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� Abstract
White blood cell (WBC) differential counting is an established clinical routine to
assess patient immune system status. Fluorescent markers and a flow cytometer are
required for the current state-of-the-art method for determining WBC differential
counts. However, this process requires several sample preparation steps and may
adversely disturb the cells. We present a novel label-free approach using an imaging
flow cytometer and machine learning algorithms, where live, unstained WBCs were
classified. It achieved an average F1-score of 97% and two subtypes of WBCs, B and
T lymphocytes, were distinguished from each other with an average F1-score of
78%, a task previously considered impossible for unlabeled samples. We provide an
open-source workflow to carry out the procedure. We validated the WBC analysis
with unstained samples from 85 donors. The presented method enables robust and
highly accurate identification of WBCs, minimizing the disturbance to the cells and
leaving marker channels free to answer other biological questions. It also opens the
door to employing machine learning for liquid biopsy, here, using the rich informa-
tion in cell morphology for a wide range of diagnostics of primary blood. © 2019

The Authors. Cytometry Part A published by Wiley Periodicals, Inc. on behalf of International Society for

Advancement of Cytometry.

� Key terms
high-content analysis; machine learning; imaging flow cytometry; white blood cells;
white blood cell count; personalized medicine; label-free classification; lymphocytes;
liquid biopsy

White blood cell (WBC) differential count is a clinical test that measures the
number and percentage of each WBC type in a person’s sample of blood. WBCs
play an important role in the body’s immune system and in the defense against
infections. They are categorized into five main types: lymphocytes (including B
and T cells), eosinophils, neutrophils, monocytes, and basophils. These WBC
populations have characteristic concentration ranges in healthy persons; devia-
tions, whether high or low, are clinically significant (1). The reference range for
WBC differential count is as follows: lymphocytes (20–40%), eosinophils (1–6%),
monocytes (2–10%), and neutrophils (40–80%) (https://emedicine.medscape.com/
article/2085133-overview).

Conventionally, WBC differential count often involves flow cytometry using fluo-
rescently tagged antibodies that are known to differentially label the WBC populations.
This procedure is widely adopted in the clinical routine with well-established standard
laboratory protocols. Traditional flow cytometers classify stained cells in a high-
throughput, low-content manner based on a small number of light-scatter properties
(forward scatter and side scatter), and fluorescence intensity features. Modern
cytometers, such as mass cytometers, can measure up to 40 parameters in a single
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panel (2); however, similar to fluorescence-based cytometers,
they are limited to analysis of cell phenotype based on expres-
sion levels of antibody-labeled molecules.

Imaging flow cytometry combines the sensitivity and
high-content morphology of digital microscopy with the
high-throughput and statistical power of the conventional
flow cytometer. Imaging flow cytometers can simultaneously
acquire up to 12 images of each single cell that passes through
the instrument. The first commercially available imaging flow
cytometers were built about a decade ago. Yet, these instru-
ments are mostly used in a research context rather than in
clinical practice.

Although imaging flow cytometers are capable of cap-
turing information-rich cell images, common analytic pipe-
lines are rarely seen exploiting its high-content potential.
Better approaches have been proposed, where data-driven
feature extraction, feature selection, and machine learning
have been applied to unbiasedly identify morphological
profiles that are subtle and less visible to human observa-
tion (3–5).

Previous work to develop a label-free WBC differential
count achieved 99% classification accuracy distinguishing
lymphocytes, granulocytes, and monocytes (6). However, this
approach requires commercially unavailable instrumentation
and uses shuffle and split to evaluate the prediction model. Shuf-
fle and split means that all information is shuffled and then split
into training and validation set. This method is prone to over-
fitting as the classifier has already seen blood cells from a partic-
ular subject in the training set and then predicts on the same
subject (7). Overfitting leads to high accuracy in the prediction,
however, the trained model then fails in a realistic setting where
the patient is not previously known to the classifier.

Here, we present a novel machine learning analysis pipeline
for label-free WBC differential counts, in which overfitting is
controlled by subject-wise cross-validation procedure. Using this
pipeline, unstained WBCs assayed by an imaging flow cytometer
could be classified into the unique subtypes with high F1-score.
Interestingly, we were able to distinguish B and T lymphocytes
(although with a lower F1-score as compared to the other white
blood cell types), a task previously considered impossible for
unlabeled samples (8,9). Our approach was validated with sta-
ined blood samples from 13 and unstained samples from
85 healthy volunteers generated in a clinical study at Swansea
University (United Kingdom).

We also provide an open-source workflow to address the
technical barrier to promote broader adoption of machine
learning-based blood cell identification. A user-friendly workflow
represents an important step toward translation into clinical prac-
tice and toward extension of the approach for liquid biopsy to
identify tumor products such as circulating tumor cells in the
blood (10).

MATERIALS AND METHODS

Data Acquisition and Preprocessing Raw Images in

IDEAS

Blood samples from more than 100 healthy blood donors were
collected, and all images were anonymized following standard
procedures by assigning them ID numbers. The ethical
approval for this study has been granted by the ethics commit-
tee of the University of Rostock (Germany; approval number:
A 2017–0028) and Swansea University (United Kingdom).

Blood was drawn from healthy donors and collected directly
into heparinized tubes. The sample was then split across multiple
tubes (500 ul/tube) and each stained individually with optimized
concentrations of Fluorescein isothiocyanate (FITC)-labeled anti-
bodies against one of the following cell surface markers: CD3
(T cells), CD14 (monocytes), CD15 (neutrophils), and CD19
(B cells). One tube per sample was left unstained. After 20 min of
incubation in the dark at room temperature (RT), red blood cell
lysis was performed using BD Lyse-fix solution as per the
manufacturer’s instructions. Briefly, the 10× lysis buffer stock
was diluted 1:10 in reagent grade water to a 1× working concen-
tration. The whole blood was then incubated at a ratio of one part
blood to nine parts lysis buffer for 10 min at RT. Samples were
then spun down at 350 g for 5 min and washed a further 2 times
with PBS +2% FBS before a final resuspension at 5 × 106/ml. Cell
suspensions were then loaded into an Amnis ImageStream100
(Luminex Corporation, Austin TX) imaging flow cytometer,
which can acquire up to six multi-spectral images (channels) for
every cell (11) at a rate of up to 100 cells per second. The images
were saved as raw image files (.RIF), which were then opened and
processed in the IDEAS software (accompanying the
ImageStream) in order to perform spectral compensation using a
FITC only stained control sample that had been collected with
both bright-field and scatter sources turned off.

The features used in this work were derived from the
brightfield (transmitted light) image, and the darkfield (also
known as side-scatter [SSC]) image; in which the light source is
positioned orthogonally to the detection camera). For the
ground-truth determination, FITC-labeled cell surface markers
were detected in one of the four fluorescence channels on the
camera.

IDEAS Focused Single Cell Gating

Multispectral images acquired using the ImageStream100
were subsequently analyzed in the IDEAS software version
6.2.65.0 program. Gradient root mean squared (RMS) on the
BF image measures the sharpness of focus by calculating the aver-
age gradient of pixel intensities across the image. Poorly focused
images are blurry and therefore have relatively low gradient. We
used a threshold on the brightfield image of 55 arbitrary units to
exclude cells of poor focus quality. Images of single cells were
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separated from cellular debris, and cell doublets or aggregates
using the aspect ratio and area measurements of the object
masks for the brightfield image, and were used for downstream
analysis.

In addition, we devised the so-called templates, which
contain quality control steps and the gates. A gate is a user-
defined region within a histogram or bivariate dotplot, which
contains a cell subpopulation defined using a small number of
characteristic features. These templates were used to build the
training set of WBC subpopulations based on the fluorescently
stained biomarkers included for ground truth purposes. All the
extracted cell populations were exported to separate files in the
compensated image files (.CIF) format. The preprocessing
workflow performed in IDEAS is shown in Figure 1 in addition
to sample images.

The training set is the result of data preprocessing we per-
formed and contains the white blood cells from 13 donors, all
with both unstained and blood samples parts stained against
CD3, CD14, CD15, and CD19. The number of cells is shown
in the Supporting Information Table SF.1.

Stitching–Making Montages out of Single-Cell Images

This step of the workflow consisted of extracting single images
from each .CIF file—the ImageStream proprietary image-
container format. We developed a Python script, Stitching (avail-
able at https://github.com/CellProfiler/stitching), to read .CIF files

and generate montages in .TIF format, each is a collection of
900 tiled cell images; one montage per channel.

An additional bash script (see Supporting Information)
was made to loop over the .CIF files, apply stitching and gen-
erate the corresponding montages for each clinical sample.

Feature Extraction from each Single Cell Using

CellProfiler

In this step of the workflow, the WBC montages (.TIF files) were
imported into CellProfiler (12), which is an open-source software
designed for high-throughput cell image analysis using the con-
cept of a pipeline. CellProfiler consists of several image-processing
modules, each processes the cell image in a specified manner and
measures specific morphological parameters.

We developed a CellProfiler pipeline, available at http://
cellprofiler.org/imagingflowcytometry/index.html and included
in the Supporting Information, to measure 213 morphological
features across the categories shape, size, intensity, and texture
per WBC per channel. The pipeline analyzed image montages,
identified cellular objects, filtered bad quality cells and generated
tables of cell features as .csv files.

Application of Machine Learning to Classify WBCs

In this step of the workflow, several machine-learning algo-
rithms were applied on the feature data previously generated
to develop and evaluate WBC classification models. Python

Figure 1. Workflow for selecting cell images formachine learning. Images captured by imagingflowcytometrywere curatedbyhumanexperts to remove

out-of-focus events and artifacts (a), (b). In-focus events (c) were then analyzed for exclusion of debris (d), and doublets or coincident events (e). Images of

single cells in sharp focus (f) were then saved as .CIF files for later inputs of CellProfiler. Abbreviations: BF = Brightfield; DF = Darkfield. The fluorescence

channel shown is CD15 in this example. Similar gating was used for other surface marker stains. Scale bar is 10 μm). [Color figure can be viewed at

wileyonlinelibrary.com]
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programming environment and its scikit-learn library (13)
were utilized to form a series of diverse machine learning
frameworks.

Overfitting generally happens when the machine-learning
model learns from the noise in the data and leads to poor gener-
alization on unseen data. Cross-validation is an evaluation strat-
egy to test the model against overfitting (in methods). We thus
applied subject-wise cross validation to evaluate and compare six
machine-learning algorithms: AdaBoost, Gradient Boosting
(GB), K-Nearest Neighbors (KNN), Random Forest (RF), and
Support Vector Machine (SVM).

The data set was highly imbalanced with typically (40–80%)
cells in the most prominent class and only (1–6%) cells in the
least prominent class per subject due to the normal ranges of
WBC classes in the human blood. To solve this issue, we balanced
the WBC classes using random undersampling to investigate the
influence of imbalance on our data set. We run undersampling
10 times for robust results, for each run, we determined the best
classifiers. After that, we applied majority voting to determine the
overall best classifier.

To evaluate the performance of machine learning models,
we applied subject-wise cross-validation. Subject-wise cross
validation was performed in 13 iterations (the training data set
contains 13 blood donors). In each iteration, the data set from
one blood donor was separated for validation, and the
machine-learning classifier is trained on the others; (illustrated
in Supporting Information Fig. SD.1). For each iteration, we
generated the F1-score and built the average over all iterations;
this average F1-score—combining the precision and recall
metrics in one value—was then used as an evaluation metric,
which was suitable for both balanced and imbalanced classes.

We compared the top classifier for imbalanced classes
with the top classifier for balanced classes to yield the best-
overall machine-learning classifier.

We carried out this procedure as a two-stage classification:
first, classifying the WBCs into eosinophils, lymphocytes, mono-
cytes, and neutrophils; and second, classifying the identified lym-
phocytes into B and T cells. In the latter case, we restricted the
training and evaluation only to cells labeled as lymphocytes.

Dissemination

All scripts are freely available on GitHub (https://github.com/
mariamnassar/imagingFlowCytometry/tree/master/machineLear
ning/WhiteBloodCells) and as Supporting Information files.

RESULTS

Using data from a clinical study at Swansea University (United
Kingdom), we developed a workflow to compute WBC differ-
ential counts from blood samples (Fig. 2).

We applied subject-wise cross-validation, where the cor-
rect WBC class labels for each cell were determined by staining
the WBCs and gating them based on the emitted fluorescence.
Of the 100 blood donor data sets, only 13 have stained WBCs
of all types, which were used for cross validation.

We visualized the normalized training data set using
t-distributed Stochastic Neighbor Embedding (t-SNE) (14). The

t-SNE plot is shown in Figure 3, where we observe one eosinophil
cluster, one neutrophil cluster, three almost separated monocyte
clusters, and lymphocytes, which are separated into two mixed B
and T clusters in addition to two T clusters. The interpretation of
the cluster is subject to further research. An annotated t-SNE plot
with cell images visualization is available at http://projector.
tensorflow.org/?config=https://raw.githubusercontent.com/mari
amnassar/imagingFlowCytometry/master/tensorboard_projector/
embedding_config.json

The best algorithm among those tested achieved an F1-score
of about 97% (Tables D.1 and D.2, and see Materials & Methods,
and limitations in the Discussion section) for classifying WBC
into main types (eosinophils, lymphocytes, monocytes, and neu-
trophils). This model was trained using Gradient Boosting com-
bined with random undersampling of the WBC classes.

For classifying lymphocytes into B and T cells, Gradient
Boosting combined with random undersampling performed
best with an F1-score of about 78% (Tables D.3 and D.4).

Feature Selection

Feature selection provides an insight into which features are
important for classification model. Our classical machine-learning

Figure 2. The steps of the developed workflow combining

imaging flow cytometry and machine learning to classify WBCs.

[Color figure can be viewed at wileyonlinelibrary.com]
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approach with hand-crafted features has the transparency advan-
tage, that is, it is clearly interpretable how and why a decision is
made by the model, and whether the decision is robust and under
which conditions it could possibly break.

In order to better understand how these models were
established and function, we extracted the feature importance
scores using Gradient Boosting and generated the union of the
most important 10 features over all random undersampling test
runs, sorted by their frequencies (Tables 1 and 2).We observed that

intensity features of both brightfield and darkfield channels were
particularly important for the classification of WBC main types in
addition to the granularity of the cell center (Granularity 1). For
lymphocyte T versus B cell classification, the overall shape of the
cell was important in addition to mostly brightfield intensity and
granularity features. This was indeed in accordance with previous
findings: B and T cells have differences in amount of cytoplasm,
nuclear size, homogeneity, nuclear folds, nuclear membrane, or
presence and uniformity of nucleoli (9). Furthermore, B and T cells

Figure 3. T-SNE visualization of the training data set. [Color figure can be viewed at wileyonlinelibrary.com]

Table 1. Highest ranked morphological features for WBC

classification. The table shows the most important features used

by gradient boosting for the WBC main types classification using

random undersampling. Detailed explanation of the features can

be found in the CellProfiler user manual available at http://

cellprofiler.org/manuals/

FEATURE CHANNEL

MAD intensity Darkfield
Std intensity Darkfield
Integrated intensity Darkfield
Lower quartile intensity Brightfield
Granularity 1 Darkfield
Mean Intensity Brightfield
Upper quartile intensity Darkfield
Granularity 1 Brightfield
Std intensity edge Brightfield
Integrated intensity edge Darkfield

The first column contains the feature names and the second

column contains the associated channel. Features were measured

in the entire cell (no subcompartments of cells were defined). The

features were sorted by their frequencies in 10 random

undersampling test runs.

Table 2. Highest ranked morphological features for lymphocyte

classification. The table shows the most important features used

by gradient boosting for lymphocyte classification using random

undersampling

FEATURE CHANNEL

Std intensity edge Brightfield
Lower quartile intensity Brightfield
MeanFrac Radial Distribution 4of4 Brightfield
Mean intensity Brightfield
Integrated intensity edge Darkfield
Granularity 1 Brightfield
FracAtD Radial Distribution 4of4 Brightfield
Granularity 1 Darkfield
DifferenceVariance Texture 3_0 Brightfield
Granularity 3 Brightfield

The first column contains the feature names and the second

column contains the associated channel. Features were measured

in the entire cell (no subcompartments of cells were defined). The

features were sorted by their frequencies in 10 random

undersampling test runs.
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generally have been noticed to possess different textures (contrast,
correlation, energy) and refractive indexes (15), especially when
they are activated and specialized into subtypes at different immu-
nological checkpoints.

Validation on Unstained Data

We validated ourWBC analysis on blood samples from 85 healthy
blood donors. We applied the presented workflow to extract fea-
tures from the acquired images. Then we used the Gradient Boo-
sting classifier trained on the features from 13 healthy blood
donors to classify the WBCs from 85 blood donors and generated
theWBC count for each one. After that, we computed the average
WBC count and compared it with the reference WBC count in
Figure 4. We observe that, for every WBC type, the average count
corresponds to the reference ranges.

DISCUSSION AND OUTLOOK

In this work, we presented a workflow that combines imaging flow
cytometry with machine learning to analyze, classify, and generate
WBC differential counts to be used by medical doctors for disease
diagnosis and monitoring. We compared six machine-learning
classifiers and showed that the best among them, GB combined
with random undersampling, can classify WBCs into the main
types, yielding 97% average F1-score. In addition, we showed that
Gradient Boosting combined with random undersampling is able
to classify lymphocytes with an average cross validation F1-score
of 78%, demonstrating for the first time that lymphocytes can be
morphologically distinguished.

The presented workflow improves the state-of-the-art flow
cytometry method by classifying cells without using fluorescent
markers. This might help to reduce mechanical disturbances to
the cells and make the sample preparation procedure faster and
more robust.

A natural next step for future work is to apply deep
learning methods with the aim to increase the performance of
the model, particularly given that we release the data publicly

(https://github.com/mariamnassar/imagingFlowCytometry).
Although classical image segmentation and machine learning
have advantages in terms of the ability to understand the fea-
tures used in making classification decisions about each cell,
there is considerable ongoing work in deep learning on
methods of interpretability and bias detection. Examples
include FairML (16) Google’s What-If tool for Tensorflow
(https://pair-code.github.io/what-if-tool/) and IBM’s AIF360
tool (http://aif360.mybluemix.net/). Bias detection also helps to
assess the robustness of a routine and is an important measure
for translation of a diagnostic tool into clinical practice. For
applying deep learning to single-cell phenotype classification, we
are building a computational library Deepometry, available at
https://github.com/broadinstitute/deepometry.

In addition, in order to improve the machine-learning
model performance, model selection could be applied to opti-
mize the parameters. In this work, different machine-learning
methods as well as different preprocessing approaches have
been compared, but no model selection has been applied; the
default settings and parameters from the scikit-learn packages
were kept. In model selection, for each machine-learning
method, various parameter combinations would be tested to
determine the one that leads to the best model performance.

Another open question is to apply unsupervised learning,
and/or other methods of dimension reduction and visualiza-
tion, for example, principal component analysis (PCA), or
uniform manifold approximation and projection (17) and to
interpret the patterns of cell subpopulations and their pheno-
typic similarity. This could potentially define new WBC sub-
populations and gain insights into their role when combined
with qualitative and quantitative cluster analysis (e.g.,, differ-
entiate neutrophil clusters in asthma patients vs. controls). In
addition, unsupervised machine learning can be applied to
further investigate the label-free classification potential of
lymphocytes into B and T cells by analyzing the resulting
morphological characteristics in the B and T cell clusters to
improve the supervised machine-learning model and give a
better explanation of the morphology-based characterization
of lymphocytes, which is subject to further research.

Before the methods developed here can be applied in the
clinic, certain limitations in the presented work must be
addressed. First, the presented machine-learning models would
only be expected to achieve high accuracy on samples using
the same instrument and sample preparation techniques. For
use in other settings, a new model would need to be trained
specifically for each laboratory’s setup; we have provided here
procedures and software to do so. Alternately, a more robust
and trustworthy universal model could be created and vali-
dated on a larger amount of labeled data from a variety of lab-
oratories and instruments, an approach that was recently
successful for a nucleus detection model trained across a huge
variety of cell types and microscopes in the 2018 Data Science
Bowl (https://www.kaggle.com/c/data-science-bowl-2018). Such
an effort would also allow confirming the accuracy of the best
algorithm identified in this study, the “winner” would be
expected to show optimistic accuracy rates. Finally, for adop-
tion of these methods into the clinic, it would be key for

Figure 4. Average WBC count over 85 unstained blood donors

compared with the average WBC count range. [Color figure can

be viewed at wileyonlinelibrary.com]
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clinicians to determine what are the right sensitivity and
specificity metrics for a given test, what level of accuracy is
sufficient for clinical use, and what user interface is most
effective for generating and interpreting the results. Our
study provides the first evidence that the pursuit of this goal
will likely be worthwhile.

Addressing these limitations could lead to the application
of the proposed label-free WBC classification method in the
clinic, saving the time, and cost of immunofluorescence label-
ing of WBCs and obviating many of the current challenges in
clinical immunology. For example, clinical immune monitor-
ing studies can be confounded by factors such as differences
in blood sample preparation that can affect antibody binding,
antibody clonal variability, differences in fluorochrome stabil-
ity, diversity in flow cytometer lasers and detectors from lab
to lab, and subjective population gating and analysis (18).
The method described here, if proven sufficiently accurate
and reproducible, could lead to significant improvements in
data quality and reliability for longitudinal studies. Finally,
the ability to characterize live cells in the absence of fluores-
cence staining leaves open the possibility of collecting the cells
for downstream functional analyses or even re-introduction
of subpopulations to the patient.
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