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A new and effective feature ensemble with a multistage classification is proposed to be implemented in a computer-aided diagnosis
(CAD) system for breast cancer diagnosis. A publicly available mammogram image dataset collected during the Image Retrieval in
Medical Applications (IRMA) project is utilized to verify the suggested feature ensemble and multistage classification. In achieving
the CAD system, feature extraction is performed on the mammogram region of interest (ROI) images which are preprocessed by
applying a histogram equalization followed by a nonlocal means filtering. The proposed feature ensemble is formed by
concatenating the local configuration pattern-based, statistical, and frequency domain features. The classification process of
these features is implemented in three cases: a one-stage study, a two-stage study, and a three-stage study. Eight well-known
classifiers are used in all cases of this multistage classification scheme. Additionally, the results of the classifiers that provide the
top three performances are combined via a majority voting technique to improve the recognition accuracy on both two- and
three-stage studies. A maximum of 85.47%, 88.79%, and 93.52% classification accuracies are attained by the one-, two-, and
three-stage studies, respectively. The proposed multistage classification scheme is more effective than the single-stage
classification for breast cancer diagnosis.

1. Introduction

Cancer is a group of body cells that grow and proliferate
abnormally and uncontrollably because of damaged DNA
(deoxyribonucleic acid). This group of body cells, known as
tumors, may be either benign or malignant. Benign tumors
are not cancerous and life-threatening as they do not spread
to other tissues or organs of the body. In stark contrast to
benign tumors, malignant ones tend to be metastasized and
may generally be fatal.

Breast cancer originates in a breast tissue. It is the most
frequently diagnosed cancer among women, and it is 100
times more common in women than in men [1]. Worldwide,
breast cancer is the second major cause of female deaths
resulting from cancer [2]. There is no known way to prevent
breast cancer, but mortality can be reduced with early diag-
nosis [3]. Radiological screening is the most important action
to take for early diagnosis [4]. Although mammography is

known as the most effective radiological screening technique
both for breast investigation and diagnosis, the subtle differ-
ence of X-ray permeability between normal and abnormal
regions makes cancer detection difficult [5]. This difficulty
is aggravated as the breast tissue type becomes denser. More-
over, human factors heavily affect the interpretation of mam-
mogram images. A computer-aided diagnosis (CAD) system
detects and diagnoses cancer without these negative factors
[6]. Hence, using a CAD system increases the sensitivity of
cancer detection by providing radiologists a second opinion.

Classification accuracy of CAD systems is directly
affected by detection of suspicious regions for breast cancer,
namely region of interest (ROI), from whole-breast mam-
mogram images. Besides the low-contrast problem, the dig-
itization noise in mammograms also affects the success of
ROI detection negatively; and noise reduction is required
to improve the image quality [7, 8]. Hence, preprocessing
is necessary and should be the first of the four stages in a
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CAD system. Some studies have tried to overcome the
problem of low contrast using histogram processing oper-
ations [8–11], morphological operations [12], and statistics
theory [13], while unsharp filtering [8], wavelet transform
[12, 13], and median filtering [14, 15] are the most common
noise reduction.

In the second stage of a CAD system, the ROIs are
detected from entire breast images. ROI detection in the
past decade was generally performed using wavelet trans-
forms [16], segmentation algorithms [17, 18], and edge
operators [19].

The efficiency of a CAD system is directly related to the
efficacy of data representation. Feature extraction, which is
the third stage, is an undoubtedly important task for pattern
recognition and is implemented with a remarkable number
of techniques in several studies. Specifically, there are statisti-
cal techniques [20–25], model-based techniques [26, 27],
graph-theoretic approaches [28], and signal processing tech-
niques that compute breast tissue features from pixel charac-
teristics [22, 29] or frequency spectrum [21, 23, 24, 30–32]
for breast cancer diagnosis on a mammographic image.
Additionally, there are various studies using mammographic
features [20, 33–36] like shape, spicule index, contour, size,
density, and brightness.

Finally, in the fourth stage, extracted discriminative
features are used for the classification of ROIs into normal,
benign, and malignant lesions. Artificial neural networks
[20, 27, 29, 36, 37], support vector machines (SVMs)
[20, 25, 30, 31, 33, 38, 39], subspace learning algorithms
[22, 25, 38, 39], Bayes, decision tree, and k-nearest neigh-
bor classifiers [20, 25] are well-known classifiers used for
mammogram classification.

Mammogram-based breast cancer diagnosis studies can
be categorized as microcalcification detection, mass detec-
tion, and mass recognition. Pal et al. presented a multistage
system for microcalcification detection [27]. This multistage
system first classifies a mammogram image as normal or
abnormal; then, for an abnormal image, it detects the regions
with microcalcification. The authors extracted statistical fea-
tures on manually detected ROIs and implemented feature
selection and classification using a multilayer perceptron
neural network [27]. Lado et al. developed an extended gen-
eralized additive model (GAM) involving interaction of
breast tissue factors to reduce the false-positive rate for
microcalcification detection [16]. The authors stated that
the false-positive rate has decreased to 0.74 per image from
1.46 when the breast tissue type is integrated into the
GAM. Similarly, Malar et al. studied the effectiveness of
breast tissue type integration on microcalcification detection
using an extreme learning machine and achieved an accuracy
of 94% using wavelet-based features [40]. Since the number
of cells with microcalcification is smaller than the number
of healthy cells, microcalcification detection is an unbalanced
classification problem. Bria et al. proposed a cascaded five-
classifier approach to eliminate the predominance of healthy
cells [41]. In this approach, the first classifier initially dis-
criminates the normal and abnormal cells and later benign
microcalcification clusters (μCs) and false detections of nor-
mal cells are eliminated using a RankBoost classifier. The

resultant malignant μCs are evaluated by the next classifier,
and the process goes on until the μCs from the last classifier
are obtained. Ultimately, final μCs are selected according
to their probability maps with 93% accuracy. Kekre et al.
[17, 18] segmented mammogram images using a vector
quantization technique for mass detection. They computed
the areas of each region on the segmented images and classi-
fied the region having the largest area as a mass. Hachama
et al. used an image registration for mass detection [42].
Savitha et al. suggested that analyzing mammogram images
in the complex plane will increase the accuracy of mass
detection [43]. They mapped the mammogram images into
a complex plane and classified them using a fully complex-
valued relaxation neural network with an accuracy of
97.84%. Vallez et al. stated that lesion detection and recogni-
tion accuracy can be increased by using predefined breast
tissue type information [25]. The classification accuracy rate
has been increased to 91% from 78% in their study. Guliato
et al. suggested that the previously proposed polygonal
modeling [44] is an effective method for mammogram classi-
fication as it helps in noise reduction while preserving the
important features [45]. Oliver et al. proposed a knowledge-
based approach for the automatic detection of microcalcifica-
tions and clusters in mammographic images [37]. In this
approach, local features that characterize the morphology
of microcalcifications are first extracted to create a dictionary
of visual words by a bank of filters. Then, feature selection is
accomplished by using a boosted classifier for microcalcifica-
tion detection. Finally, the cluster detection is achieved at
80% sensitivity by locally integrating the individual microcal-
cification probability images.

In this paper, a new and effective feature ensemble with a
multistage classification is proposed to be implemented in a
CAD system for breast cancer diagnosis. The result is verified
using a publicly available mammogram image dataset col-
lected during the Image Retrieval in Medical Applications
(IRMA) project. For the preprocessing stages, contrast
enhancement and noise reduction operations are first exe-
cuted on each mammogram ROI in the database by applying
a histogram equalization followed by a nonlocal means
(NLM) filtering [46]. The local configuration pattern (LCP)
algorithm [47] is then applied to obtain LCP-based feature
vectors from the mammographic images. Then, some statis-
tical and frequency-domain features are extracted and
concatenated with the LCP-based feature vectors. Eventually,
these feature vectors formed by LCP-based, statistical, and
frequency-domain features are classified as normal, benign,
and malignant using eight different popular classifiers via
cross validation. The classification process is performed in
three different cases in this study. In the first case, called a
one-stage study, the feature vectors are directly classified
into three classes. In the second case, called a two-stage
study, the feature vectors are initially categorized according
to their breast tissue types, and are subsequently classified as
normal, benign, and malignant. In the third case, called a
three-stage study, the feature vectors are first classified
according to their breast tissue types. Afterward, they are
classified as normal and abnormal. At the third stage of this
case, the feature vectors labeled as abnormal classes are
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categorized as benign and malignant. Moreover, a classifier
combination via a majority voting of the most successful
three classifiers is employed for both the two- and three-
stage studies.

This paper is organized as follows. The preprocessing
and the whole feature extraction procedure realized in
this paper are explicated and all of the classification
methods and the evaluation metrics are briefly described
in the following section. Discussions on the experimental
studies and the obtained results are given in Section 3,
whereas the main conclusions are precisely specified in
the last section.

2. Materials and Methods

2.1. Database. It is very important to work on images with
their ground truths for medical imaging applications [48].
In this study, a publicly available mammogram dataset con-
structed during the IRMA project is used [49]. This dataset
consists of 12 classes defined by the Breast Imaging Report-
ing and Data System (BI-RADS). There are four breast
tissue classes (fatty, fibroglandular, heterogeneously dense,
and extremely dense) and three health status classes (nor-
mal, benign tumor, and malignant tumor) for each breast
tissue type. There are 233 mammogram ROI parts, lower-
dimensional mammogram images that consist of just
healthy/cancerous regions of the whole breast, for each
class, and therefore, a total of 2796 parts are available in
the dataset [49]. The ROI parts of each class are classified
using cross-validation technique. It implicitly means that
210 of 233 parts (90%) in each class are used for training
while the remaining 23 of 233 parts (10%) are treated as
the test parts. The process is repeated for each fold in the
cross-validation technique, and the average classification
accuracy for each classifier is obtained.

2.2. Preprocessing. In the preprocessing stage, a histogram
equalization followed by the NLM filtering is applied on the
mammogram parts [48]. The NLM filter is an adaptive
smoothing filter that changes the window size according to
the similarity between neighborhoods of any two pixels as
well as preserves the fine details by computing a weighting
function according to the derivatives in the corresponding
search window [46, 48]. Given a discrete noisy image
v = v i i ∈ I , the filtered valueNL v i of any pixel is com-
puted as

NL v i = 〠
j∈I

w i, j ⋅ v j , 1

where w i, j refers to the weight coefficient computed utiliz-
ing the similarity between pixels i and j and satisfies the con-
ditions 0 ≤w i, j ≤ 1 and ∑jw i, j = 1.

The similarity between pixels i and j is measured as the
Gaussian weighted Euclidean distance, v Ni − v Nj

2
2,σ,

where σ σ > 0 is the standard deviation of the Gaussian
kernel, whereas v Ni and v Nj are the neighborhoods of
pixels i and j in the similarity window [48]. The pixels with
larger weights indicate a similar neighborhood as it can be

understood by analyzing (2). Zi and h in (2) refer to the
normalizing constant and the degree of filtering, respectively.

w i, j =
1
Zi

⋅ e− v Ni −v Nj
2
2,σ
/h2 , 2

Zi = 〠
j

e− v Ni −v Nj
2
2,σ
/h2 3

2.3. Feature Extraction. The most essential stage in CAD
systems, as well as in any pattern recognition problem, is
the feature extraction in which data is represented in a low-
dimensional space by the most descriptive features that
maximize and characterize the interclass differences. In this
study, three groups of features are concatenated to con-
struct the feature vectors. The first group is LCP-based
features obtained using LCP algorithm, while the second
and third groups are some statistical and frequency-
domain features, respectively.

2.3.1. Local Configuration Pattern. The local binary pattern
(LBP) is generally used for face representation and recogni-
tion in the past two decades [50–52], and it is a grayscale
and rotation-invariant feature extraction technique pre-
sented by Ojala et al. [53].

The grayscale-independent LBP representation of an
image I is obtained by thresholding P neighbors in the circu-
lar neighborhood of radius R with the intensity value of the
central pixel as given in (4).

LBP P, R = 〠
P−1

i=0
u gi − gc ⋅ 2i, 4

u x =
1, x ≥ 0
0, x < 0

5

The terms gi and gc in (4) denote the intensity values
of the neighboring pixel i and central pixel c, respectively.
The rotation-invariant LBP-based feature vectors are
described by the idea of rotating each bit pattern circularly
to a minimum value ending up with the maximum value as
the last element of the feature vectors. Equation (6) intro-
duces the mathematical representation of this idea where
the term LBPriu2 refers to the rotation-invariant LBP-based
feature vectors.

LBPriu2 P, R = 〠
P−1

i=0
u gi − gc , U LBP P, R ≤ 2

P + 1, otherwise
6

The quantization of gray-level differences to binary levels
sometimes causes undesirably the same LBP representations
although the neighborhoods are relatively different. This
problem is solved by computing the local variance VAR
of each pattern, and the joint histogram O is formed. μ in
(7) refers to the average intensity of the neighboring pixels.
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VAR =
1
P
 〠
P−1

i=0
gi − μ 2, 7

O =
LBPriu2

VAR
8

The LBP algorithm is stated to be an effective technique
for detecting local structures; however, the LBPriu2 feature
vectors for patterns having equal variances may be the same
although they have different configurations [47]. Guo et al.
proposed a microscopic (MiC) descriptor that defines the
microscopic configuration of an image by a linear configura-
tion model as a solution to this problem [47]. In this model,
the optimal weights AL of the neighboring pixels are calcu-
lated via the least square estimation technique to form the
central pixel. For the conservation of being a rotationally
invariant characteristic, a one-dimensional Fourier trans-
form of optimal weight vectors is computed and HL values
are obtained. The magnitude ofHL is defined as the MiC fea-
ture of a pattern.

The local configuration pattern (LCP) is a technique that
describes the local structures and microscopic configuration
of a pattern together, where the LCP-based feature vector of
an image is obtained by concatenating the microscopic con-
figuration of each pattern in an image with their joint histo-
gram as [24]

LCP = H0 O0 H1 O1 … Hq−1 Oq−1 , 9

where q is the number of patterns in an image.

2.3.2. Statistical Features. Some significant and descriptive
statistical features of each LCP-based feature vector are cal-
culated as the second group of features to increase the data
representability of the feature vectors. Energy is one of the
most important statistical features of any distribution, and
hence, the energy values of LCP-based feature vectors are
evaluated. The mean, maximum, minimum, and mean
energy of each LCP-based feature vector are additionally
computed as statistical features. In the statistical theory, the
variance, skewness, and kurtosis are defined as variation cri-
terions. Owing to the large variations between healthy and
cancerous regions on a mammogram image, these criterions
are also calculated. Moreover, the standard deviation, energy
variance, and area descriptor [54] of LCP-based feature
vectors are additional variation-related features used in this
study. Radiologists state that cancerous regions and malig-
nant regions have more irregular distribution than healthy
regions and benign regions, respectively. This statement cor-
responds to entropy in statistics. Therefore, the entropy of
each LCP-based feature vector is calculated to measure this
irregularity as a feature. The statistical features utilized in this
study and their mathematical representations for the N × 1
dimensional feature vectors are listed in Table 1.

2.3.3. Frequency-Domain Features. The third group of fea-
tures computed in this study is the frequency-domain
features. Frequency-domain features are determined by
applying a two-level two-dimensional discrete wavelet trans-
form (2D-DWT) using Daubechies1 (db1) wavelet function

on the preprocessed mammogram images, and finally, 16
sub-bands for each mammogram image are obtained. The
energy values of each sub-band are computed since the
brightness is one of the most significant issues for breast
cancer diagnosis. db1 function is a type wavelet in wavelet
analysis. The mother function ψ t of db1 wavelet is
described as [55]

ψ t =

1, 0 ≤ t <
1
2

1,
1
2
≤ t < 1

0, otherwise

10

2.3.4. Feature Vector Construction. The preprocessed mam-
mogram parts are decomposed into four sub-bands that are
LL (low-low), LH (low-high), HL (high-low), and HH
(high-high) by a one-level 2D-DWT utilizing the db1 wave-
let. Several parameter values are experienced in the LCP
transform, and ultimately, the LCP algorithm is applied on
each sub-band using 8 neighbors in the circular neighbor-
hood of radius 2. Therefore, 81 ×1 dimensional LCP vectors
of each sub-band are constructed. The endmost values in
those LCP vectors are appreciably high; therefore, they
are removed to get rid of their domination over other fea-
tures. The remaining 80-dimensional feature vectors of
each sub-band LL‐LH‐HL‐HH are then weighted with
the respective coefficients 1 4‐1‐1‐0 concluded as the
most efficient coefficients by [5]. Then, they are summed

Table 1: Statistical features and their mathematical representations.

Energy 〠
N

i=1
X2
i

Mean μ =
1
N
⋅〠
N

i=1
Xi

Variance Var =
1

N − 1
⋅〠
N

i=1
Xi − μ 2

Maximum Maximum Xi i = 1, 2,…,N
Minimum Minimum Xi i = 1, 2,…,N
Standard deviation σ = var

Skewness
1
σ3

⋅〠
N

i=1
Xi − μ 3

Kurtosis
1
σ4

⋅〠
N

i=1
Xi − μ 4

Area descriptor [50]
σ

μ

Mean energy μEnergy =
1
N
⋅〠
N

i=1
X2
i

Energy variance
1

N − 1
⋅〠
N

i=1
X2
i − μEnergy

2

Entropy −〠
N

i=1
p Xi ⋅ log2p Xi
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up to form an 80-dimensional feature vector for each
mammogram part [48].

In order to increase the representative power of the fea-
ture vectors, 12 statistical features computed from the LCP-
based feature vectors, and 16 frequency-domain features
evaluated from the sub-bands obtained by the decomposition
of the preprocessed mammogram ROI parts using the two-
level 2D-DWT are concatenated to the LCP-based feature
vectors [48]. Consequently, 108-dimensional feature vectors
are extracted from each ROI part. The statistical features
are extracted from the LCP-based feature vectors instead
of extracting them directly from the mammogram texture
to amplify the discriminative power of the LCP-based fea-
ture vectors. The frequency-domain features, which are the
energy values of each sub-band in the spatial domain, are
extracted since the brightness is one of the most signifi-
cant issues for breast cancer diagnosis, and changes in
the brightness in a mammogram image are clearly
observed in the spatial frequency. Table 2 summarizes
the feature vector construction process. In Table 2, the
phrase “LCP: energy” refers to the energy value of an
LCP vector whereas “LLLL: energy” is the energy of the
LLLL (low-low-low-low) sub-band.

2.4. Classifiers

2.4.1. Fisher’s Linear Discriminant Analysis. Fisher’s linear
discriminant analysis (FLDA) tries to find a projectionmatrix
that projects the training data onto a low-dimensional space
that maximizes between-class variance as well as minimizing
within-class variance [48, 56]. This is known as the Fisher
maximization criterion and is defined as

J w =
w

T ⋅ SB ⋅ w

w
T ⋅ SW ⋅ w

, 11

where w , SB, and SW refer to the projection vectors and
between-class and within-class scatter matrices, respectively.

On the test stage of FLDA, any test vector is projected via
w projection vectors, and distances to the training vectors on
the low-dimensional space are calculated [48]. The decision
criterion for FLDA is given as

K = argmin
1≤c≤S

Ω c − Ω test , 12

where c is the class index, S is the total number of classes, and
Ω c and Ω test are the projected training vector of the cth class
and the projected test vector, respectively [48].

2.4.2. Linear Discriminant Classifier. Linear discriminant
classifier (LDC) tries to find the weight vectors w of a linear
hyperplane g x that separates given classes [57]. The
weight vectors of this hyperplane are defined by a linear com-
bination of training feature vectors x of each class. The
linear hyperplane is characterized by the weight vectors and
a threshold w0 as

g x = w
T ⋅ x +w0 13

The LDC assigns any test vector x test to a class accord-
ing to the sign of the projection function given in (14) for a
two-class problem. The terms w1 and w2 in (14) refer to the
class labels.

x test ∈
w1, w

T ⋅ x test +w0 > 0

w2, w
T ⋅ x test +w0 < 0

14

2.4.3. Support Vector Machines. Support vector machines
(SVMs), also known as maximum margin classifiers, deter-
mine the optimal hyperplane that maximizes the distance
between the hyperplane and support vectors [58]. Support
vectors are the training vectors that are nearest from each
class to the hyperplane [59]. As it can classify linearly sep-
arable data, SVM can classify nonlinear data by transform-
ing the data to a higher-dimensional space by using an
appropriate kernel function [49]. If the training set is
TS = x 1, L1 , x 2, L2 ,…, x M , LM for a two-class
problem, where x i i = 1, 2,…,M is the training data
and Li Li ∈ −1, 1 is the class label, the test vector is
classified according to the sign of the function given as

f x test =〠 αi ⋅ Li ⋅ x
T
i ⋅ x test + b , 15

where αi i = 1, 2,…,M are the nonzero quadratic coeffi-
cients and b / w is the perpendicular distance between
the hyperplane and the origin, whereas w is the normal vec-
tor of the separating hyperplane [48].

2.4.4. Logistic Linear Classifier. The logistic linear classifier
(LLC) states that a linear hyperplane can be characterized
by the relationship between the dependent and independent

Table 2: Feature vector construction process.

108-dimensional feature vector content

LCP-based feature
vector

Statistical features
Frequency-
domain
features

80× 1 12× 1 16× 1

The 80-
dimensional
LCP-based feature
vector

LLLL: energy

LLLH: energy

LCP: energy LLHL: energy

LCP: mean LLHH: energy

LCP: variance LHLL: energy

LCP: maximum LHLH: energy

LCP: minimum LHHL: energy

LCP: standard deviation LHHH: energy

LCP: skewness HLLL: energy

LCP: kurtosis HLLH: energy

LCP: area descriptor HLHL: energy

LCP: mean energy HLHH: energy

LCP: energy variance HHLL: energy

LCP: entropy HHLH: energy

HHHL: energy

HHHH: energy
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variables of training feature vectors x [60]. In LLC, this
relationship is determined using a logistic regression analysis
by computing class-conditional probability density functions
of x vectors. The LLCmodel for a two-class problem is given

by (16) where p x wi , β , and β0 are the class-conditional
probability density functions of x , weight vectors for the
linear hyperplane, and a threshold value, respectively.

log
p x w1

p x w2
= β

T ⋅ x + β0 16

The LLC assumes that log-linear models can be formed
between classes with equal prior probabilities and covariance
matrices. This assumption is equivalent to

p w1 x =
exp β

T
⋅ x + β0

1 + exp β
T
⋅ x + β0

,

p w2 x =
1

1 + exp β
T ⋅ x + β0

,

17

β0 = β0 + log
p w1
p w2

, 18

where p wi x and p wi are the probabilities of class wi
given x and prior probability of class wi, respectively. The
decision criterion for LLC is given in

x ∈

w1,
p w1 x

p w2 x
> 1

w2,
p w1 x

p w2 x
< 1,

19

x ∈
w1, β

T ⋅ x + β0 > 0

w2, β
T ⋅ x + β0 < 0

20

2.4.5. Decision Tree. The principle of the decision tree classi-
fier is to cluster any data into subgroups until all elements of
any subgroup have the same class label [48, 61]. Classification
rules are defined by clustering the data into the leaves, class
labels, in the training stage while those rules are applied to
any test sample and the leaf that the test sample reaches
provides the class label of the test sample in the test stage.

2.4.6. Random Forest. The random forest classifier is an
ensemble of decision tree classifiers developed to improve
the classification accuracy [62]. Each tree classifier in this
ensemble votes for the best class of any sample, and the
resultant class label is then specified via a majority voting
technique.

2.4.7. Naïve Bayes. Bayesian classifiers compute the probabil-
ity of each class given any test vector x and assign it to the
class with the highest conditional probability [63]. The
Bayesian decision criterion for a two-class problem is

P w1 x > P w2 x ⇔ x ∈ w1 21

The terms P w1 x and P w2 x denote the posterior
probabilities of classes w1 and w2 given x→, respectively,
where P wi x is computed as

P wi x =
p x wi ⋅ P wi

p x
, 22

p x = 〠
2

i=1
p x wi ⋅ P wi 23

The terms P wi , p x wi , and p x refer to the prior
probability of class wi, the probability of x given class wi,
and the probability density function of x , respectively.
One-dimensional and l-dimensional case computations of
p x wi are given in (24) and (25), respectively. μ, σ, and
∑ in these equations are the mean, variance, and covariance
matrix of the feature vectors, respectively.

p x wi =
1
2π ⋅ σ

⋅ exp −
x − μ

2

2σ2
, 24

p x wi =
1

2π 1/2 〠
1/2 ⋅ exp −

1
2
⋅ x − μ

T ⋅〠−1
⋅ x − μ

25

Naïve Bayes classifiers assume that all feature vectors are
statistically independent and classify any test vector accord-
ing to the Bayesian decision criterion given in (21) [63]. In
this classification scheme, the probability density function
for the l-dimensional case is computed as

p x = ∏
l

i=1
p x i 26

2.4.8. k-Nearest Neighbors. The k-nearest neighbor (kNN)
classifier assigns any test vector to the respective class that
its k-nearest neighbors belong at most, considering the dis-
tances between the test and training vectors in the feature
space [64]. Although it is obvious that classification perfor-
mance is directly related to the parameter k, there is no obvi-
ous information on the selection of k except that it should be
positive and not a multiple of the total number of classes [48].

2.5. Evaluation Metrics. The metrics sensitivity (SNS), spec-
ificity (SPC), positive predictive value (PPV), negative
predictive value (NPV), false-positive rate (FPR), false-
negative rate (FNR), false discovery rate (FDR), false omis-
sion rate (FOR), and accuracy (ACC) are used for the
evaluation of the performance of the CAD system in this
study. The mathematical representations of these metrics
are given in Table 3.

3. Results and Discussion

In this study, a CAD system for breast cancer diagnosis based
on a multistage classification using a novel feature ensemble

6 Journal of Healthcare Engineering



is proposed. The feature extraction stage is achieved on
mammogram ROIs that are preprocessed by applying a
histogram equalization followed by the NLM filtering. The
proposed feature ensemble is formed by concatenating the
LCP-based, statistical, and frequency-domain features. The
classification process of these features is implemented in
three different cases: one-stage study, two-stage study, and
three-stage study. The mammogram ROIs are classified into
three classes (normal, benign, and malignant) regardless of
their breast tissue types in the one-stage study while the
two- and three-stage studies consider breast tissue informa-
tion and make a health status classification as explicitly
explained in the related subsections. Eight well-known classi-
fiers (FLDA, LDC, linear SVM, LLC, decision tree, random
forest, naïve Bayes, and kNN) are used in all of the classifica-
tion cases. Additionally, the results of classifiers that show the
top three performances are combined via a majority voting
technique in order to improve the recognition accuracy for
the both two- and three-stage studies. The block diagram of
the proposed system is given in Figure 1.

3.1. Results

3.1.1. One-Stage Study. In this case of the classification
scheme, the feature vectors are directly classified into three
classes (normal, benign, and malignant) regardless of the
breast tissue types of the mammogram images. The flowchart
for the one-stage study is shown in Figure 2. The average
classification accuracies and standard deviations of the classi-
fiers for the one-stage study obtained by elevenfold cross-
validation technique are shown in Figure 3. In this figure,
“SVM (‘p’, 1)” is the SVM classifier using a linear kernel.
The LLC classifier has the highest recognition accuracy

(85.47%) among all classifiers. It assumes that logistic linear
models can be formed between classes with equal prior prob-
abilities. Hence, it is more applicable for the one-stage study
than the other classifiers as the prior probabilities of each
class in this case are equal.

The total confusion matrix of the LLC classifier obtained
by elevenfold cross-validation for the one-stage study is given
in Table 4. It shows that benign andmalignant mammograms
are distinguishable from each other. The false recognitions
are caused by the confusion of the benign and malignant
mammograms with the normal mammograms.

The evaluation metrics of each classifier evaluated by ele-
venfold cross-validation for the one-stage study are given in
Table 5.

The one-stage study is also achieved using three addi-
tional sets of feature vectors in order to demonstrate the
discriminative power of the proposed 108-dimensional fea-
ture vector ensemble. These sets consist of 12-dimensional
statistical feature vectors, 80-dimensional LCP-based feature
vectors, and 92-dimensional feature vectors concatenated by
the LCP-based with statistical features. The average classifi-
cation accuracies of the classifiers for the one-stage study
obtained by elevenfold cross-validation technique using
different feature vector sets are shown in Figure 4. It can be
inferred from Figure 4 that classification accuracies are
increased when 92-dimensional feature vectors are used
rather than only statistical or only LCP-based features. Fur-
thermore, 108-dimensional feature vectors provide higher
recognition accuracies than the 92-dimensional feature
vectors. These results obviously prove the effectiveness of
the proposed feature ensemble.

3.1.2. Two-Stage Study. The recognition accuracy for breast
cancer diagnosis is expected to be enhanced by the two-
stage study, which is composed of the breast tissue and health
status classification. In the first stage of this study, the feature
vectors are classified into breast tissue classes (fatty, fibro-
glandular, heterogeneously dense, and extremely dense).
Then, the breast-tissue-type-defined feature vectors are
classified into normal, benign, and malignant classes in the
second stage. The flowchart for the two-stage study is shown
in Figure 5.

The average classification accuracies and standard
deviations of classifiers obtained by elevenfold cross-
validation technique for the two-stage study are shown
in Figure 6. A maximum of 87.51% accuracy rate is
attained using the FLDA classifier among eight well-
known classifiers. For this case, the LLC classifier performs
worse than FLDA classifier as the prior probabilities of the
classes are no longer equal.

As it can be explicitly inferred from Figure 6, the top
three classifiers based on performance are the FLDA, LLC,
and LDC. The results of these classifiers are combined via a
majority voting technique to increase the classification
accuracy to 88.79%.

The total confusion matrices of the (a) FLDA, (b) LLC,
and (c) LDC classifiers obtained by elevenfold cross-
validation for the two-stage study and the total confusion
matrix of the classifier combination obtained by elevenfold

Table 3: Evaluation metrics and their mathematical
representations.

TP: true positive TN: true negative
FP: false positive FN: false negative

Sensitivity (SNS) %SNS =
TP

TP + FN
⋅ 100

Specificity (SPC) %SPC =
TN

TN + FP
⋅ 100

Positive predictive value
(PPV) %PPV =

TP
TP + FP

⋅ 100

Negative predictive value
(NPV) %NPV =

TN
TN + FN

⋅ 100

False-positive rate (FPR) %FPR =
FP

FP + TN
⋅ 100

False-negative rate (FNR) %FNR =
FN

TP + FN
⋅ 100

False-discovery rate (FDR) %FDR =
FP

TP + FP
⋅ 100

False omission rate (FOR) %FOR =
FN

TN + FN
⋅ 100

Accuracy (ACC) %ACC =
TP + TN

TP + FP + TN + FN
⋅ 100
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Figure 1: Block diagram of the proposed system.
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Figure 2: Flowchart designed for the one-stage study.
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Figure 3: Average classification accuracies and standard deviations of eight different classifiers obtained by elevenfold cross-validation for the
one-stage study.
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cross-validation for the two-stage study are given in
Tables 6 and 7, respectively. Similar results are obtained
in the two-stage study as in the one-stage study. The con-
fusion matrices in Tables 6 and 7 clearly show that the

false negatives and false positives for both benign and
malignant classes belong to the normal class. The terms
N., B., and M. in Table 6 refer to the normal, benign and
malignant classes, respectively.

Table 5: The evaluation metrics of each classifier evaluated by elevenfold cross-validation for the one-stage study.

Classifier SNS SPC PPV NPV FPR FNR FDR FOR ACC

LLC 85.47 92.74 85.47 92.74 7.26 14.53 14.53 7.26 85.47

FLDA 81.72 90.86 81.72 90.86 9.14 18.28 18.28 9.14 81.72

LDC 80.80 90.40 80.80 90.40 9.60 19.20 19.20 9.60 80.80

SVM (‘p’, 1) 77.14 88.57 77.14 88.57 11.43 22.86 22.86 11.43 77.14

Decision tree 77.50 88.75 77.50 88.75 11.25 22.50 22.50 11.25 77.50

Random forest 75.86 87.93 75.86 87.93 12.07 24.14 24.14 12.07 75.86

Naïve Bayes 65.42 82.71 65.42 82.71 17.29 34.58 34.58 17.29 65.42

kNN (k = 5) 42.13 71.06 42.13 71.06 28.94 57.87 57.87 28.94 42.13

Extremely denseHeterogeneously denseFibroglandularFatty

108‒dimensional feature vectors 

Normal Benign Malignant Normal Benign Malignant Normal Benign Malignant Normal Benign Malignant 

Figure 5: Flowchart designed for the two-stage study.

Table 4: Total confusion matrix of the LLC classifier obtained by elevenfold cross-validation for the one-stage study.

Predicted classes
Normal Benign Malignant

Actual classes

Normal 862 91 59

Benign 123 889 0

Malignant 166 2 844
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Figure 4: Average classification accuracies of eight different classifiers obtained by elevenfold cross-validation for the one-stage study using
different feature sets.
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The evaluation metrics of each classifier and the classifier
combination evaluated by elevenfold cross-validation for the
two-stage study are given in Tables 8 and 9, respectively.

3.1.3. Three-Stage Study. After the classification accuracies
are enhanced by the two-stage study, the authors propose a
three-stage study for further improvement. The three-stage
study consists of both breast tissue and health status classifi-
cation, where the health status classification is achieved
through two consecutive stages. In the first stage of this study,
the feature vectors are classified into breast tissue classes sim-
ilar to those in the two-stage study. The breast-tissue-type-
defined feature vectors are then categorized into normal
and abnormal classes in the second stage. Finally, in the last
stage, the feature vectors labeled as abnormal classes are
categorized into benign and malignant classes. The flowchart
for the three-stage study is illustrated in Figure 7.

The average classification accuracies and standard
deviations of eight classifiers obtained by elevenfold cross-
validation technique for the three-stage study are graphically
shown in Figure 8. The FLDA has the best classification per-
formance with a maximum of 93.29% accuracy rate among
all classifiers. In this case, as the prior probabilities of the clas-
ses are not equal again as in the two-stage study, the classifi-
cation success of the LLC classifier is less than that of the
FLDA and LDC classifiers.

The total confusion matrices of the (a) FLDA, (b) LDC,
and (c) LLC classifiers obtained by elevenfold cross-
validation for the three-stage study, and the total confusion
matrix of classifier combination obtained by elevenfold
cross-validation for the three-stage study are given in
Tables 10 and 11, respectively. In the three-stage study, as
seen in the tables, mammograms in normal and benign clas-
ses are exactly inseparable from each other, while malignant
mammograms are clearly distinguished from the normal
and benign classes. The terms N., B., andM. in Table 10 stand
for the normal, benign, and malignant classes, respectively.

If Figure 8 is carefully examined, the FLDA, LDC, and
LLC classifiers, as in the two-stage study, are the best
three classifiers in terms of recognition accuracy. The
results of these classifiers are combined via majority voting
and eventually the classification performance is increased
to 93.52%.

The evaluation metrics of each classifier and the classifier
combination evaluated by elevenfold cross-validation for the
three-stage study are given in Tables 12 and 13, respectively.

3.2. Discussion. The proposed feature ensemble is formed by
concatenating the LCP-based, statistical, and frequency-
domain features. The LCP algorithm is performed by itself
for several image processing applications. The motivation
behind the usage of the LCP algorithm for feature extraction
relies on the decomposition of information existing in breast
mammogram images. Moreover, the LCP features include
pixel-wise relationships. As it covers relatively few relation-
ships among pixels in a breast mammogram image, the
LCP is used as the fundamental feature extraction method
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Figure 6: Average classification accuracies and standard deviations
of classifiers obtained by elevenfold cross-validation for the two-
stage study.

Table 6: Total confusion matrices of the (a) FLDA, (b) LLC, and (c)
LDC classifiers obtained by elevenfold cross-validation for the two-
stage study.

(a)

Predicted classes
N. B. M.

Actual classes

N. 872 52 88

B. 186 826 0

M. 142 5 865

(b)

Predicted classes
N. B. M.

Actual classes

N. 835 105 72

B. 135 874 3

M. 153 0 859

(c)

Predicted classes
N. B. M.

Actual classes

N. 877 25 108

B. 218 794 0

M. 228 2 782

Table 7: Total confusion matrix of classifier combination obtained
by elevenfold cross-validation for the two-stage study.

Predicted classes
Normal Benign Malignant

Actual classes

Normal 887 41 84

Benign 162 850 0

Malignant 140 2 870

10 Journal of Healthcare Engineering



to explore the underlying information in an image. However,
the LCP features are not completely adequate to efficiently
classify mammogram parts because it can be affected by

various issues. Therefore, the use of LCP only will not result
in the most representative features for a mammogram. Fur-
thermore, twelve statistical features were calculated from
the LCP features. The positive impact of statistical features
extracted directly from the image texture on classification
success is already known [52]. In addition, the LCP feature
vectors extracted from breast mammograms are indicated
as successfully discriminative features [5]. Hence, in this
study, the statistical features are obtained from the LCP fea-
ture vectors rather than directly from the mammogram
image pixel matrices. Moreover, 16 frequency-domain fea-
tures are computed and appended to other two types of fea-
tures (LCP-based and statistical features). Since the
brightness is one of the most significant issues for breast can-
cer diagnosis and the variations of brightness in a mammo-
gram image can be obviously observed in spatial domain, it
is assumed that frequency-domain features are also represen-
tative of mammograms in this study. Ultimately, the feature
vectors that have more representative power and are more
robust to numerous effects are constructed by this method.

Additionally, a multistage classification scheme is pro-
posed in this study. It consists of three cases: the one-stage
study, two-stage study, and three-stage study. In the one-
stage study, the feature vectors are classified according to
only their health status regardless of the breast tissue type

Table 8: The evaluation metrics of each classifier evaluated by elevenfold cross-validation for the two-stage study.

Classifier SNS SPC PPV NPV FPR FNR FDR FOR ACC

LLC 86.49 92.11 84.92 91.78 7.89 13.51 15.08 8.22 86.80

FLDA 87.45 92.18 85.25 91.76 7.82 12.55 14.75 8.24 87.51

LDC 84.68 90.29 81.66 89.41 9.71 15.32 18.34 10.59 85.56

SVM (‘p’, 1) 84.46 90.13 80.30 89.51 9.87 15.54 19.70 10.49 84.12

Decision tree 75.78 87.64 74.93 88.00 12.36 24.22 25.07 12.00 75.79

Random forest 77.51 88.29 77.38 88.38 11.71 22.49 22.62 11.62 77.48

Naïve Bayes 67.81 83.86 71.38 84.75 16.14 32.19 28.62 15.25 68.33

kNN (k = 5) 42.13 70.51 40.73 70.81 29.49 57.87 59.27 29.19 42.12

Table 9: The evaluation metric of classifier combination evaluated by elevenfold cross-validation for the two-stage study.

Classifier SNS SPC PPV NPV FPR FNR FDR FOR ACC

Classifier combination 88.67 92.93 86.32 92.45 7.07 11.33 13.68 7.55 88.79

Extremely denseHeterogeneously denseFibroglandularFatty

Abnormal 

Malignant Benign 

Normal Abnormal 

Malignant Benign 

Normal Abnormal 

Malignant Benign 

Normal Abnormal 

Malignant Benign 

Normal

108‒dimensional feature vectors 

Figure 7: Flowchart designed for the three-stage study.
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Figure 8: Average classification accuracies and standard deviations
of classifiers obtained by elevenfold cross-validation for the three-
stage study.
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of mammograms. The standard deviation values for the one-
stage study are high since some folds in cross-validation pro-
cess provide high recognition accuracies but the other folds
give much lower classification accuracies. This situation
clearly implies that the accuracy results of the one-stage study
are directly related with the mammogram parts used in train/
test separation of each fold. If a test set includes more similar
parts compared to those in the corresponding train set, the
accuracy suddenly raises. On the contrary, if the similarities
between the test and train sets are weak, the classification
fails. This consequence obviously reveals that the one-stage
study does not give trustworthy accuracy results. In order
to prevent the high standard deviation problem and increase
the classification accuracy rates, the two-stage study is imple-
mented. In the two-stage study, both breast tissue and health
status classification are consecutively performed. By this way,
the breast tissue types of mammograms are taken into con-
sideration so that a more reliable classification is achieved.
The trustworthiness of recognition can be inferred by exam-
ining the standard deviation values for each classifier. These
values are much lower compared to those obtained in the
one-stage study. Therefore, the accuracy results of the two-
stage study are not related with the mammogram parts
treated in train/test separation of each fold. The cross-
validation process gives more reliable accuracy rates. Finally,
the three-stage study considers both breast tissue and health
status classification as the two-stage study does, except that
the health status classification is realized through two conse-
quent stages. By this way, the lowest standard deviation
values especially for the classifiers which give higher recogni-
tion accuracies are obtained. This outcome apparently

exposes that the three-stage study not only performs the most
reliable classification process but also is independent from
mammogram parts used in training and test sets of each
cross-validation fold. Besides, the most successful experi-
ments are achieved in the three-stage case. Ultimately, if
one considers both success and reliability issues at the same
time in this classification problem, the three-stage case pro-
vide these two issues simultaneously.

The mammogram parts of fatty breast tissue type in the
IRMA database are classified using only LCP-based feature
vectors, and a maximum of 90.60% recognition accuracy is
attained in [5]. By the proposed feature ensemble and multi-
stage classification, this accuracy is effectively increased to
93.52% for all tissue types rather than for only one breast tis-
sue type. This result explicitly shows that the new feature
ensemble is more representative than an LCP-based feature
vector by itself, and the proposed multistage classification
scheme is more successful and reliable than a single-stage
classification for breast cancer diagnosis. The comparison
of the proposed study with other studies in the literature is
given in Table 14.

4. Conclusion

Breast cancer is the second major reason for female deaths
resulting from cancer worldwide. Although there is no
known way to prevent breast cancer, mortality can be
reduced only with early diagnosis. Therefore, the computer-
aided diagnosis (CAD) systems are very important as they
allow radiologists to reconsider mammogram images with
increased sensitivity of detection and diagnosis. In this study,
a multistage classification scheme using a novel and discrim-
inative feature ensemble to be implemented in a CAD system
for breast cancer diagnosis is proposed. The proposed system
is verified using the IRMA database. This database includes
all twelve classes defined by BI-RADS, which are four differ-
ent breast tissue types, and three different health status cases
for each breast tissue type. The proposed feature ensemble is
formed by concatenating the 80-dimensional LCP-based fea-
tures obtained from the one-level, two-dimensional discrete
wavelet transform of the preprocessed mammogram images,
12-dimensional statistical features computed from the LCP-
based features, and 16-dimensional frequency-domain fea-
tures calculated from the two-level two-dimensional discrete
wavelet transform of the preprocessed mammogram images.
In this study, a multistage classification scheme, namely the
one-stage study, two-stage study, and three-stage study cases,
is presented. The feature vectors are classified directly
according to their health status in the one-stage study. In
the two-stage study, the health status classification of each

Table 11: Total confusion matrix of classifier combination obtained
by elevenfold cross-validation for the three-stage study.

Predicted classes
Normal Benign Malignant

Actual classes

Normal 393 444 175

Benign 174 630 208

Malignant 139 257 616

Table 10: Total confusion matrices of the (a) FLDA, (b) LDC, and
(c) LLC classifiers obtained by elevenfold cross-validation for the
three-stage study.

(a)

Predicted classes
N. B. M.

Actual classes

N. 393 445 174

B. 174 629 209

M. 139 260 613

(b)

Predicted classes
N. B. M.

Actual classes

N. 382 490 140

B. 183 697 132

M. 204 311 497

(c)

Predicted classes
N. B. M.

Actual classes

N. 336 467 209

B. 145 624 243

M. 158 249 605
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breast tissue type, determined in the first stage where the
breast tissue classification is achieved, is executed. The
three-stage study also considers both breast tissue and health
status; however, in this case, the health status classification is
performed with two consequent stages, where the normal
and abnormal mammograms are determined first, and the
abnormal defined mammograms are then classified as benign
and malignant. The maximum recognition accuracy of the
proposed system is obtained in the three-stage study. These
results clearly indicate that using three-stage study is very
effective for a CAD system and helpful for radiologists to
make more accurate breast cancer diagnoses.
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