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Curcuminoids, which include natural acyclic diarylheptanoids and the synthetic analogs of
curcumin, have considerable potential for fighting against all the characteristics of invasive
cancers. The epithelial-to-mesenchymal transition (EMT) is a fundamental process for
embryonic morphogenesis, however, the last decade has confirmed it orchestrates many
features of cancer invasiveness, such as tumor cell stemness, metabolic rewiring, and drug
resistance. A wealth of studies has revealed EMT in cancer is in fact driven by an increasing
number of parameters, and thus understanding its complexity has now become a
cornerstone for defining future therapeutic strategies dealing with cancer progression
and metastasis. A specificity of curcuminoids is their ability to target multiple molecular
targets, modulate several signaling pathways, modify tumor microenvironments and
enhance the host’s immune response. Although the effects of curcumin on these
various parameters have been the subject of many reviews, the role of curcuminoids
against EMT in the context of cancer have never been reviewed so far. This review first
provides an updated overview of all EMT drivers, including signaling pathways,
transcription factors, non-coding RNAs (ncRNAs) and tumor microenvironment
components, with a special focus on the most recent findings. Secondly, for each of
these drivers the effects of curcumin/curcuminoids on specific molecular targets are
analyzed. Finally, we address some common findings observed between data reported in
the literature and the results of investigations we conducted on experimental malignant
mesothelioma, a model of invasive cancer representing a useful tool for studies on EMT
and cancer.
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1 INTRODUCTION

Curcuminoids are plant secondary metabolites with a seven
carbon skeleton possessing two phenyl rings at the 1- and 7-
positions (acyclic diarylheptanoids), mainly isolated from the
roots of plants of the Curcuma genus (Zingiberaceae) (Jahng and
Park 2018). By extension, the term is now also used for synthetic
analogs derived from the chemical structure of the most famous
of these natural molecules for its applications in health, curcumin
(Laali et al., 2019; Mishra et al., 2019). During the last decade, the
inter-relationship between cancer stem cells (CSCs) and EMT,
two potential targets of both synthetic and natural curcuminoids,
has received special attention, and was the subject of several
important reviews (Bao et al., 2012; Li and Zhang, 2014; McCarty
2012; Prud’homme 2012; Suresh et al., 2016).

Most initial studies were not specifically focused on the effects of
curcuminoids, but rather on those of a set of natural compounds,
mostly polyphenols, that included curcumin. Benefits in
chemoprevention were particularly documented (Ahmad et al.,
2012; Kallifatidis et al., 2016), and the involvement of microRNAs
(miRNAs) in CSCs and EMT regulation was especially reviewed,
which represented another target for curcumin (Wang et al., 2010;
Sethi et al., 2013; Suresh et al., 2016). Among self-renewal
pathways, the impact of curcumin on Hedgehog signaling was
also investigated (Sarkar et al., 2010; Li et al., 2012; Sun et al., 2013).
Progressively, the potential of curcumin to reverse EMT was
confirmed (Avila-Carrasco et al., 2019; Bahrami et al., 2019),
while the field of potential applications in cancer, combined
with other therapeutic tools, moved from chemoprevention to
therapy (Varghese et al., 2018; Shen Y.W. et al., 2021; Ashrafizadeh
et al., 2020). Moreover, the modulation of cancer aggressiveness
and targeting of CSCs produced by curcumin when associated with
other phytochemicals (defined as biologically active compounds
found in plants) has been established (Mitra and Bhattacharya,
2020; Naujokat and McKee, 2021). In parallel, the involvement of
tumor related ncRNAs was also investigated in the multiple effects
of curcuminoids on the regulation of cancer progression (Wang H.
et al., 2021a). Finally, among other natural compounds, the
essential signaling pathways associated with EMT on which
curcumin produces its effects was reviewed in the peculiar
context of breast cancer (Lu Y. et al., 2021).

Here, we first present an overview of recent breakthroughs in
our understanding of the complex regulation of EMT in cancer.
Next, for each signaling pathway and the tumor
microenvironment components associated with this process,
the detailed effects of curcumin/curcuminoids reported in the
literature were reviewed. Finally, we address some common
findings between data reported in the literature and the results
of investigations conducted on experimental malignant
mesothelioma (MM), a model of invasive cancer that is a
useful tool for studies on EMT and cancer.

2 MATERIALS AND METHODS

The study design was based on a review of the current literature
searched on PubMed database using different combinations of

keywords, with a special focus on the period 2017-2022
(Figure 1). In order to provide an update of the main recent
findings on EMT driving parameters, the keyword “EMT cancer”
was crossed with those of the signaling pathways, tumor
microenvironment components and other specific EMT
drivers (Figure 2). All relevant articles published in English
were considered, with a special focus on reviews or works
providing important breakthroughs in the field (covered in
chapter 3). In a second step the keywords “curcumin cancer”
or “curcuminoids cancer” were crossed with “EMT cancer” and
all recent reports highlighting important findings were included
(chapters 4-5). Finally, these reference lists were crossed with the
keyword “malignant mesothelioma” and additional information
relevant to this peculiar cancer type was reviewed in chapter 6.

3 OVERVIEW OF EMT DRIVING
PARAMETERS IN CANCER, AN UPDATE

The EMT process and its involvement in certain pathological
events, such as cancer cell metastasis, were first described in the
pioneering work by Boyer and colleagues (Boyer and Thiery, 1993).
EMTwas then recognized as playing a fundamental role during the
early stages of invasion and metastasis of carcinoma cells (Boyer
et al., 2000). However, in the mid-2010s researchers questioned the
real role of EMT in the metastatic process and the debate led to a
clarification of many issues related to EMT in cancer biology
(Brabletz et al., 2018). Subsequently, the complexity of EMT
regulation and its coordination at multiple levels started to be
deciphered (Simeone et al., 2019). Progressively, its potential to
yield novel therapies prone to overwhelm therapeutic resistance
and to improve the management of high-grade cancers was also
revealed (Zhang and Weinberg, 2018). To date, EMT appears to
orchestrate a wide variety of complementary cancer features,
including tumorigenicity, stemness, resistance to therapy and
adaptation to changes in the microenvironment (Brabletz et al.,
2021). Moreover, beside its role in embryogenesis and wound
healing, recent investigations on EMT and its reverse process,
mesenchymal-epithelial transition (MET) in cancer have
demonstrated their plasticity and the existence of a multilayer
regulatory network allowing cells to exhibit multiple hybrid E/M
states, rather than a binary switch between epithelial and
mesenchymal states (Bornes et al., 2021).

To take just the specific case of breast cancer as an example, the
regulation of EMT appears to be centered on a list of different
signaling pathways that include transforming Growth Factor Beta
(TGF-β), Notch, Wnt, tumor necrosis factor alpha (TNF-α),
Hedgehog, and receptor tyrosine kinases (RTKs) (Buyuk et al.,
2021) (Figure 2). In addition to Hippo/yap, nuclear factor-kappa B
(NF-κB), janus kinases/signal transducer and activator of
transcription proteins (JAK/STAT), mitogen-activated protein
kinases (MAPK), and phosphatidylinositol 3-kinase (PI3K)/Akt/
mechanistic target of rapamycin (mTOR), investigations on each of
these pathways have been the subject of new developments in the
last 3 years and are reviewed below. Meanwhile, the role of
potential additional factors that drive EMT in cancer (Figure 2)
was also highlighted, namely transcriptional factors (TFs) (Vishnoi

Frontiers in Pharmacology | www.frontiersin.org July 2022 | Volume 13 | Article 9345342

Pouliquen et al. Curcuminoids and EMT in Invasive Cancers

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


et al., 2020), translation initiation mechanisms (Bera and Lewis,
2020), miRNAs (Pan et al., 2021) and circular RNAs (circRNAs)
(Jiang M. et al., 2021), hypoxia (Peng P. H. et al., 2021),
inflammation (Chattopadhyay et al., 2021), and stromal
components like tumor-associated macrophages (TAMs) (Han
et al., 2021) and cancer-associated fibroblasts (CAFs) (Asif
et al., 2021). Other emerging or developing research fields were
represented by cancer-associated adipocytes (Liu et al., 2020),
endothelial cells and their transformation via endothelial-to-
mesenchymal transition (EndMT) (Yoshimatsu and Watabe,
2022), and vascular mimicry (Sun et al., 2017). Additionally, the
orchestration of multiple EMT-associated pathways and EMT-
associated TFs by Forkhead box O (FOXO) proteins was also
documented (Ma et al., 2018). The links with glycobiology (Pucci
et al., 2021), Ca2+ homeostasis (Jones and Hazlehurst, 2021) and
the cytoskeleton (Leggett et al., 2021) were also explored, while the
complexity of its interrelationships with CSCs (Roy et al., 2021),
p53 (Parfenyev et al., 2021) or H2O2 signaling (Milton and Konrad,
2022), and their consequences on the generation of circulating
tumor cells (CTCs) (Topa et al., 2022) or occurrence of a collective
invasion process (Nagai et al., 2020) were updated. Finally, as EMT
is involved in such a broad range of processes associated with
malignant transformation and invasiveness, it has become an
increasingly interesting target for the development of new
therapeutic strategies (Dudas et al., 2020; Jonckheere et al., 2022).

3.1 TGF-β
TGF-β was one of the first growth-active polypeptides fitting the
definition of growth factors that was recognized as being

associated with the neoplastic process, and its distinction with
TGF-α was clearly established based on molecular composition,
biological response produced and membrane receptor binding
(Goustin et al., 1986). It was also one of the earliest factors
described as being associated with the EMT process in cancer
(Hay, 1995), a process which was shown to lead to drug resistance
in vivo, drug sensitivity in the resistant tumors being restored
using neutralizing antibodies directed against this growth factor
(Teicher et al., 1996). These pioneering investigations led to the
discovery of the function of decorin, a small cellular or
pericellular matrix proteoglycan, as an inhibitor of TGF-β1
(Teicher et al., 1997). An overview of the role of this signaling
pathway in tumor initiation and progression has previously been
given by Liu et al. (2018), and recently updated by Stuelten and
Zhang (Stuelten and Zhang, 2021).

Recent findings on the involvement of this signaling pathway
in EMT and linked with cancer invasiveness demonstrated
crosstalk with invasive stress. It was found that TGF-β
regulates the production of reactive oxygen species (ROS) or
modulates antioxidant systems and redox-sensitive transcription
factors in cancer cell metabolism by increasing the redox
imbalance. Moreover, increased ROS production may directly
induce TGF-β expression at a nuclear level (Ramundo et al.,
2021). Kumari et al. (2021) also reported that oxidative stress and
hypoxia lead to the accumulation of misfolded proteins in the
endoplasmic reticulum (ER), thus inducing ER stress (ERS),
which is modulated by G protein-coupled receptors (GPCRs)
via ERS sensors, to support cancer cell survival and inhibit cell
death. Additionally, these authors stated that TGF-β regulates

FIGURE 1 | Flow diagram of the study selection process (detailed in the text, chapter 2).
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EMT both at the transcriptional and post-transcriptional levels in
ovarian cancer progression (Kumari et al., 2021b). Dash et al.
(2021) also revealed the existence of a link between TNF-α and
TGF-β under the governance of various downstream signals such
as the member of the MAP3K kinase family TAK1 (Figure 3),
also known as MAP3K7. Another kinase under investigation is
extracellular signal-regulated kinase 5 (ERK5), the newest
member of the MAPK family and an essential regulator of
cancer progression, tumor relapse and poor patient survival,
which can be activated both by TNF-α and TGF-β (Bhatt
et al., 2021). Two other negative regulators of TGF-β
signaling, Ski and Ski-related novel protein N (SnoN) were
also reported, while TGF-β1 was suggested as being an
upstream effector of Id-1, a protein belonging to the helix-
loop-helix (HLH) transcription factor family, for its action in
promoting cell survival and EMT in premalignant prostate
epithelial progenitors (Figure 3). The dual role that TGF-β
plays in prostate cancer, inhibiting cell proliferation in normal
and early-stage cancer cells, but promoting cancer progression in
later stages of the disease, was found to be related to an increase in
the stability of the tumor suppressor gene phosphatase and
TENsin homolog (PTEN) in the first case, while enhancing
the effect of TGF-β on the deletion of PTEN observed in
metastatic prostate cancer cells (Thompson-Elliott et al., 2021).
Finally, selective inhibitors of the TGF-β signaling pathway are
now under evaluation, showing early promise. However, the

paradoxical role this growth factor may play in the tumor
microenvironment, for example in the case of pancreatic
adenocarcinoma, has led to questions regarding the potential
biological consequences of inactivating selected components
from this pathway, to identify the most effective combination
therapy (Principe et al., 2021).

3.2 Notch
The involvement of the Notch signaling pathway in both
embryogenesis and tumorigenesis has been known since 1951,
however a growing interest in this topic started at the end of the
1990s. Subsequently, its link with EMT was first reviewed in 2004
(Grego-Bessa et al., 2004), emphasizing the role of cadherin
downregulation. Notch was particularly associated with the
maintenance of an uncommitted stem cell-like state in the
beginning of the 2000s (Radtke and Raj, 2003). Among recent
findings (Figure 3), a link with Hypoxia-inducible factor 1-alpha
(HIF-1α) and estrogen signaling was established (De Francesco
et al., 2018), hypoxia-associated EMT representing one of three
modules driving the Notch-mediated EMT (Kar et al., 2019).
Consequently, innovative treatment strategies targeting signaling
pathways such as Notch have been proposed to control stem-cell
replication, survival, and differentiation (Venkatesh et al., 2018).
The complex connectivity of Notch with other signaling
pathways, especially Wnt, have just started to be deciphered,
highlighting its variability depending on the different contexts

FIGURE 2 | Diversity of EMT drivers in cancer. Targets of curcumin/curcuminoid reported in the literature are indicated with green (positive regulation) or red
thunderstorms (negative regulation), including molecular components of signaling pathways, and gene expression/regulation of stromal and malignant cells, and
secreted proteins. The role of the different epithelial-to-mesenchymal transition (EMT) drivers is detailed in chapter 3, andmolecular targets are described in chapters 4-6
(illustrated in Figures 3, 4). Factors such as hypoxia and its interplay with tumor calcium homeostasis may influence intercellular crosstalk leading to extracellular
matrix (ECM) remodeling, and increased migratory and metastatic behavior, representing an additional physiological target (developed in Sections 3.2, 3.5, 3.6, 3.10
and chapters 4 and 6). The role of stiffness is also explained in the fourth paragraph of Section 3.10 and last paragraph of chapter 6. M2 → M1 symbolizes imbalance
between the two macrophage subtypes producing anti-inflammatory and pro-inflammatory cytokines, respectively.
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(Misiorek et al., 2021). Meanwhile, other authors focused on the
interactions of Notch receptors with their ligands, trying to
understand how their precise role could represent new targets,
and to determine a patient’s response to therapies (Kalafut et al.,
2021).

Among the crosstalk investigated between different signaling
pathways, one member of the Frizzled receptor family (FZD),
FZD2, was recently identified as mechanically promoting the
TGF-β1-induced EMT process in breast cancer by activating
Notch (Tuluhong et al., 2021). Additional breakthroughs have
been revealed by bioinformatic analysis, showing that Notch 2/3
receptors and delta-like 4 Notch ligand (DLL4) differentiated
non-cancerous samples from cancers, representing drivers of
Notch signaling in bladder cancer (Zhang C. et al., 2021). Two
other studies have demonstrated that SLC6A8 (Solute carrier
family 6 member 8), a member of the γ-aminobutyric acid
(GABA) transporter family (Feng et al., 2021) and Sine oculis
homeobox homolog 1 (SIX1), a developmentally restricted
transcriptional regulator (Huang et al., 2022), were involved in
activation of Notch in non-small lung cancer. In the field of long
non-coding RNAs (lnRNAs), ILF3-AS1, the antisense RNA of
interleukin enhancer-binding factor 3 (ILF3), was reported to
promote hepatocarcinoma progression via the Notch pathway
(Yan et al., 2022) (Figure 3). Finally, another interesting finding
was the observation of an EMT process activated via Notch
signaling under conditions of intratumoral heterogeneity
caused by chemotherapy, both in senescent and adjacent non-

senescent breast cancer cells, which supported the promising
prospects of inhibitors of this pathway in the treatment of breast
cancer recurrence (Zhang N. et al., 2021).

3.3 Wnt
The interest in this signaling pathway in cancer emerged with the
discovery in 1987 of a homology between the int-1 mouse
oncogene (activated in mouse mammary tumors) and a
Drosophila gene called wing-less (Rijsewijk et al., 1987).
Subsequently, Savagner (2001) suggested that the Wnt
pathway could represent an essential step in the massive
cytoskeleton reorganization observed in vivo during EMT. A
pivotal function for β-catenin, a member of adherens junctions
translocated to the nucleus, was then established in the EMT
process, demonstrating that a critical threshold must be reached
for the activation of certain target genes involved in cell motility
during tumorigenesis (Müller et al., 2002). Given the complexity
of this pathway, with about 19 genes encoding glycolipoproteins
connected to various receptors that stimulate different
intracellular pathways, these latter were divided into canonical
(β-catenin dependent) and non-canonical (β-catenin
independent) (Niehrs, 2012).

The first category is activated by the interaction of Wnt with a
Frizzled receptor (Fz) and lipoprotein receptor-related proteins
LRP5/LRP6, while the second category utilizes downstream
signaling means classified according to the type of Wnt
receptor and co-receptor they employ and the downstream

FIGURE 3 |Main signaling pathways involved in curcumin/curcuminoid anticancer effects. Targets reported in the literature are identified as orange boxes/dashed
lines. Some important new recent proteins/microRNAs (miRNAs) or non-coding RNAs (ncRNAs) identified to be involved in the regulation of peculiar signaling pathways
are indicated in dashed black boxes. Other crucial potential molecular targets/signaling pathways detailed in Sections 3.5–3.9 and chapters 4-6 are omitted for clarity.
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receptor they pair with (Patel et al., 2019). Among the second
category, the role of the Wnt5a/NF-κB has been particularly
investigated in the context of studies on tumor
microenvironment, revealing how an aberrant expression of
Wnt5a is immunosuppressive (Lopez-Bergami and Barbero,
2020). In bone metastasis from prostate cancer, the Wnt
receptor FZD4 was also reported to play an important role
together with Wnt5a (Kaplan et al., 2021). Complementary
investigations on this ligand suggest that Wnt5a is integrated
into a larger regulatory circuit involving β-catenin, YAP/TAZ,
and large tumor suppressor kinase 1/2 (LATS1/2) (Figure 3),
with Wnt5a and yes-associated protein 1 (YAP1) both being
regulated at the transcriptional level by both Wnt and Hippo
pathways (Astudillo 2021). However, the extent of crosstalk
between the Wnt pathway and the other multiple
developmental signaling pathways are far from being
completely understood as Merikhian et al. recently highlighted
the complex interaction with the transactivated RTKs signaling
pathway and lymphocytic infiltration in the context of EMT
(Merikhian et al., 2021). Whatever type of cancer considered,
activation of the Wnt pathway and EMT always presents
deleterious consequences for patients, with the potential
emergence of drug and/or immunoresistance in triple negative
breast cancer (Merikhian et al., 2021), or hepatocellular
carcinoma (Paskeh et al., 2021). The Wnt/β-catenin signaling
pathway was shown to regulate stemness, for example in ovarian
(Teeuwssen and Fodde, 2019), prostate (Kaplan et al., 2021) and
colon cancer (Cheriyamundath and Ben-Ze’ev, 2021). Other
biomarkers of the Wnt cascade, E-cadherin, vimentin,
Adenomatous polyposis coli (APC), Snail and N-cadherin
were revealed to be of importance in the carcinogenesis of
other cancer types, such as oral squamous cell carcinoma (Bai
et al., 2020). Finally, among additional biomarkers related to the
Wnt pathway and EMT in invasive cancers, miRNAs and their
upstream regulators circRNAs and lncRNAs appear to be crucial
(Lei et al., 2020; Shao et al., 2020).

3.4 TNF-α
Several successive investigations conducted in 1980 on BCG-infected
mice showed the capacity to induce the release into the serum of a
substance named tumor necrosis factor, TNF, which mimicked the
tumor-necrotizing action of endotoxin and was inhibitory or
cytotoxic to a range of tumor cell lines (Oettgen et al., 1980).
About 3 decades later, Balkwill reviewed the long history of the
discovery of this cytokine, which acted primarily though TNFR1
(TNF receptor 1) following autocrine and paracrine production with
crosstalk between malignant cells, myeloid and other cells from the
tumor environment. At this stage, EMT was already mentioned in
the list of changes produced by TNF in malignant cells linked with
increased aggressiveness (Balkwill, 2009). The role of TNF in EMT
and the direct effect of monocytes on the motility of pancreatic
cancer cells was then investigated, revealing a phenotypic transition
that was attenuated when cancer cells and monocytes were co-
cultured in the presence of inhibitors of TNF production and anti-
TNF antibodies (Baran et al., 2009).

The next decade was characterized by considerable interest in
crosstalk routes between malignant cells and mesenchymal

stromal cells (MSCs), some reports focusing on the specific
role of TNF-α. In trying to improve their phenotyping and
understanding of functional differences according to their
tissue of origin, studies on MSCs concluded there was strong
evidence that their functional heterogeneity was influenced by
long-term exposure to a cancerous EMT environment, leading in
some cases to their dedifferentiation into carcinoma-associated
fibroblasts, changing immunomodulatory properties, cytokine
profiles, and even increasing radio-/chemotherapy resistance
(Böhrnsen et al., 2020). In the case of gastric cancer, Zhou Q.
et al. (2020) highlighted the fact that among tumor-stroma
interactions, the upregulation of interleukin 33 (IL-33) and its
receptor suppressor of tumorigenicity 2 (ST2L) led to the
production of Il-33 derived CAFS, which enhanced the
migration and invasion of cancer cells by inducing EMT
through activation of the ERK1/2-specific protein 1 (SP1)-zinc
finger E-box binding homeobox 2 (ZEB2) pathway in a ST2L-
dependent manner. Another report demonstrated that TNF-α
activated two parallel signal transduction pathways, PI3K/Akt
and p38 MAPK, then stimulating downstream NF-κB pathway
p65 into the nucleus to activate C-X-C motif chemokine ligand
(CXCL10) transcription in colon cancer cells (Wang Z. et al.,
2021a). Moreover, in prostate cancer, recent studies on the
activation of the NF-κB p65 signaling pathway by TNF-α
identified the upregulation of the phosphorylated forms of two
proteins, Ikappa B kinase (p-IKK) and inhibitor of nuclear factor
kappa B (p-IκBα), (Wang M. et al., 2020). Additionally, Shi et al.
(2020) found that the NF-κB p65 signaling pathway, when
activated, epigenetically repressed pleckstrin and Sec7 domain-
containing 4 (PSD4), a tumor suppressor gene that inhibits the
proliferation, migration, and invasiveness of hepatocellular
carcinoma (Figure 3). Finally, to study mechanisms of TNF-α
induced EMT in thyroid cancer cells, Lv et al. (2021)
demonstrated that only NF-κB inhibitors reversed the
expression of the transcription factors.

In parallel, as circular RNAs appeared to play an important
role in the relationship between inflammation and cancer, TNF-α
was found to induce the expression of circSND1 through the
transcription factor NF-κB, its function being exerted via a TNF-
α/NF-κB/circSND1/miR-125a-3p/FUT6/NF-κB positive
regulatory circuit (Bai et al., 2021). TNF-α also induces the
upregulation of miR-155 in osteosarcoma cells, producing
another feedback regulatory loop that promotes the acquisition
of a CSC phenotype (Yao et al., 2020) (Figure 3). Evaluating the
inhibitory effects of natural drugs on the activation of NF-κB
produced by TNF-α led to identifying cyclooxygenase 2 (COX-2),
C-myc, MMP-2, MMP-9 (metalloproteinases), intercellular
adhesion molecule (ICAM-1) and vascular endothelial cell
growth factor (VEGF) as representative downstream molecules
involved in cancer invasion associated with EMT
(Paramanantham et al., 2020). TNF-α induced EMT also
appeared to upregulate immune modulators, including
programmed death-ligands PD-L1, PD-L2, cluster of
differentiation (CD) 73 and B7 Homolog 3 (B7-H3) (Shrestha
et al., 2020). Moreover, Takahashi et al. (2020) revealed how
TNF-α is involved in TGF-β-induced EndMT in endothelial cells,
leading to the formation of CAFs.
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3.5 Hedgehog
Early findings were related to a form of skin cancer called Gorlin’s
syndrome, first detailed in the 1960s, with patients affected by a
variety of additional malformations including craniofacial and
brain abnormalities, suggesting the related gene would play a role
in embryonic development (Currie, 1998). Given that Hedgehog
signaling had a major impact on EMT in cancer, its activity being
initially associated with metastatic ability in prostate carcinoma
cell lines (Karhadkar et al., 2004), it corresponded to an essential
pathway for stem cell function, together with Wnt and Notch
(Huber et al., 2005). Consequently, this pathway represented an
interesting target for overcoming treatment resistance for many
invasive cancers (Gan and Jimeno, 2016). Its role in bladder (Syed
et al., 2016) and triple negative breast cancer stemness and
tumorigenesis (Habid and O’Shaughnessy, 2016), was
reviewed, and the prognostic value of glioma-associated
oncogene (Gli1), an essential mediator of this pathway, was
emphasized (Rokkam et al., 2020). In lung cancer, the
Hedgehog pathway mediated epidermal growth factor receptor
tyrosine kinase inhibitor resistance, in association with EMT,
however Gli1 knockdown reversed this resistance (Chen et al.,
2022). InMM cells, targeting this signaling component, Gli1 or its
target gene Myc inhibited cell viability and spheroid formation
(Sementino et al., 2022). The activation of the Hedgehog/Gli1
signal pathway is suppressed by elevating the expression of the
transmembrane E3 ubiquitin ligase (ZNRF3), which mediates
Wnt proteins. Interestingly, Wang Z. et al. (2021b) demonstrated
that RSPO2, a member of the R-spondin-2 protein family which
plays an essential role in stem cell survival, when silenced inhibits
the tumorigenicity of nasopharyngeal carcinoma via the zinc and
ring finger 3 (ZNRF3)/Hedgehog-Gli1 axis. Another player,
transmembrane protein 107 (TMEM107), whose function was
previously unknown, was found to inhibit EMT and invasion in
lung cancer through regulating the Hedgehog pathway (Xu H.
et al., 2021). Among TFs, one member of the POU homeodomain
family, POU4F2, also appeared to positively regulate Hedgehog
(Guo et al., 2021). The link with hypoxia was also documented
with the study of the effects of a natural lignan, saurochinone,
which abrogated hypoxia-induced invasion and EMT in
osteosarcoma cells via inactivation of this pathway (Zhou and
He, 2021). Protein-protein interaction analysis allowed to identify
another transcription factor, Gli2, which appeared to be regulated
bymiR-636 (Ma et al., 2021). In this field of research, miRNA-150
was found to repress bothWnt and Hedgehog pathways in gastric
cancer (Peng Y. et al., 2021), while miR-375 regulated the
Hedgehog pathway via Ras-related C3 botulinum toxin
substrate 1 (RAC1) (Liang et al., 2021) (Figure 3). Finally,
among lncRNAs, the intergenic LINC01426 was reported to
promote the progression and stemness of lung cancer, an
interaction with a member of the histone deubiquitinating
complex Spt-Ada-Gcn5 acetyltransferase (SAGA), ubiquitin
specific peptidase 22 (USP22), being suggested (Liu X. et al.,
2021).

3.6 Hippo/yap and RTKs
The Hippo signaling pathway, which controls organ size, involves
a kinase cascade involving three protein kinases and many genes

recognized as tumor suppressors. In one of the pioneering
studies, Overholtzer et al. (2006) reported how the wild-type
gene YAP, which regulated proliferation and apoptosis in
Drosophila, had potent oncogenic potential and induced
phenotypic alterations including EMT. Mechanically, the
epidermal growth factor receptor (EGFR) ligand amphiregulin
(AREG), which appeared to be a target for the transcriptional co-
activator YAP, was identified as a downstream effector of the
Hippo pathway (Zhang et al., 2009). The crucial role of the
interaction between YAP and the nuclear transcriptional
enhancer factors (TEADs), leading to the induction of invasive
pseudopodia in tumor cells, was recently reviewed (Li et al.,
2021). In fact, the transcriptional activity of YAP appears to be
controlled by a growing number of upstream regulators including
several members of the WWC-and-C2 domain-containing
protein family (Höffken et al., 2021). Recent findings have
highlighted the role of several modulators of the Hippo
signaling pathway, including the high mobility group AT-hook
2 (HMGA2), a DNA binding protein (Xu J. et al., 2021), the
scribble planar cell polarity protein (SCRIB) (Shen H. et al., 2021),
and GABABR1, one of the two subunits making up the GABAB

receptor (Wang H. et al., 2021b). The upregulation of receptor of
collagen I, Discoidin Domain Receptor Tyrosine Kinase 2
(DDR2), also confers a susceptibility to ferroptosis via the
Hippo pathway (Lin C. C. et al., 2021). In the field of RNAs,
miR-223-3p (Du et al., 2021) and long non-coding LINC00649
(Wang H. et al., 2021c) were identified as regulators. Jiang L. et al.
(2021) revealed that YAP upregulation induces proliferation,
migration and EMT progression of colorectal cancer cells
through the Glut3/AMPK signaling pathway. Finally, the links
with other pathways were first established by demonstrating that
hypoxia induced the upregulation of the actin-bundling protein
Fascin-1 (regulated by the Akt/Rac1 signaling), thereby
mediating both actin cytoskeleton rearrangement and Hippo
activation (Pu et al., 2021). Secondly, another link with the
Wnt pathway was established with the work of Yang et al.
(2021), who reported that a member of the potassium channel
tetramerization domain family, KCTD11, inhibited β-catenin
nuclear translocation and Wnt pathway activity, which further
inhibited the Hippo pathway.

The Hippo signaling pathway is mainly carried out by two
activated pathways involving RTKs, the RTK/RAS/PI3K and the
RTK-RAS-MAPK pathways (Azad et al., 2020). RTKs also affect
cadherin cell-cell adhesion (Kaszak et al., 2020). At the beginning
of the last decade, Thomson et al. (2011) reported a loss of
autocrine RTK signaling networks, within the complex EMT
associated cell-cell junction and cell-adhesion/extracellular
matrix (ECM) changes, grouped by system and assembled by
protein-protein contacts, through EGFR/ErbB2/ErbB3, Met/Ron
and insulin-like growth factor 1 receptor (IGF1R) signaling
networks. Subsequently, Antony et al., in reviewing the
signaling schemas enabling EMT, pointed to the amplified
signaling of the Tyrosine-protein kinase receptor UFO
(encoded by the AXL gene), and the extensive crosstalk
observed with other RTKs such as EGFR, cMET and HER2, in
the subtype of ovarian cancer with poor prognosis (Antony et al.,
2019). In this field, an important recent finding was the discovery
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that the list of cell surface receptors crosslinking with the c-MET
signaling is constantly growing, highlighting the importance of
this pathway for personalized target therapy (Faiella et al., 2022).

3.7 Major Findings Relevant to Other
Signaling Pathways
Studying gene regulation in response to ROS, and especially
hydrogen peroxide, which started more than 2 decades ago
(Müller et al., 1997), continues to retain considerable attention
since the discovery of H2O2 sensors, their suggested role in a
receptor-initiated redox signaling pathway (Toledano et al.,
2004), and the involvement of peroxiredoxins as regulators
(Kang et al., 2005). To date, the interconnection between
H2O2 signaling and EMT in cancer is well established (Milton
and Konrad, 2022), and the role of H2O2 producers NADPH
oxidase 4 (NOX4), dual oxidase 1 (DUOX1) and DUOX2 in cell
motility and metastasis in cancer biology has been reviewed
(Meitzler et al., 2019). Regarding NF-κB, it was demonstrated
that inhibiting its activity resulted in an almost complete loss of
expression of the Twist2 gene (Lehman et al., 2020). The effects of
activating the JAK/STAT3 signaling pathway on EMT and the
generation of CSCs have also been documented (Jin 2020). The
MAPK signaling pathway represents another signaling pathway
involved in EMT, which includes ERK1/2, and Bao et al. (2021)
recently reported that a member of the erythrocyte membrane
protein band 4.1 superfamily, EPB41L5, overexpressed in
esophageal cancer, activated the phosphorylation of ERK/p38
signaling pathway components. Two additional reports have
shown the involvement of two other proteins in the activation
of this pathway, the seven-transmembrane domain-containing 1
(ELTD1) (Sun and Zhong, 2021), and actin gamma 1 (ACTG1)
(Xiao et al., 2021). Concerning PI3K/Akt/mTOR signaling, which
regulates the EMT of gastric cancer cells, its aberrant
phosphorylation was found to be caused by cooperation
between CD36 and apolipoprotein C2 (APOC2) (Wang C.
et al., 2021). Among the drivers of glioblastoma progression,
both this pathway and Wnt represented key regulators of EMT,
two interesting targets for developing treatments (Behrooz et al.,
2022). Two interesting findings completed the investigations on
this pathway, the knockdown of the mitochondrial ribosomal
proteinMRPL13 that restrained the EMT process in breast cancer
cells (Cai M. et al., 2021), and the role played by the YTH N6-
methyladenosine RNA binding protein 1 (YTHDF1) in its
activation (Luo et al., 2021). Finally, one last additional
pathway of interest is represented by p53, through its links
with various drivers of EMT discussed in other chapters of
this review. A first report described the importance of a
chaperone protein of histone H3-H4, the anti-silencing
function 1 (ASF1B), which promotes cell proliferation,
migration, and invasion through the modulation of the p53-
mediated EMT signaling pathway (Wang et al., 2022). Secondly,
Pustovalova et al. shed light on the crosstalk between autophagy
and this pathway (Pustovalova et al., 2021). Thirdly, Avşar Abdik
(2021) demonstrated how the p53 status affected mature
adipocyte-mediated proliferation, emphasizing the importance
of targeting the tumor microenvironment.

3.8 Transcriptional and Translation Factors
Key inducers of EMT are TFs, and after Snail, Slug, Zeb1, and Zeb2,
a critical stage in this research field was reached with the discovery
of the role of Twist in metastasis (Kang and Massagué, 2004).
Subsequently, the basic mechanism for the dynamic silencing of
CDH1, the gene encoding E-cadherin, by all these TFs started to be
deciphered, and post-transcriptional modifications emerged as an
additional level of regulation, all of which are being reviewed
(Peinado et al., 2007). Since then, the list of TFs has been
updated, and new findings in the complex regulatory network
they form were recently summarized (Debnath et al., 2022).
Regarding Snail-1, the involvement of the B-Raf proto-oncogene
(BRAF) gene was highlighted, linked with chemoresistance in
thyroid cancer (Wieczorek-Szukala and Lewinski, 2021), and the
role of epigenetic regulation was emphasized (Dong and Wu,
2021). Even more important, Snail-1 was shown to be involved
in tumor immunosuppression by inducing chemokines and
immunosuppressive cells into the tumor microenvironment
(Tang et al., 2021). Another family of transcription factors of
interest is represented by the SRY-related High Mobility Group
(HMG)-box (SOX), which regulates different molecular pathways.
Their role in cervical cancer was also recently reviewed (Paskeh
et al., 2021b). Finally, as reviewed for osteosarcoma, manymiRNAs
inhibit EMT through the activation of several signaling pathways
upstream of Snail, Slug, Twist and Zeb1 (Yu et al., 2021).

FOX (forkhead box) proteins also play a crucial role in
regulating expression of the genes involved in EMT in cancer.
As an increasing number of them were discovered in the last
2 decades of the 20th century, they are presently unified in a
nomenclature based on sequence conservation. A first group is
represented by class O (FOXO), which are downstream effectors
of the PI3K/AKT signaling pathway, and within them FOXO3a
was found to crosstalk with the Wnt pathway, negatively
regulating β-catenin signaling (Liu et al., 2015). Among the
other groups, several recent reports have highlighted the
functions of FOXC1 (Ray et al., 2021), FOXI3 (Mukherjee
et al., 2018), and FOXM1 (Zhang Y. L. et al., 2021) in EMT.

At the level of translation, altered levels and activities of
initiation factors are common facts observed in many cancers,
and associated with EMT.Within them, one of themost important,
factor 4E (eIF4E), can be targeted by two miRNAs, miR-320a or
miR-340-5p, leading to inhibition of MMP-3 and MMP-9 (Zhang
H. H. et al., 2020). However, the eIF4F translation initiation
complex also contains the ATP-dependent DEAD box RNA
helicase eIF4A which remodels the 5′-proximal secondary
structure for facilitating 40S ribosome recruitment, and a
mechanical study revealed that one of the two isoforms,
eIF4A1, functioned as an enhancer of EMT in gastric cancer
(Gao et al., 2020). Moving forward, these investigations
demonstrated that, in pancreatic cells, the downregulation of
E-cadherin produced by the overexpression of eiF4A1 occurred
through the c-MYC/miR-9 axis (Zhao Y. et al., 2021).

3.9 Non-coding RNAs
MicroRNAs were established as regulators in cancers 2 decades
ago, and their involvement as posttranscriptional repressors of
gene function in EMT in cancers was reviewed in 2007–2008
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(Zavadil et al., 2007; Gregory et al., 2008). MicroRNAs (miRNAs),
with 22–24 nucleotides, presently represent a part of ncRNAs
divided in two groups based on their base length, small ncRNAs
with fewer than 200 nucleotides, and long forms (lncRNAs) with
diverse sizes ranging from 200 to more than a thousand
nucleotides. More recently, circular RNAs (circRNAs) were
shown to proceed differently as they prevent the inhibitory
effect of miRNAs on gene expression by binding to their
complementary sequences (Meyer et al., 2021). This growing,
rapidly evolving field of research and its relationships with
EMT in cancer have been recently reviewed (Hussen et al.,
2021), and the role of the dysregulated expression of lncRNAs
in the pathogenesis of aggressive cancers such as pancreatic ductal
adenocarcinoma was particularly emphasized (Takahashi et al.,
2021). An important point was the interplay observed between
lncRNAs and the biogenesis of CSCs (McCabe and Rasmussen,
2021). Finally, another main field of research focuses on the role of
a special category of lncRNAs, defined as intergenic, such as
MALAT1, predominantly found in nuclear speckles, and which
are associated with poor prognosis cancers. Its involvement in
metastatic colorectal cancer was also recently reviewed (Uthman
et al., 2021).

3.10 Tumor Microenvironment
One of the most important EMT driving parameters of the tumor
microenvironment is hypoxia. Hypoxia mediated EMT is one of
the three modules of Notch-mediated EMT involved in breast
carcinogenesis, interacting with cytokine and PI3K/Akt mediated
EMT. Hypoxia was shown to elevate the expression of Notch
effectors downstream, such as hairy and enhancer of split-1 (HES1)
and Hes related family bHLH transcription factor with YRPW
motif (HEY1), that in turn upregulate Slug and Snail expression
(Kar et al., 2019). Multiple hypoxia-induced EMT markers have
been identified, including histone deacetylase 3 (HDAC3), WD
repeat domain 5 (WDR5), histone H3 acetylated at lysine 4
(H3K4Ac) at the chromatin level, and two transcription factors,
smoothened (SMO) and Gli1 (Lin and Wu, 2020). In this field,
Zheng et al. recently reported, in an analysis of 431 gastric cancer
samples, its impact on changes in tumor stroma components, as a
gene set enrichment analysis revealed that EMT, TGF-β signaling,
hypoxia, and angiogenesis gene sets were significantly enriched in
CAFs, and linked with a worse prognosis (Zheng H. et al., 2021).
Hypoxia and hypoxia-induced ROS are among the most important
physiological regulators of de-differentiation and thus have a
profound impact on the acquisition of a motile phenotype in
cancer cells and the metastatic process (Jensen, 2015).

Another consequence of hypoxia is an increase in the expression
of the VEGF, which contributes to angiogenesis by recruiting
endothelial cells into hypoxic areas and stimulating their
proliferation. In the relationship that links EMT and tumor
angiogenesis, the Twist1-Jagged1-kruppel-like factor 4 (KLF4) axis
appears to play a crucial role (Chen and Wu, 2016). In normal
tissues, endothelial cells that line blood vessels serve as a barrier to the
movement of cells into or out the blood. However, although it has
long been debated whether or not cancer cells are passively shed into
the circulation due to defective vessels, it is now established that
cancer cells secrete growth factors and cytokines that produce

vascular hyperpermeability and compromise endothelial barrier
function, thereby facilitating their transmigration through the
vascular wall (Shenoy and Lu, 2016). Another process of
microvascularization, which differs from angiogenesis but is also
related to EMT, is vasculogenic mimicry (VM), by which highly
aggressive tumor cells form vessel-like structures (Kotiyal and
Bhattacharya, 2015). Increasing evidence has demonstrated how,
under hypoxia and high interstitial fluid pressure, the EMT-inducing
TF Twist1 induces CSCs to differentiate into endothelium-like cells
expressing the endothelium marker VE-cadherin, promoting ECM
remodeling in VM (Sun et al., 2017). Endothelial cells in tumors
exhibit remarkable plasticity, as revealed by EndMT, where
endothelial cells convert to mesenchymal cells, giving rise to
fibroblasts but also bone cells (van Meeteren and ten Dijke,
2012). Recent findings have emphasized the role of enhancers of
EndMT that play the role of inflammatory signaling molecules in
various cancers, modulating the tumor microenvironment by
affecting the immune cell response (Yoshimatsu and Watabe,
2022). Finally, Lin (2020) reported that among endothelial cells
making up the lining of tumor vasculature, most are aneuploid
tumor-derived endothelial cells (TECs) generated from
“cancerization of stromal endothelial cells” and “endothelialization
of carcinoma cells,” both being related to EMT, and that share with
CTCs the ability to shed into peripheral circulation.

Among stromal components of the tumor microenvironment
involved in EMT, a new player was recently identified that could
explain the peculiar role of the peritoneal cavity as a privileged
location for homing spots for secondary tumors, represented by
adipocytes (Mikula-Pietrasik et al., 2018). A plethora of evidence
revealed that adipose tissue contributed to cancer progression, and
leptin, an adipokine primarily synthesized from adipocytes but also
produced by fibroblasts, was shown to be involved in breast cancer
(Andò et al., 2014). Cancer-associated adipocytes (CAAs) were
generated from primary preadipocytes from mammary fat pads of
human breast cancer patients that highly expressed the granulocyte
colony-stimulating factor gene (G-CSF), conferring an invasive
advantage on triple-negative cancer cells for their progression
through EMT via STAT3 signaling (Liu et al., 2020). In
pancreatic cancer, Takehara et al. (2020) also reported the
ability of adipocytes to de-differentiate to CAAs when co-
cultured with cancer cells, EMT being induced in the latter via
expression of serum amyloid A1 (SAA1), a pro-inflammatory
cytokine also expressed in breast cancer cells and TAMs,
leading to poorer prognosis in patients.

Over the last 2 years, considerable attention has been given to
the role of CAFs in EMT since the pioneering work of Gaggioli who
highlighted the fact that epithelial cancer cells could take advantage
of the mesenchymal characteristics of CAFs without the need to
undergo EMT themselves (Gaggioli 2008). To give just a few of the
numerous breakthroughs, CAFs were shown to highly express lysyl
oxidase, leading to an increase in matrix stiffness, promoting the
EMT process in squamous cell carcinoma cells through the focal
adhesion kinase phosphorylation pathway (Zhang J. Y. et al., 2021).
The poor prognosis of patients with gastric cancer was explained by
a high expression of galectin-1 in the microenvironment, produced
by CAFs, promoting invasion of cancer cells via EMT through the
TGF-β1/Smad signaling pathway (You et al., 2021). A new
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mechanism was elucidated for the acquisition of an invasive
phenotype of non-neoplastic breast cells, induced by CAFs,
involving interleukin 8 (IL-8) and S100A8 (Lim et al., 2021).
CAFs isolated from lung adenocarcinoma tumors promoted
EMT via production of stromal-derived factor-1 (SDF-1),
making it possible to identify C-X-C chemokine receptor type 4
(CXCR4)/β-catenin/peroxisome proliferator-activated receptor
gamma (PPARδ) signaling in this process (Wang Y. et al.,
2021). TGF-β1-activated CAFs appeared to promote EMT and
breast cancer growth by autophagy or overexpression of fibroblast-
activating protein-α (Huang et al., 2021). Finally, dynamic crosstalk
between CAFs and cancer cells involve transfer of genetic messages
such as ncRNA-loaded exosomes, and in this field, a lncRNA was
recently characterized as participating in this process (Zhou et al.,
2021). Consequently, bearing in mind all these improvements,
today CAFs represent a crucial therapeutic target for getting rid of
the deleterious effects of EMT in invasive cancers (Es et al., 2021).

Regarding CSCs, Paramanantham et al. (2021) demonstrated
how, in the mechanisms accounting for the maintenance and/or
induction of EMT and CSCs, the doxorubicin resistance of human
breast cancer cells was transferred to parental, sensitive cancer cells
through autocrine signaling. To improve our understanding of
cellular communication, Acuña et al. showed that one member of
the connexin family, Cx46, representing transmembrane proteins
forming two different types of ion channels allowing the cytoplasm
to communicate with ECM, modulated CSC and EMT properties
in breast cancer cells (Acuña et al., 2021). In parallel, the role of
T-box genes has also been highlighted, as they were reported to
drive or repress EMT in cancer, while some of them positively
regulate CSCs, including brachyury (TBXT), TBX3, TBX5, TBX19,
and TBX21 (Niu et al., 2022).

The last important stromal component involved in EMT in
cancer corresponds to immune cells. Among them, the means used
by the three categories of immunosuppressive cells, including
regulatory T cells (Tregs), myeloid-derived suppressor cells
(MDSCs) and TAMs, to repress the activity of T cells, were
recently reviewed (Taki et al., 2021). Focusing on Tregs, their
expression being increased in hepatocellular carcinoma and
associated with tumor metastasis and poor prognosis, Shi et al.
found that invasion was promoted by TGF-β1-induced EMT (Shi
et al., 2018).Moreover, Kinoshita et al. (2020) also reported that the
combined secretion of TGF-β1and interleukin 6 (IL-6) by cancer
cells induced a heterogeneity of Tregs and/or interleukin 17 (IL-17)-
producing T helper 17 cells, favoring the progression of biliary tract
cancer cells. Monocytes and monocytic-MDSCs are recruited from
blood to the tumor by several cytokines, including CCL2, CCL5
andCSF1, which differentiate into TAMs (Taki et al., 2021). Recent
investigations on TAMs have revealed they induce EMT in
osteosarcoma cells by activating the COX-2/STAT3 axis (Han
et al., 2019). Subsequently, a pan-cancer EMT analysis of 22
cancer types in TCGA datasets highlighted that the first
distinctive feature of the EMT-high (mesenchymal) tumors was
the enrichment in TAMs (Tiwari et al., 2021). Regarding MDSCs,
the distinct role of the different subsets in tumor EMT was
reviewed (Cai et al., 2021a), while inducing EMT and metastatic
properties in lung cancer cells was found to be promoted by
MDSCs through CCL11 and the activation of ERK and AKT

signaling (Lin S. et al., 2021). Papadaki and colleagues’ data also
showed a clear association between CTCs (bearing EMT or/and
CSCs features) and a subset of CD14+ CD15+MDSCs inmetastatic
breast cancer patients (Papadaki et al., 2021).

4 MOLECULAR AND CELLULAR CANCER
EMT: TARGETS OF CURCUMINOIDS

Like other categories of phytochemicals, curcuminoids are
characterized by their ability to simultaneously target multiple
signaling pathways, an observation often associated with the
concept of “polypharmacology” (Franci et al., 2010). This has
been well reviewed in past decades and confirmed more recently
in questions relevant to EMT in cancer (Gall Trošelj et al., 2020),
where the relationships with CSCs are a growing field of interest
(Cianciosi et al., 2018). More precisely, Buhrmann and colleagues
have shown that curcumin had the potential to dramatically
decrease the crosstalk between CSCs and stromal fibroblasts
(Buhrmann et al., 2014) (Figure 4). Additionally, an important
aspect of its pharmacological effects relies on inhibition of several
pathways important for CSCs, such as NF-κB, PI3K/Akt/mTOR,
Notch, Wnt, and Hippo/YAP (Ke et al., 2021), but also of signaling
crosstalks involved in chemoresistance (Vinod et al., 2013).
Moreover, unlike other Hedgehog inhibitors that produced some
adverse effects in vivo, the combination of curcumin with
chemotherapeutics or targeted agents has represented a new
therapeutic strategy with low or no toxicity (Li et al., 2012; Dong
et al., 2021). The subcellular targets of 16 curcumin analogs have
more specifically been reviewed (Adeluola et al., 2021), while
complementary data on EMT potential targets for eight
additional analogs are summarized in Table 1. In this field, the
targeting of EMT pathways by curcumin analogs such as ST09
produced a significant reduction in tumor growth without any
adverse systemic toxicity in vivo (Ravindran et al., 2021).
Hypoxia and the HIF signaling pathway led to enrichment in
CSCs, and curcumin/curcuminoid effects against cancer EMT are
mediated through its action on this major tumormicroenvironment
factor, through a decrease in the expression of miR-21, miR-210, IL-
6, HIF-1α, and VEGF (Bao et al., 2012b). Another targeted growth
factor involved in tumor angiogenesis (Shen Y. W. et al., 2021) is
connective tissue growth factor (CTGF) (Shao et al., 2019). Jiao et al.
(2016) has also shown that curcumin mimicked the effects of c-Met
inhibitors, blocking c-Met phosphorylation and downstream
activation of Akt, mTOR and S6. This blockade of c-Met by
curcumin was recently confirmed, inhibiting the increase in
vimentin (Onishi et al., 2020), an interesting finding as c-Met
engagement is known to activate multiple signal transduction
pathways, such as RAS (“Rat sarcoma virus”), PI3K, STAT, Wnt
and Notch. To give just one more example of the positive
consequences of the effects of curcumin in this specific field of
research, Zheng et al. recently reviewed its additional ability to
suppress VM in hepatocellular carcinoma (Zheng N. et al., 2021).
Regarding CAFs, curcumin downregulated the expression of alpha-
smooth muscle actin (α-SMA) and inhibited their secretion of pro-
carcinogenic cytokines, such as TGF-β1, MMP2, and stromal cell-
derived factor 1 (SDF-1) (Ba et al., 2020). Moreover, the molecular
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effects of curcumin on CAFs include ROS-mediated ERS through
the protein kinase R-like endoplasmic reticulum kinase (PERK)-
eIF2α-activating transcription factor 4 (ATF4) axis, and a decrease
in mitochondrial membrane potential, leading to apoptosis (Zeng
et al., 2020). Finally, in link with Figures 2, 3, the analysis of whole
transcriptome alteration in curcumin-treated lung cancer cells also
identified ECM receptor genes involved in EMT (Li et al., 2017).

Among immune cells, the populations of two other categories
were affected by curcumin treatment, neutrophils through
activation of the p38 MAPK pathway (Hu et al., 2005), and
Tregs via downregulation of TGF-β and interleukin-10 (IL-10) in
these cells (Bhattacharya et al., 2010) (Figure 4). Conversely,
curcumin was found to prevent tumor-induced apoptosis of
thymic and circulating CD4+/CD8+ single/double positive

FIGURE 4 | Effects of curcumin/curcuminoids on tumor microenvironment. The main positive (↑)/negative (↓) reported in the literature are indicated for each
component./illustrate crosstalk suppression/reduction, and the red thunderstorm mitochondrial changes.

TABLE 1 | Curcuminoids (curcumin synthetic analogs) and their potential EMT targets.

Analogs Signaling pathways/Targets Authors

AC17 - Adeluola et al. (2021)
ACS-J9 ROS, p53, epigenetic changes
B19 ROS generation, p38 MAPK
BS109 -
CDF CSCs, miRNAs, NF-κB
CLEFMA NF-κB, JNK
DM-1 -
EF24, EF31 NF-κB, HIF1α, ROS, angiogenesis
FLLL12, FLLL31, FLLL32 JAK/STAT, p-AKT
GO-Y030 NF-κB, Pi3K/AKT, JAK/STAT
HO-3867, HO-4918 p53, pAKT/STAT3
PAC NF-κB, Wnt
UBS109 NF-κB, Angiogenesis

BHMC miRNAs Yeap et al., 2021
Comp34 lncRNA = NUDT3-AS4 Hao et al. (2020)
WZ26 ROS, JNK Zhang T. et al. (2019)
WZ35 ROS, p38, Hippo Wang et al. (2019)
ST09 miRNAs Ravindran et al. (2021)
GL63 lncRNA = circZNF83/miR-324-5p Zhao J. a. et al. (2021)
L48H37 JAK/STAT Lu K. H. et al. (2021)
ZYX02-Na Autophagy Zhou G. Z. et al. (2020)
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T cells through downregulation of Bax while increasing Bcl-2
expression through restoration of the cytokine-dependent Jak-3/
Stat-5a signaling pathway (Bhattacharya et al., 2007). Bose et al.
(2015) reviewed other additional positive effects produced by this
molecule on T cells and relevant to immune surveillance,
emphasizing the fact that curcumin restored the population of
CD4+ and CD8+ T cells in the tumor microenvironment, thereby
driving the Th2 cytokine bias towards a Th1 type response. More
recent investigations have revealed that the mechanisms by which
curcumin reinvigorated defective T cells involved a decrease in
programmed cell death protein 1 (PD-1) and T-cell
immunoglobulin and mucin containing protein-3 (TIM-3) on
Tregs, an increase in the secretion of Interferon gamma (IFN-γ)
and Granzyme B, potentiating the effect of CD8+ T cells-
mediated cancer cell killing (Liu L. et al., 2021). Concerning
macrophages, Baidoo et al. (2021) discovered that tumor-
promoting M2 macrophages were repolarized into nitric
oxide-generating tumoricidal M1 macrophages by curcumin
treatment, an action produced by even low, transient levels of
this phytochemical in vivo. Finally, regarding MDSCs, Bill et al.
(2012) found early on those two analogs of curcumin, FLLL32
and FLLL62, inhibited the generation of myeloid-derived
suppressor cells in vitro via STAT3 phosphorylation. Tu et al.
(2012) demonstrated that curcumin induced the differentiation of
MDSCs isolated from the spleen, blood, and tumor tissues of mice
with gastric cancer toward M1-like phenotype, additionally
suppressing the interaction between MDSCs and cancer cells,
finally leading to tumor growth suppression. Interestingly, Tian
et al. (2021) revealed curcumin suppressed the secretion of
granulocyte macrophage colony stimulating factor (GM-CSF)
and granulocyte-colony stimulating factor (G-CSF) by MDSCs
(Figure 4), two essential factors for their modulation into tumor
tissues, with their number also reduced through inactivation of
the Toll like receptor 4 (TLR4)/NF-κB signaling pathway.

We have seen above that among the multiple signaling
pathways on which curcuminoids act in cancer EMT, NF-κB
plays a special role as it ultimately leads to the silencing of many
inflammatory cytokines involved in crosstalk between several
stromal components of the tumor microenvironment. This point
and its connections with other signaling pathways were especially
reviewed in breast cancer by Song et al. (2019). Complementary
investigations based on transcriptomic profiling revealed
curcumin attenuated the upregulation of three NF-κB-
regulated chemokines, CXCL8, CXCL1 and CXCL2, associated
to oxaliplatin resistance in colorectal cancer cells (Ruiz de Porras
et al., 2016). Another crucial target was growth hormone (GH),
expression of which is remarkably high in aggressive breast
cancer cases compared to healthy breast tissues. Coker-Gurkan
et al. (2018) found that the autocrine GH-induced NF-κB
signaling triggering this aggressive phenotype via JAK/STAT
and Akt/MAPK was prevented by curcumin. NF-κB was
identified as an important component in H2O2/ROS signaling,
which regulates survival and proliferation (Saunders et al., 2010)
(Figure 3). Subsequently, inhibition of H2O2-induced ROS
production and the ERK/NF-κB pathway with curcumin was
confirmed (Cao et al., 2016). EMT in pancreatic cancer cells could
also be prevented by curcumin-induced inhibition of the H2O2/

PI3K/Akt/NF-κB axis (Li W. et al., 2018). A curcumin-induced
decrease in p-Akt was also observed in glioblastoma (Wang Z.
et al., 2020) and colon carcinoma cells (Kaur and Moreau., 2021),
and in both cases combined inhibition of the Akt/mTOR
signaling pathway was reported (Figure 3). Finally, another
consequence of enhanced ROS accumulation was a decrease in
mitochondrial membrane potential and cytochrome c release
from the mitochondria into the cytosol (He et al., 2016).

Upstream of Akt, downregulation of the MAPK/ERK protein
serine kinase MEK2 (MA2K2) was also reported (Chiu et al.,
2021), thus, effectively, inhibiting proliferation and inducing
apoptosis by curcuminoids in cancer cells can involve the p38
MAPK pathway (He et al., 2021; Su et al., 2021) (Figure 3).
Blocking ERK1/2 expression in glioma cells by curcumin was also
observed in another study, confirming that the MAPK signaling
pathway is a potential target (Wang P. et al., 2021). The potent
inhibition of EMT in cancer produced by curcumin can also be
explained by the fact that RTKs represent one of the main modes
of its action, upstream of the MAPK, PI3K/Akt, JAK/STAT, and
NF-κB signaling pathways (Dev et al., 2021). However, among
downstream targets, curcuminoids were additionally found to
activate p53 (Xu et al., 2020). Mechanistically, Patiño-Morales
et al. demonstrated that the cytotoxic effect of curcumin against
cervical cancer cells involved promotion of the complex it forms
with NAD(P)H quinone dehydrogenase 1 (NQO1), leading to its
stabilization, thus avoiding the interaction between p53 and its
negative regulator ubiquitin ligase E6-associated protein (Patiño-
Morales et al., 2020) (Figure 3).

An interesting field of investigation is also identification of
downstream target genes of curcumin/curcuminoids. A first key
finding was the discovery that the curcumin treatment of
pancreatic carcinoma cells suppressed interleukin enhancer
binding factor 2 (ILF2) overexpression, which regulated EMT-
associated genes in this type of cancer (Bi et al., 2017). Besides
translation factors, downstream of HIF-1α, curcumin markedly
affects the expression of EMT TFs such as Twist (Kim et al.,
2013), and Snail (Lee et al., 2015). Finally, Bagui et al. (2018)
reported that triple-negative breast cancer cells, which exhibited
aberrant activity of EMT, were characterized by their reduced
expression of zinc finger E-box-binding homeobox 1 (ZEB1) after
treatment with a nanoformulation of curcumin (Figure 3).

Investigations into themain signaling pathways involved in EMT
and detailed above led to identifying some important additional
molecular targets affected by curcuminoids in cancer cells.
Concerning the TGF-β pathway, a key observation was the
decreased phosphorylation of Smad2 and Smad3 produced by
curcumin (Zhang et al., 2016). Interestingly, IL-6 secretion
induced by Smad2 can be severely impeded by curcumin,
attesting of its inhibitory effect on AP-1 (Park et al., 2003). In
colon cancer, the effects of curcumin on the inhibition of TGF-β1-
regulated activation were also reviewed, emphasizing the fact that
beside Smad2 and MMP-9, ERK1/2 and p38 were also affected in a
dose- and time-dependent manner (Ramamoorthi and Sivalingam,
2014) (Figure 3). Regarding the Notch signaling pathway, the
treatment of cholangiocarcinoma cells with curcumin led to a
reduction in Notch1, HEY1, and survivin (Koprowski et al.,
2015) (Figure 3). Subsequently, this inhibitory effect of curcumin
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on Notch1 was confirmed in vivo on xenografts of human cervical
cancer in nude mice (He et al., 2018), with an impact on NF-κB as
the Notch pathway controls its activation (He et al., 2019). Another
main pathway involved in the EMT process isWnt/β-catenin. Vallée
et al. reviewed the mechanisms by which curcumin inhibits this
pathway, emphasizing the fact that it acted as peroxisome
proliferator-activated receptor gamma agonists (Vallée et al.,
2019). Within this pathway, a crucial downstream gene targeted
by curcumin is Axin2, which acts as a negative feedback regulator,
promoting β-catenin degradation (Hao et al., 2021). Furthermore,
the combination of curcumin and N-n-butyl haloperidol iodide
treatment revealed a downregulation of the enhancer of the zeste
homolog 2 (EZH2) in hepatocarcinoma cells, an epigenetic regulator
interacting with β-catenin (Khan et al., 2021). Lu et al. (2020) also
found that curcumin treatment upregulated the expression level of
Tet methylcytosine dioxygenase 1 (TET1), another epigenetic
regulator, which in turn upregulated Naked cuticle homolog 2
(NKD2), an inhibitor of Wnt signaling (Figure 3). Finally, an
interesting observation was the inhibition produced by curcumin
on both β-catenin andGli1, twomembers of theWnt andHedgehog
EMT signaling pathways, respectively, which tended to demonstrate
the existence of a physical interaction between them (Zhang X. et al.,
2020). Wnt and Shh pathways are crucial for maintaining the
stemness of CSCs, and Li X et al. (2018) reported previously that
additional CSC markers such as CD44, aldehyde dehydrogenase 1
family, member A1 (ALDH1A1), Nanog and Oct4 are decreased by
curcumin in breast cancer cells. Alterations in Shh signaling
proteins, such as Gli1, Gli2, Sufu and NF-κB65, were also
documented in pancreatic cancer treated with a nanoformulation
of curcumin (Khan et al., 2019). The observation that curcumin
indeed targeted Gli1 in triple negative breast cancer was also recently
confirmed by another team (LiM. et al., 2022) (Figure 3). Regarding
theHippo signaling pathway, Ye et al. reported that the curcuminoid
CL-6 induced Lats and phosphorylation of YAP in two gastric
cancer cell lines, thereby inactivating YAP (Ye et al., 2019).
Mechanistically, another important finding was the proteasome
degradation of another downstream protein of this pathway by
curcumin, the WW domain containing transcription regulator
(WWTR1, also named TAZ), following its phosphorylation
(Zheng et al., 2020) (Figure 3). The last important EMT
signaling pathway involves TNF-α. Curcumin’s action on this
pathway in vitro and in vivo was extensively reviewed about
1 decade ago (Aggarwal et al., 2013). On the established basis of
curcumin’s action on NF-κB (detailed above), Xia et al. (2016)
revealed that the curcumin derivative W346 inhibited the NF-κB
activation induced by TNF-α by suppressing IKK phosphorylation
and inhibiting degradation of IκB-α in human gastric cancer cells
(Figure 3).

5 NON-CODING RNAS AS NEW TARGETS
OF CURCUMINOIDS

The ability of curcuminoids to target multiple signaling pathways
involved in EMT in cancer has led researchers to investigate its
action on ncRNAs (Toden et al., 2015), a rapidly growing research
field as a 5-times increase was observed in the number of relevant

articles between 2008-2016 and 2017-2022 on the PubMed
database. Moreover, a special focus on EMT was observed
during the two last years. Together with DNA methylation
changes induced by curcumin, the first functional genomic
studies allowed to profile several miRNAs of interest
(Huminiecki et al., 2017). The list was recently updated,
identifying miR-7, miR-17-5p, miR-20a, miR-21, miR-22, miR-
27a, miR-29b, miR-33b, miR-34a, miR-34c, miR-49, miR-101,
miR-141, miR-185, miR-200a, miR-200b, miR-200c, and miR-
429as potential targets (Ashrafizadeh et al., 2020b; Akbari et al.,
2021). Among new insights, microarray and qPCR analysis showed
that miRNA regulation by curcumin analogs such as BHMC
(Table 1) involved both upregulation of miR-3195 and miR-30a-
3p, which target the two EMT drivers VEGF and SNAIL, and
downregulation of miR-6813-5p and miR-6132 (Yeap et al., 2021).

Linked to the TGF-β signaling pathway, insights into the role
of curcumin on miR-19 revealed that it increased the expression
of transcription factor Tap63α, which inhibits the lung cancer
EMT induced by tobacco smoke by transcriptionally suppressing
miR-19 (Xie et al., 2021). Concerning miR-21, linked to the Wnt
pathway, curcumin upregulated the expression of a membrane-
anchored MMP inhibitor, the reversion-inducing cysteine-rich
protein with kazal motifs (RECK), which is a target of miR-21
(Zhou L. et al., 2020). Subsequently, Chen L. et al. (2020)
identified the Von Hippel-Lindau (VHL) as another direct
target of miR-21, curcumin exerting its anti-proliferation, anti-
migration, anti-invasion through miR-21/VHL axis. The last
3 years were also characterized by the demonstration of the
impact of curcuminoids on some newly identified miRNAs.
Curcumin promoted tumor-suppressive autophagy in triple-
negative breast cancer cells CSCs, regulated by miR-181a (Park
et al., 2022). The upregulation of miR-192 observed in cisplatin-
resistant lung cancer cells was reversed by curcumin-induced
inhibition of the NF-κB signaling pathway (Li Y. et al., 2022). The
mi-RNA-transcriptome profiling of ovarian cancer cells treated
with the curcumin analog ST09 (Table 1) also confirmed the
downregulation of EMT pathways, identifying the miR-199a-5p/
DDR1 axis as an important target (Ravindran et al., 2021).
Finally, among miRNAs that play a tumor-suppressing role,
Wang et al. reported the upregulation of miR-206 in
curcumin-treated lung cancer cells (Wang N. et al., 2020), the
inhibition of the PI3K/AKT/mTOR signaling pathway
suppressing migration and invasion.

In the field of lncRNAs, the modulation of their expression by
curcumin in various cancers has recently been reviewed,
including AB073614, AK294004, ANRIL, BC200, CCAT2,
FAL1, GAS5, H19, HOTAIR, KCNQ1OT1, LINC01021, Linc-
Pint, LSINCT5, MALAT1, MEG3, NB5R2, PANDAR, PVT1,
ROR, UCA1, and XIST (Gowhari Shabgah et al., 2021). H19,
especially, which has been the subject of about 60 recent
publications linked to EMT in cancer, was found to be
attenuated in tamoxifen-resistant breast cancer cells after
curcumin treatment (Cai et al., 2021b). Among new findings,
curcumin’s potential role in the treatment of resistant acute
myeloid leukemia was shown to involve inhibition of the
HOTAIR/miR-20a-5p/WT1 axis (Liu J. M. et al., 2021).
Moreover, the inhibition of Warburg effect produced by
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curcumin in invasive thyroid cancer cells, linked to a reduction of
the expression of another lncRNA, LINC00691, appeared to
involve the Akt signaling pathway (Li Z. et al., 2022). Hao
et al. (2020) revealed that a new curcumin analog Comp34
decreased the expression of a newly identified oncogenic
lncRNA, NUDT3-AS4, in triple-negative breast cancer cells,
leading to the dissociation of the complex formed with miR-
99s and finally to the degradation of AKT1/mTOR mRNA. The
effect of curcumin analog EF24 on the overexpression of another
lncRNA, the human leukocyte antigen complex group 11
(HCG11), has just started to be documented too (Duan et al.,
2022).

Using a high-throughput microarray, Yang et al. (2020)
showed how curcumin regulated the circRNA network,
establishing a link with radiosensitization of nasopharyngeal
carcinoma cells. As CircRNAs usually sponge miRNAs, recent
investigations on the effects produced by curcuminoids have
added even more complexity to this huge regulation network.
These included the effect of the curcumin analog GL63 (Table 1)
on the circZNF83/miR-324-5p/CDK16 axis (Zhao J. a. et al.,
2021), and of curcumin on the PLEKHM3/miR-320a/SMG1 axis
(Sun and Fang, 2021), circFOXP1/miR-520a-5p/SLC7A11
(Wang W. et al., 2021), and circ-FNDC3B/miR-138-5p/IGF2
axis (Xue et al., 2021).

6 NEW INSIGHTS FROM MALIGNANT
MESOTHELIOMA STUDIES

EMT was identified early as an important parameter involved in
the pathogenesis of MM (Kamp, 2009). This is related to the fact
that mesothelial cells, while deriving from the mesoderm through
EMT during their differentiation, exhibit many characteristics of
epithelial cells (Batra and Antony, 2015). Ramundo et al. (2021b)
in their review of the importance of EMT in the pathogenesis of
this devastating cancer, have recently emphasized its crucial role
through the involvement of TGF-β, tumor microenvironment
crosstalk, immunosuppression, and oxidative stress, linked to
previous findings related to hypoxia and HIF-1α (Kim et al.,
2018). In our identification of MM biomarkers associated with
the highest invasiveness, the highest expression level of fibroblast
growth factor 2 (FGF2) specifically observed in the rat
experimental tumor M5-T1, in comparison with the two less
invasive F5-T1 and F4-T2 (Nader et al., 2018), agreed well with
the reported important role of this growth factor (Schelch et al.,
2018).

Regarding the role that curcumin treatment plays in
decreasing the high abundance, or high expression level of
cancer EMT biomarkers, previous observations pointed to two
important targets, fibronectin, and vimentin. Linked to activation
of the TGF-β1 pathway, fibronectin helps guide cancer cells to
migrate, and high expression is also observed in cells with CSC
capabilities (Cervantes-Arias et al., 2013). The secretion of
oncofetal fibronectin by CAFs mediates the development of an
invasive phenotype in cancer cells through reorganization of the
ECM (Berndt et al., 2015). The expression of fibronectin was also
increased when colon cancer cells were co-cultured with

mesenchymal stem cells (MSCs), being localized at the edges
of cancer clusters where cancer cells directly came into contact
with MSCs (Takigawa et al., 2017). Moreover, fibronectin is a
useful biomarker of EMT-induced chemo-resistance in
hepatocellular carcinoma cells (Karaosmanoğlu et al., 2018).
The role of CAF-secreted fibronectin as an extracellular driver
of cancer progression was emphasized, serving as a scaffold for
invasion, promoting cell growth, and serving as a nidus for new
vessel formation (Rick et al., 2019). Interestingly, the parallel
increase we observed between fibronectin and S100A4 during
mesothelial cell tumorigenesis (Nader et al., 2020), and the
dramatic increase associated with the highest tumor
invasiveness (Nader et al., 2018), resonate with findings
reporting cooperation between fibronectin and S100 proteins
in shaping the pre-metastatic niche in lung, liver, and bone
(Paolillo and Schinelli, 2019). In the context of the metastatic
colonization of the liver by the most invasive experimental rat
MM cell line, M5-T1, we found fibronectin and vimentin,
showing increased abundance compared to normal rats, which
was completely reversed in curcumin-treated rats (Pouliquen
et al., 2020). In the same study, a tendency toward the same
evolution was observed for S100A4, while two other proteins in
the S100 family, encoded by the S100a6 and S100a11 genes,
exhibited a similar increase in untreated tumor-bearing rats,
which was completely reversed upon curcumin treatment.
Subsequently, another investigation conducted on lymphoid
organs collected from the same three groups of rats revealed
that the decrease observed in fibronectin and S100A4 levels in the
spleen was among the list of biomarkers of therapeutic efficacy
identified in curcumin-treated rats (Pouliquen et al., 2021).

Our data obtained using MM as experimental tumor models
involving EMT, and the observations we made on curcumin-
treated rats are consistent with previous reports documenting the
effects of curcuminoids on vimentin and fibronectin (Figure 3).
In the first case, curcumin’s ability to inhibit the increase in the
levels of vimentin produced by hepatocyte growth factor (HGF)
involved a downregulation of the expression of phosphorylated
c-Met (Onishi et al., 2020). Evidence for a downregulation of
vimentin produced by curcumin in a concentration-dependent
manner, in parallel with the transcription factors Snail1 and
Twist, has previously been described (Chen T. et al., 2020). Li
et al. (2020) have also reported another mechanism by which a
curcumin-induced decrease in vimentin expression was
comparable with the effect of IL-6-neutralizing antibody
treatment on pancreatic cancer cells, suggesting it interfered
with tumor-stromal crosstalk under hypoxic conditions
(Figure 3). Another line of evidence in favor of this latter
mechanism came from our observation of a parallel decrease
in vimentin and IL-6 expression in residual MM tumors from
curcumin-treated rats relative to untreated rats (Pouliquen et al.,
2017). In the second case, curcumin was shown to inhibit
adhesion and haptotactic migration of hepatocellular
carcinoma cells to fibronectin (Ohashi et al., 2003), and to
reduce the secretion of fibronectin by leiomyoma cells (Malik
et al., 2009). However, these effects were not limited to curcumin
as other synthetic curcuminoids exhibited inhibitory effects
against fibronectin, an important player in tumor angiogenesis
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(Shimazu et al., 2018). Finally, our results obtained onMMagreed
with the findings of two studies reporting the effects of curcumin
treatment on the downregulation of both fibronectin and
vimentin in breast cancer cell lines (Gallardo and Calaf, 2016),
and the inhibition of stem cell gene expression and
mammosphere formation (Chenxia et al., 2019).

In our studies on the effects of curcumin against the metastatic
process of an aggressive model of rat MM, we found several
members of the S100 protein family were affected, and to the best
of our knowledge these were the first reports showing the impact
of this phytochemical simultaneously on S100A4, S100A6,
S100A8 and S100A11 (Pouliquen et al., 2020; 2020b; 2021).
The involvement of S100A4 in EMT and MM has been
previously documented in a large collection of 109 tumor
specimens from patients, showing its specific high expression
in the sarcomatoid histological subtype, together with vimentin
and ZEB1, linked to aggressive features (Fassina et al., 2012).
Interestingly, the combined decrease in S100A4 and fibronectin
levels we specifically observed in the spleen of curcumin-treated
rats (Pouliquen et al., 2021) found an echo in the findings of one
previous study reporting a connection between Hedgehog
signaling and S100a4 regulation in pancreatic cancer cells (Xu
et al., 2014). Together with S100A4, S100A6 is the most widely
documented protein in the S100 family and is a potential
biomarker of tumor invasiveness in proteomics in MM and
other cancers (Pouliquen et al., 2020b), and their combined
involvement in breast cancer cell proliferation and motility
was recognized early (Fang et al., 2009). Before our
investigations, S100A6 in MM had never been documented,
however, high levels of both annexin A2 and S100A6 have
been associated with poor prognosis in gastric cancer (Zhang
et al., 2012), while high serum levels of S100A6 correlated with
lymph node metastasis and TNM stage (Zhang et al., 2014). High
S100A6 levels in clear cell renal cell carcinoma have also been
reported as predicting outcomes in patients (Lyu et al., 2015).
However, our data fits well with the findings on another cancer
type by Khoontawad et al., who revealed that curcumin-fed
hamsters with an experimental cholangiocarcinoma presented
a downregulation of both S100A6 and vimentin (Khoontawad
et al., 2018). Finally, regarding S100A11, on which the effect of
curcumin has never been investigated so far, the first studies on
its implication in EMT in cancer revealed this protein was present
in a list of 19 pseudopod-specific proteins common to six
metastatic human tumor cell lines (Shankar et al., 2010).
Subsequently, the LASP1-S100A11 axis was found to modulate
TGFβ/Smad signaling in EMT (Niu et al., 2016). Zhang and
colleagues confirmed that point, showing that S100A11
promoted accumulation of TGF-β1 expression and
upregulation of p-Smad2 and 3 (Zhang et al., 2018), while
activation of the p38/MAPK pathway was also involved in its
action (Zhang et al., 2019). Over the last 3 years, additional
insights into the multiple implications of this protein in the
EMT process have been provided, such as its interaction with
annexin A2 (Tu et al., 2019), its contribution to higher stiffness-
induced mesenchymal shifts through its membrane translocation
(Dong et al., 2019), and its participation in multiple signaling
pathways, including MAPK3 (ERK1), phosphatidylinositol-4,5-

bisphosphate 3-kinase catalytic subunit alpha (PIK3CA), HGF/
MET, cyclic adenosine monophosphate response element
binding protein (CREBBP) and MMP9 (Cui et al., 2021).
Finally, the decrease in S100A11 abundance produced by
curcumin treatment in our studies in vivo may open up
interesting prospects as the only previous published works on
this protein in MM reported active secretion of S100A11 by
mesothelioma cells in vitro (Saho et al., 2016), while its
neutralization by an anti-S100A11 antibody inhibited the
proliferation of pleural MM cells in vitro and in vivo (Sato
et al., 2018).

7 CONCLUSION

Curcuminoids are interesting molecules both for basic science
and translational studies on EMT and cancer invasiveness
because they have the potential to simultaneously target
multiple signaling pathways. Additionally, they can also
interfere with crosstalk between components of the tumor
microenvironment. These specificities are related to their
ability to directly bind diverse proteins with high affinity
where the combination of two hydrophobic phenyl rings with
a flexible methylene bridge plays a crucial role, as evidenced by
structure-activity relationships and docking studies. An
important unsolved question concerns the new technologies
and methodologies that may provide insights on the time- and
dose-dependency of their effects in the future to fully understand
the mechanisms of action of these molecules. Moreover, it is also
crucial to distinguish between the primary molecular targets and
downstream events. The challenge is further complicated by the
fact that depending on the cancer localization, histological
subtype and grade/immune status of the host, the patterns of
aberrant signaling and microenvironment composition may
differ considerably. Although the development of network
analyses may help improve our understanding of their
complex pharmacology, making it possible to decipher how
signaling networks are organized, dynamic modeling also
appears necessary for determining changes in time and space.
Finally, one more exciting research field concerns the question of
biologically active curcuminoid metabolites which may
contribute to the overall beneficial pharmacological effects
observed in vivo against the deleterious implication of EMT in
invasive cancers.
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