ability to elicit specific immune responses in the setting of cancer and infectious
disease. These immune responses have primarily been harnessed for the immunotherapy of cancer in the clinical setting. However,
because of the ability of HSPs to prime diverse immune responses, they have also been used for modulation of immune responses
during autoimmunity. The apparent dichotomy of immune responses elicited by HSPs is discussed here on a molecular and cellular
level. The potential clinical application of HSP-mediated immune responses for therapy of autoimmune diseases is reviewed.

1. Introduction: HSPs in Immunity

Expression of HSPs is generally upregulated in cells in
response to a variety of stressful conditions including
nonphysiological temperature, nutrient deprivation, and
hypoxia [1]. It is the inherent chaperoning function of HSPs
that allows them to provide their cytoprotective function in
assisting correct protein/polypeptide folding and preventing
further protein denaturation. It has become evident over the
past two decades that the chaperoning function of HSPs also
plays a key role in several processes during the development
of immune responses [2]. Within the cell, several HSPs act as
chaperones of peptides that are ultimately presented by MHC
I and MHC II molecules. Thus, the HSPs in the cytosol and in
the endoplasmic reticulum form a relay line for the transport
of peptides from their formation by the proteasome to the
MHC I heavy chain (HC). This is discussed in the next
subheading. As the HSPs are some of the most abundant
proteins in cells, their liberation into the extracellular
environment has been shown to be a key indicator of loss
of cellular integrity and they are rapidly recognized by the
cellular sentinels of the immune system. Such recognition
allows for cross-priming of the potential antigens that the
HSPs chaperone. The efficiency of this pathway predicted a
cell surface receptor on the cross-presenting cells and that

receptor has now been shown to be CD91. These events
are discussed in the next two subheadings. The isolation of
HSPs (and the associated peptides) from tumor cells or cells
infected with pathogens therefore provides a single entity
that primes immune responses specific for the chaperoned
peptides and thus for the cell that harbored these antigens.
This application has been tested in a vast number of rodent
models of cancer and infectious disease and is being tested in
the clinical setting. We discuss this in the third subheading.
A search for optimal immunizing doses of HSPs led to the
fortuitous dampening of the immune response at higher
doses of HSPs. This phenomenon has been applied to
the therapy of autoimmunity and is the focus of the last
subheading. This chapter is largely restricted to the HSPs
gp96, hsp70, hsp90, and calreticulin although others such as
hsp110, grp170 have been shown to elicit similar immune
responses [3, 4].

2. HSPs Form a Relay Line in MHC I Antigen
Processing and Presentation

The classical and current view of antigen processing and
presentation by MHC I can be summed up as follows:
production of peptides occurs within the cytosol by the
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large multi-subunit catalytic body called the proteasome.
The proteasome ingests polypeptides and trims them down
to small peptides usually with the correct C-termini, but
extended N-termini, for MHC I binding. The transporter
associated with antigen processing (TAP) pumps peptides
into the ER in an ATP-dependent manner. Additional N-
terminal trimming proteases such as the ER-associated
aminopeptidase (ERAP) are present in the ER for final
processing [5]. For a period these peptides were envisioned
to diffuse to TAP, and once in the ER, they diffuse and get
loaded onto MHC HC with the assistance of the peptide
loading complex. We now know that diffusion plays a
minor role if any at all in antigen presentation; instead,
peptide trafficking is possible only because peptides are
actually chaperoned by HSPs. This was first proposed in
1994 [6] and the evidence for the involvement of HSPs
in peptide processing and presentation is now abundantly
clear and comes in both direct and indirect forms. The
evidence is as follows: (i) disruption of peptide binding by
HSPs abrogates MHC I peptide presentation [7–9], (ii) the
extremely poor efficiency of diffusion of peptides within the
cell cannot account for the calculated efficiency of antigen
presentation [10, 11], unless other more efficient methods
of peptide trafficking, such as the HSP chaperoning effect,
are integrated into the pathway, (iii) free peptides have not
been found in cells even after a careful search for them [12].
The peptides are readily seen once they are released from
HSPs by protein denaturation or treatment with ATP or acid
[13], (iv) given the hydrophobic residues of amino acids
in the hydrophilic environment, solubility issues that this
poses [14] must be resolved, and peptide association with
HSPs does so, (v) isolation of peptides from highly purified
HSP preparations reveals MHC binding peptides and their
precursors (intermediates of the processing events) [15–20];
(vi) peptides chaperoned by hsp90 in the cytosol are less
processed (longer) than those chaperoned by the ER HSP
gp96 revealing a continuum of processing events by proteases
in different compartments [15], and (vii) shuttling of MHC
binding peptide precursors between HSPs and MHC I HC
has been observed in the ER [17]. These lines of experimental
evidence suggest and provoke the idea that the relatively
recent evolutionary development of the MHC I antigen
processing and presentation pathway, a key component of
adaptive immunity, has taken advantage of the ancient
property of HSP chaperoning.

3. HSP-Peptide Complexes in
Antigen Cross-Presentation

The initial event in priming T-cell responses to cancer or
infectious disease involves the transfer of antigens from
the cells that harbor them to antigen presenting cells. This
pathway is called cross-presentation and allows for the
presentation of antigens in the form of peptides to T cells
in the context of MHC molecules. Cross-presentation of
antigens by APCs also directs that the antigen is presented
in the context of costimulation, which is a combination of
cytokines and a series of APC-T cell interactions through

receptors and their corresponding ligands. The specific
costimulation received by the naı̈ve T cell dictates the type
of T cell response that is primed. HSPs have been shown to
play a critical role both in cross-presentation of antigens and
in provision of a dynamic set of signals for costimulation.

Calculations on the amount of antigen that is available
for cross-presentation in two independent studies have
shown that it is insufficient if the antigens were transferred as
a whole protein [21, 22]. This triggered an investigation into
the role of HSP-antigen complexes as a necessary alternative
to antigen transfer during cross-presentation. Antigens chap-
eroned by HSPs are cross-presented approximately 50,000
times more efficiently than naked protein and/or peptide
alone [22]. This increase of efficiency is in large part due
to the presence of the HSP receptor CD91 that is present
on APCs [23, 24]. Although the role of HSPs in cross-
presentation has been demonstrated in vivo, it has been
modeled in vitro in several antigenic systems in mice and
humans over a period of many years (Table 1). These studies
have shown that the initial interaction of the APC with the
HSP is mediated through the cell surface receptor CD91
and potentially others. The evidence, or lack thereof, for
these other suggested HSP receptors is discussed elsewhere
[25]. Following binding, the HSP with the chaperoned
peptide is internalized into endosomal vesicles. Through
an as yet unidentified mechanism, peptides are delivered
to the cytosol for trimming by the proteasome where they
enter the MHC I processing and presentation pathway.
Other mechanisms include internalization of HSP-peptide
complexes into MHC I containing vesicles where there can
be direct peptide transfer between these molecules [26–
30]. However with this mechanism only fully processed
peptides chaperoned by HSPs would be presented by MHC I.
The requirement for MHC I antigen processing machinery
such as the proteasome and TAP appears to be dependent
on the antigenic system being tested [7, 24, 31]. Other
mechanisms leading to presentation of peptides chaperoned
by HSPs may also be dependent on the HSP chaperoning
the antigen, as endogenous and exogenous hsp90 have been
shown to be directly involved in transendosomal membrane
transport [32, 33]. Since the peptides bound to HSPs do not
appear to be limited by length or amino acid sequence, HSP
chaperoned peptides can also be presented by MHC II of the
APC to stimulate CD4+ T cells [34–37].

By extension of this very efficient mechanism of cross-
presentation of HSP-chaperoned antigens, immunization
with HSP-antigen complexes primes antigen-specific T-cell
responses while comparable amounts of antigen alone does
not. This has been demonstrated with gp96 [19, 59–63],
hsp90 [15, 62], hsp70 [13, 19, 62], calreticulin [64, 65],
hsp110 [3, 4], and grp170 [3, 4]. In these immunization
regimens, the HSP-peptide complexes can be purified intact
from the antigen bearing cell. Thus, purification of HSPs
from tumor cells will yield complexes that represent the
entire antigenic fingerprint of that tumor and will prime T-
cell responses specific for that tumor. The same applies to
cells infected with bacteria or viruses and cells expressing
minor histocompatibility antigens or model antigens. The
peptides bound to HSPs are not restricted to the MHC
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haplotype of the originating cells [66]. Various methodolo-
gies are also currently available to artificially bind peptides
to HSPs noncovalently [67] or covalently through fusion
constructs to form immunogenic complexes [68]. In most
cases, the immune response measured after priming is of the
Th1 phenotype and characterized by CD8+ cytotoxic T lym-
phocytes. In a few situations, immunization with HSPs has
led to priming of Th2/antibody or Th17 responses [69–72].

4. CD91 Is Pivotal in Regulating
HSP-Mediated Costimulation

HSP-chaperoned peptides can be cross-presented by pro-
fessional APCs; however, presentation and recognition of
antigen alone by T cells are not sufficient to prime adaptive
immunity. In order to prime T and/or B cells, help is needed
from an expanding family of costimulatory molecules on
APCs. The cytokine milieu provides additional signals
for activation and expansion of these effector cells. The
immunogenic HSPs were the first endogenous molecules
proven to be particularly adept in stimulating APCs to
provide costimulation [73]. Studies have shown that the
signals provided by the HSPs to the APCs do not occur
through the traditional pattern recognition receptors which
include the TLRs. Rather, recent studies have shown that the
immunogenic HSPs utilize CD91 to transmit signals to the
APC [71]. Primary APCs were shown to be activated by HSPs
in a CD91-dependent manner suggesting that CD91 was act-
ing as a signaling receptor for the immunogenic HSPs. The β-
chain of CD91, which has two NPXY sequences that are con-
sensus motifs for phosphorylation and signal transduction,
was subsequently mutated. Upon tyrosine to phenylalanine
mutation, CD91 failed to transmit intracellular signals in
response to HSP stimulation, abrogating the costimulation
provided by the APC. The signaling pathway(s) initiated by
CD91 upon HSP stimulation involves the activation of NF-
κB and p38 MAPK although other molecules are yet to be
identified. Downstream of intracellular signaling, a number
of cytokines are released by HSP-stimulated APCs including
TNF-α, IL-1β, IL-6, IL-12, and GM-CSF [71]. Other studies
have shown that, in addition to cytokine production by
HSP-stimulated APCS, the APCs upregulate expression of
costimulatory molecules and maturation markers including
CD80, CD86, CD40, and MHC II [74]. The complete array of
costimulatory molecules and cytokines is dependent on the
type of APC (macrophage or DC subsets) that is stimulated
and the HSP (hsp70, hsp90, calreticulin or gp96) that is used
for stimulation (Table 2).

CD91 thus has a role in signal 1 (cross-presentation) and
2 (costimulation) that is provided by the APC to T cells
in response to extracellular HSP. Similar to HSP-mediated
cross-presentation of peptides, other receptors besides CD91
have been suggested to be signaling HSP receptors. However
there is abundant published literature that the suggested
TLR2/4 receptors were implicated because of the use of
endotoxin-contaminated HSP preparations, especially from
recombinant sources. A discussion of HSP receptors has
been published elsewhere [25]. The flexibility in the pattern

of costimulation triggered by various HSPs in a variety of
experimental settings has implications in several fields of
immunology and we focus here on a discussion on a role in
autoimmune diseases.

5. Extracellular HSPs and
the Etiology of Autoimmunity

As discussed above, APCs stimulated with various HSPs
secrete proinflammatory cytokines such as IL-1β, IL-6, and
TNF-α among others (Table 2). In addition, HSPs chaperone
self-peptides that can be cross-presented as efficiently as
the antigenic peptides. The former of these events has the
potential to trigger chronic inflammation during the con-
tinuous presence of HSPs in the extracellular environment.
The two events concurrently can prime autoreactive T cells
if such T cells are not thymically deleted. In at least one
autoimmune disease, this concept is strongly supported. The
etiology of rheumatoid arthritis remains largely unresolved;
however, several factors that contribute to the initiation
and/or progression of the disease can be pinpointed. The
observation of elevated levels of hsp70 in synovial fluids from
inflamed joints of RA patients is one of these factors. Hsp70
is found both within the fibroblasts at the joint and in the
fluid itself [99, 100]. The significant increase in extracellular
hsp70 in arthritic joints is profoundly correlative because
nonarthritic joints in the same individual patients have no
elevation in hsp70. As mentioned above, hsp70 can interact
with its cell surface receptor CD91, and potentially other
receptors, on cells to induce the release of proinflammatory
cytokines such as IL-1β, IL-6, and TNF-α. The observation of
elevated hsp70 levels in synovial fluids from inflamed joints
implicates hsp70 as an initiator of inflammation and/or
a perpetrator of these events. In this disease hsp70 will
chaperone self-peptides that can be cross-presented by local
APCs [101]. Such cross-presentation of self-antigens appears
to be sufficient to break tolerance and for priming self-
antigen-specific T cells which could contribute to cellular
destruction observed in arthritic joints.

6. HSP Immunotherapy for
Autoimmune Diseases

Immunization of mice with HSPs typically elicits Th1
responses characterized by CTL specific for antigenic pep-
tides chaperoning the HSP. Optimal immunizing doses range
from 1 to 10 μg at the intradermal or subcutaneous route.
Upward titrations of this dose revealed a surprising and
apparently paradoxical result. Doses of HSPs that were 10
times higher than the immunizing dose administered to mice
were shown to prime an immunosuppressive phenotype
characterized by expansion of CD4+ Tregs [60, 102–104].
The immunosuppressive response could also be transferred
to naı̈ve mice by transfer of the expanded CD4+ Treg cell
population [103]. The phenotype is observed when there is
a prior ongoing CTL response, and in at least one system,
Tregs from high dose gp96-immunized mice significantly
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suppressed the IFN-γ production by autologous CD4+ and
CD8+ T cells [105].

The application of this “high dose” phenomenon has
been tested in mouse models of autoimmunity including
diabetes and experimental autoimmune encephalomyelitis
[103]. In both models, administration of “high doses”
of HSPs reduced the severity of disease or prevented its
development outright. In the diabetic model, high doses of
HSP were administered to NOD mice that were older than
4 months at which point β-islet-specific pathogenic T cells
were already present in the pancreas. In the EAE model,
high dose of HSP was administered after immunizing mice
with the MOG peptide which primes pathogenic CD8+ T
cells. The HSPs used in these studies did not chaperone
any antigenic peptides related to the disease model and
led to the conclusion that the ability to prime Treg cells
was inherent to the HSP molecule itself. The less preferred
explanation would be a common self-peptide associated
with gp96 regardless of the source of HSP in a global
disease setting. Our current understanding of the diversity
of responses of APCs stimulated with HSPs (Table 2) sheds
some light on the mechanism. It strongly suggests that the
disparity of responses in immunization with high and low
doses of HSP results from targeting different sets of APCs,
possibly through CD91 and additional cell surface receptors,
leading to a new repertoire of cytokines and/or costimulatory
molecules. Higher doses of HSPs may target different subsets
of APCs or stimulate multiple receptors in the same APCs
(as the immunogenic dose) to elicit distinct costimulatory
profiles [105]. The alternative costimulation could include
TGF-β, PD-L1, and other Treg skewing molecules and would
be predicted to be dominant over other signals. This area is
under investigation and definition of these mechanisms will
offer novel targets for inhibition in autoimmune diseases.

These data suggest a delicate balance between regulatory
and effector T cells mediated by HSPs and is supported
by the recent demonstration of significant enhancement of
gp96-primed CTL activity after anti-CD25 treatment [106].
By blocking Treg generation, gp96 was able to mediate
stronger peptide-specific CTL responses in BALB/c mice
and synergistically enhanced gp96 tumor vaccine-induced
antitumor immunity.

7. Conclusions

Over the past 3 decades the various roles of HSPs in the
immune systems have been explored and characterized. It
appears that the evolutionarily ancient chaperone func-
tions of HSPs in binding peptides and proteins have been
commandeered by the relatively recent development of the
adaptive immune system. However recent studies suggest
that, parallel to evolution of innate responses, multicellular
organisms are alerted to aberrant cellular damage by utiliza-
tion of pre-existing receptors (CD91) to detect the presence
of abundant intracellular molecules (HSPs). We draw many
similarities between the innate immune responses elicited
by PAMPs through PRRs and those by HSPs through CD91
in terms of costimulation for T-cell priming. Indeed the
HSP-CD91 network has been well documented not only in

mammals but also in amphibians. While CD91 is a well-
studied receptor for HSPs (Table 1), there may be other
molecules that may serve as receptors, offering a diversity
of responses that may be elicited by each HSP. Again, the
diversity of PRRs for recognition of various PAMPs is well
noted in innate immunity. The immune responses primed
by extracellular HSPs are dictated by the costimulation that
is elicited and is as diverse as the APC the HSP will encounter.
The immune responses range from antitumor and pathogen
immunity to suppressive responses, with the latter being
applied to the therapy of autoimmune diseases. With greater
understanding of the immunobiology of these proteins, we
anticipate that vaccine design will be enhanced.
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