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Abstract

Historically, females have been underrepresented in biological research. With increased interest
in the gut microbiome and the gut-brain axis, it is important for researchers to pursue studies
that consider sex as a biological variable. The composition of the gut microbiome is influenced
by environmental factors, disease, diet, and varies with age and by sex. Detrimental changes

in the gut microbiome, referred to as dysbiosis, is believed to influence the development and
progression of age-related neurodegenerative disorders such as Alzheimer’s disease, Parkinson’s
disease, Huntington’s disease, and stroke. Many are investigating the changes in microbial
populations in order or to better understand the role of the gut immunity and the microbiome

in neurodegenerative diseases, many of which the exact etiology remains elusive, and no cures
exist. Others are working to find diagnostic markers for earlier detection, or to therapeutically
modulate microbial populations using probiotics. However, while all these diseases present in
reproductively senescent females, most studies only use male animals for their experimental
design. Reproductively senescent females have been shown to have differences in disease
progression, inflammatory responses, and microbiota composition, therefore, for research to be
translational to affected populations it is necessary for appropriate models to be used. This
review discusses factors that influence the gut microbiome and the gut brain axis in females, and
highlights studies that have investigated the role of dysbiosis in age-related neurodegenerative
disorders that have included females in their study design.
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1. Introduction

The gut microbiome consists of a diverse and dynamic ecosystem of bacteria, fungi, archaea,
viruses, and helminths. Recently, a large number of studies investigating the role of the gut
microbiome in pathologies ranging from cancer (Sepich-Poore et al., 2021), inflammatory
bowel disease (Ni et al., 2017), mood disorders (Huang et al., 2019), and neurodegenerative
diseases (Cryan et al., 2020) have been published. Most research has focused on the
bacterial populations, largely due to insights provided by 16S rRNA sequencing. The
bacteria found within the gut have been broadly categorized into 11 phyla. The majority of
the bacteria (>90%) consist of Firmicutes, Bacteroidetes, Proteobacteria, and Actinobacteria
while Fusobacteriaand Vermcomicrobia phyla are present in low abundance (Eckburg et al.,
2005; Hugon et al., 2015; Li et al., 2014). Though most of the bacteria have been sequenced
and identified, researchers are still in the process of identifying and characterizing new
bacterial strains that colonize the gut. The gut microbiota contains a wealth of organisms,
some of which generate metabolites that humans cannot produce (Brial et al., 2018; Lavelle
and Sokol, 2020). Importantly, characteristic shifts in population ratios at the phyla, genus,
and species level between healthy subjects and diseased patients have inspired the pursuit of
causative, rather than correlative, research to understand the role of microbes in causing or
preventing various diseases. The gut microbiome is especially unique in that it is relatively
accessible for modulation, making it an exciting potential therapeutic option for many
different diseases. However, the diversity and complexity of the gut microbiome still exceeds
our understanding. More studies investigating the impact of various bacterial phyla and
species on health outcomes is needed, especially as these relate to factors such as age and
Sex.

2. Therole of the gut microbiome

The role of microbes is multifaceted, and much of what we know has come from the

study of “germ-free” animals. Germ-free animals are model organisms that are born and
maintained in sterile environments. In the absence of microbial colonization, they can be
compared to specific pathogen free (SPF) animals to determine how the microbiota and

its secreted metabolites contribute to homeostatic function and development. Germ-free
animals have abnormal immune development with alterations in immune cell populations
and behavior (Erny et al., 2015; Erny and Prinz, 2020; Luck et al., 2020), also reviewed in
(Kennedy et al., 2018). The gut is the largest immune organ in the body, and its epithelial
cells, tight junctions, and mucosa serve as the main point of interaction between the host
and the gut microbiota (Chassaing et al., 2016). The gut microbiota can stimulate T cells
that aid in host defense against enteric pathogens involving local and systemic inflammation
(Haghikia et al., 2015; Ivanov et al., 2008; Maeda et al., 2016; Tan et al., 2016). Diet
derived long chain fatty acids interact with gut immune cells and decrease Prevotellaceae
and Bacteroidetes populations, enhancing Th1l and Th17 cell responses and exacerbating
inflammatory responses in murine experimental autoimmune encephalitis (EAE) (Haghikia
etal., 2015).

Microbes produce unique metabolites that the host cannot. These metabolites have beneficial
and detrimental effects in regulating the immune system and can influence development. A
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microbially derived metabolite that has garnered considerable interest is Trimethylamine N-
oxide (TMAO). TMAQO increases in patients with atherosclerotic disease, recently reviewed
in (Yang et al., 2019), and is elevated in male and female patients with Alzheimer’s disease
(Vogt et al., 2018). Alternatively, selective microbial communities are known to produce
beneficial products by fermentation. On that note, insoluble fiber, such as inulin, can be
digested by gut bacteria to produce short-chain fatty acids (SCFA) such as acetate, butyrate,
and valerate. SCFA promote regulatory T cell responses and ameliorate inflammation
(Haghikia et al., 2015; Lee et al., 2020). Levels of SCFA butyrate in serum is greater

in males than females, which may contribute to variations in Treg abundance (Vemuri et

al., 2019). SCFA also influence healthy development in infants (Erny et al., 2015; Yang

et al., 2020), and even rescue detrimental neurological effects found in offspring of obese
mothers (L et al., 2021). The absence of the SCFA butyrate, due to disruption of bacterial
populations or lack of insoluble fiber in diet, can have a causal role in diseases such as
hypertension (Ganesh et al., 2018). The composition of species within a single population
is the alpha diversity, and it describes the richness (number) and distribution (eveness).
Beta diversity compares environmental variables and microbial composition differences
between populations. Metrics for beta diversity include Bray-Curtis dissimilarity (compares
differences in microbial abundances between two samples at the species level), Jaccard
distance (compares the presence or absense of a species between two populations), and
UniFrac (unweighted only compares sequence differences, and weighted applies the relative
abundance of species with the sequence differences). Alterations and loss of biological
diversity in the gut microbiome that are associated with detrimental outcomes are considered
“dysbiotic changes.” The makeup and diversity of the biome changes in response to
pathology, medications, the environment and most importantly diet (Jaggar et al., 2020).

3. Factors that influence the gut microbiome

The gut microbiome is first colonized at the time of birth and reflects the composition of

the maternal biome (Nash et al., 2017). Over the first five years of life, the gut microbiome
increases in number and diversity, then stabilizes with age (Cheng et al., 2015). Diet is

a major modifiable factor that can result in the selection of various microbes that then
flourish within the gut. In particular, the western diet, consisting of high fat, high sugar,

low fiber foods have been shown to increase the lipopolysaccharide (LPS) producing Gram-
negative bacteria (Bailey and Holscher, 2018; Cani et al., 2007). Women who are obese

are more likely to have atherosclerotic disease, which is associated with proinflammatory
states and gut dysbiosis (Zhai et al., 2019). Increased adipose tissue from obesity can result
in an increase in systemic estrogen, which reduces LPS-induced inflammation (Blasco-
Baque et al., 2012) and bacteria containing p-glucuronidase, an enzyme that deconjugates
estrogens into their active forms, can contribute to an increase in systemic estrogen

(Baker et al., 2017). Estrogen has a widespread influence on human physiology, effecting
vascular function, inflammatory responses, development of multiple cancers, and also has
demonstrated neuroprotective effects in stroke, Alzheimer’s, and Parkinson’s disease (Deroo
and Korach, 2006; Murphy, 2011). Gut microbiome richness and diversity in males and post-
menopausal women is directly correlated with the amount of excreted estrogen in urine, and
fecal B-glucuronidase levels are inversely related to excreted fecal estrogen levels (Fuhrman
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etal., 2014). In fact, some researchers refer to the gut microbiome as an “endocrine organ”,
due to the productive and tightly integrated role it has with the endocrine system, which may
variously influence the development, manifestation and progression of diseases in males and
females (Clarke et al., 2014).

The gut microbiome diverges in males and females starting at puberty in humans
(‘YYatsunenko et al., 2012) and in experimental mouse models (Steegenga et al., 2014). These
differences are partially attributed to increased estrogens in females and increased androgens
in males (Klein and Flanagan, 2016). Many diseases are sexually dimorphic, and a better
understanding of alterations in the gut microbiome may reveal potential mechanisms for
these differences (Mauvais-Jarvis et al., 2020). However, while most studies have observed
sex differences in the gut microbiome, specific microbial population tend to vary widely

in clinical populations and their attributed beneficial or detrimental consequences remain
undefined (Kim et al., 2020). Two separate studies observed that men have higher levels of
Bacteroidetes and Prevotellathan women (Dominianni et al., 2015; Mueller et al., 2006).

In contrast, a different study observed a significant decrease in the Bacteroides genus (a
member of the Bacteroidetes phylum) in males compared to females (Haro et al., 2016).
Differences in geographic distribution, diet, genetics, environment, and health disparities
make characterizing universal differences in the gut microbiome based on sex extremely
difficult in clinical populations (Kim et al., 2020).

In preclinical studies, where variables such as diet and environment can be controlled, a
comparison of males and females from 89 inbred mouse strains demonstrated significant sex
differences in the gut microbiome across all strains (Org et al., 2016). Notably, the specific
changes in microbial composition differences depended on strain, with no consistent sex
dependent trends, suggesting that factors beyond gonadal hormones or sex chromosomes,
such as host genetics, influence microbiome composition. To directly assess the role of sex
hormones, males and females from three different mouse strains underwent gonadectomy.
All strains demonstrated sex differences compared to shams, with sham females presenting
with a greater abundance of Akkermansia. Interestingly, administration of testosterone in
males prevented the gonadectomy associated increase in the family Ruminococcaceain

all strains. Together, these results reveal that both host genotype and the presence of

sex hormones contribute to sex differences in the gut microbiome (Org et al., 2016).

Work from our lab has also shown significant changes in acyclic females compared to
young females (unpublished). To further investigate the interaction between estrogens and
the gut microbiome, researchers modulated the gut microbiome in rats using letrozole
induced polycystic ovarian syndrome (Guo et al., 2016). Rats treated with fecal matter
transplants FMT from healthy females or with Lactobacillus probiotics improved their
estrus regularity, decreased androgen biosynthesis, and normalized ovarian morphologies.
Additionally, increased Lactobacilli correlated with increased estradiol and estrone levels
(Guo et al., 2016).

Estrogen levels in post-menopausal women are noted to have a different microbiome
composition, specifically an increase in the class Clostridia, including the order Clostridiales
and the family Ruminococcaceae and a decrease in the genus Bacteroides (Fuhrman et al.,
2014). Notably, estrogen levels in males and postmenopausal females correlate with richness
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and diversity of the microbiome (Vemuri et al., 2019), further indicating that estrogen,
regardless of the host sex, influences the gut microbiome. Estrogen levels increase in the
luteal phase and decrease in the follicular phase of the menstrual/estrus cycle, and is at its
highest levels during pregnancy. Levels decrease at menopause when estrogen production
by the ovaries cease (Fig. 1). Interestingly, there are no reported differences in the gut
microbiome during the estrus cycle in female mice (Wallace et al., 2018), and information
on alterations in the gut microbiome throughout the human menstrual cycle is sparse.

One study found no significant changes in beta diversity between the luteal and follicular
phase of the menstrual cycle for 9 women, but they did observe a relative increase in
diversity when compared to women taking combined hormonal contraceptives (decreasing
estradiol) (Mihajlovic et al., 2021). Premenopausal women have rapidly fluctuating estrogen
levels, and no correlation between excreted estrogen levels and gut microbiome diversity or
B-glucuronidase levels has been observed (Fuhrman et al., 2014). During pregnancy there is
an overall increase in diversity and in Proteobactena and Actinobactena, (Koren et al., 2012).
However, it is not clear if these changes are due to a direct effect of hormones, or secondary
to indirect effects on the immune system (Tetel et al., 2018). Studies investigating changes
in the gut microbiome through the female lifespan are presented in Table 1. Moreover,
rather than defining specific populations of microbes present in females, it is advantageous
to understand how the host’s immune system interacts with the gut microbiome in females
compared to males.

Hormonal effects and sex chromosomal differences (XX vs. XY) contribute to differences
in immunity (Ahnstedt and McCullough, 2019). This is due to differential expression of two
X chromosomes in females, in addition to influences of estrogen on immune cell behavior
and activation of estrogen receptors and estrogen dependent transcription factors (Klein

and Flanagan, 2016). Females have increased levels of peripheral T cell proliferation and
activation, with more CD4 T cells and IL-1p and Th17 than males (Sankaran-Walters et

al., 2013). To elucidate the role of sex chromosomes, the Four Core Genotype model was
developed by deleting the Sry gene, the mammalian sex determining gene, from the Y
chromosome. This model generates XX and XY mice that each have either testes (with Sry,
XXM, or XYM) or ovaries (without Sry, XXF, or XYF). This model revealed that the sex
chromosomes contribute to increase in infarct size and innate immune response in XXF

and XXM aged mice after stroke (McCullough et al., 2016). In addition, the presence of
two X chromosomes is linked to increased adiposity and dyslipidemia in mouse models

and in XXY men (Zore et al., 2018). The influence of the microbiome on obesity and
diabetes has been well documented (Napolitano and Covasa, 2020), but the contribution of
sex chromosomes to biome composition and diversity has been less studied. As females age
and estrogen levels decrease during reproductive senescence, there is a correlative functional
decline in immune function, characterized by a persistent increase in proinflammatory
factors (Castelo-Branco and Soveral, 2014). Collectively, accounting for chromosomal and
hormonal effects in females is challenging, and often studies only use males in their

studies. Furthermore, aging alters the composition of the microbiome accompanied by a
decrease in the protective mucosal later of the gut, loss of enteric neurons, and increased gut
permeability (Crapser et al., 2016; Jasarevic et al., 2016). Fundamental alterations in the gut
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microbiome and sex differences in immune system regulation may contribute to difference
in disease susceptibility, progression, response to therapy, and development.

4. The gut brain axis

A notable contribution of the gut microbiome is in the bi-directional communication
between the gut and the central nervous system, often referred to as the gut-brain axis.

The gut microbiota influences neurological health, and likewise, dysbiotic changes to the
gut microbiome occur after neurological injury in what is referred to as the gut-brain

axis (Lee et al., 2020; Spychala et al., 2018). Systemic inflammation which weakens gut
integrity (Ahnstedt et al., 2020; Blasco et al., 2020), vagus nerve stimulation effecting the
parasympathetic system, bacterial translocation, and metabolite production are mechanisms
that contribute to dysbiotic changes that exacerbate brain pathology (Fried et al., 2021;
Morais et al., 2020) depicted in Fig. 2.

Conversely, interventions at the level of the gut microbiome in pre-clinical models can
improve mortality and morbidity after neurological injury (Lee et al., 2020; Spychala et al.,
2018). One method of intervention is administration of a probiotic, or a specific bacterial
strain demonstrated to have beneficial effects on the host. Most studies have implicated
certain bacterial species, or even phyla as being pro-inflammatory or anti-inflammatory. This
is an oversimplification, made apparent in studies testing the effects of specific probiotics
in disease outcomes. For example, the genus Lactobacillus is generally considered to be
beneficial and gives rise to numerous probiotics (Reid, 1999). However, this genus is
consistently increased in patients with Parkinson’s disease and is correlated with worsening
cognition and motor symptoms (Hasuike et al., 2020; Hopfner et al., 2017; Mihaila et al.,
2018; Petrov et al., 2017). Akkermansia muciniphila is often categorized as a commensal
member of the gut microbiome that might show beneficial effect in obese patients (Zou and
Chen, 2020). However, it also can degrade mucin, an important host defense mechanism

to prevent bacterial translocation (Ganesh et al., 2013) and maintenance of gut barrier
integrity and is increased in Alzheimer’s patients (Nagpal et al., 2019; Syeda et al., 2018),
Parkinson’s disease (Hertel et al., 2019; Hill-Burns et al., 2017) in both cases, correlating
disease progression and dysbiosis.

One of the most direct ways to alter the gut microbiome is through fecal microbiota
transplantation (FMT), a process involving the delivery of stool from a healthy donor to

a dysbiotic recipient (Kim and Gluck, 2019). This has successfully been used clinically to
treat cases of recurrent Clostridium difficile infections. Recently, investigators are exploring
the potential of this technique to treat a variety of other disorders, including but not limited
to ulcerative colitis, mood disorders, autoimmune diseases, and neurological disorders
(Settanni et al., 2021; Vendrik et al., 2020; Vrieze et al., 2012). FMT is a more complex
intervention compared to probiotic supplementation, in that it also transfers viruses, fungi,
metabolites, and genetic material. While serving as a comprehensive approach to alter the
gut microbiome, FMTs can potentially expose the recipient to pathogens undetectable with
16S screening (Bibbo et al., 2020). Furthermore, its diverse composition makes identifying
and developing biome targeted therapeutics difficult. This highlights the utility of in
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vitro studies to investigate purified FMT components to develop a safer, synthetic FMT
alternative.

Probiatics, cultures of beneficial bacteria, have also been proven to be beneficial
therapeutics in specific situations (Reid, 1999); however, they cannot be universally applied,
as they could potentially add to dysbiotic states. Additionally, sex is another factor to
consider in the administration of probiotics (Vemuri et al., 2019). A probiotic cocktail of
multiple Lactobacillus strains given to mice lowered IL-6, IgG2a and IgA, and increased
IL-10 in female and castrated males, but there were no anti-inflammatory changes in
gonadally intact males (Mu et al., 2017). Probiotic intervention is an exciting potential
therapy for many conditions. However, more work must be done to understand dysbiotic
changes in various disease states and in understanding if, and how, differential responses
occur in male and female recipients before any meaningful contributions can be made.

5. Age related neurodegenerative disorders

Notable age-related neurodegenerative disorders include dementia (predominantly
Alzheimer’s, followed by vascular and Lewy body dementia), Parkinson’s disease, and
Huntington’s disease (Mauvais-Jarvis et al., 2020). Stroke is also increasingly common with
aging and leads to both acute and chronic disability (Doyle and Buckwalter, 2020). While
diverse in their etiology, all these pathologies characteristically affect older individuals.
All have been associated with gut dysbiosis (Cryan et al., 2020). Most neurodegenerative
disorders occur after reproductive senescence in females, suggesting that female gonadal
hormones, such as estrogen, may only play a small role in how the gut microbiota shape
sex differences in neurodegenerative diseases. Reproductively senescence females have a
microbiota and immunological behavior that is distinct from males and young females
(Klein and Flanagan, 2016) and must be treated as a biological variable in study designs.

Historically, clinical research was exclusively performed using males and neglected

to account for biological variability inherent to males and females skewed clinical

decision making and resulted in increased health risks to women (Mauvais-Jarvis et al.,
2020). Despite growing evidence defining sex differences, males are disproportionally
overrepresented in gut microbiota studies. Nevertheless, several studies have either directly
investigated sex differences, or included both sexes in their study design for investigating
the role of the gut microbiome in neurodegenerative diseases. These studies are highlighted
below (Tables 2-5).

Alzheimer’s Disease (AD) is the most common type of neurodegenerative disease, is
more common in women than in men, and is the 6th most common cause of death in

the U.S (Alzheimers Dement, 2020). The exact etiology of AD is unknown; however,
genetic factors that affect amyloid precursor protein (APP), Presilin-1, 2, and APOe4
have been associated with familial and early onset forms of AD (Jayadev et al., 2010).
Diagnosis of AD is primarily clinical, and the disease is characterized by a steady
decrease in cognitive function (Nelson et al., 2012). Increased phosphorylated-tau protein
and decreased p-amyloid proteins (Ap1-42) in the cerebrospinal fluid of AD patients

are useful biomarkers. Brains of AD patients have cerebral atrophy in the hippocampus,
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parahippocampus, axonal degeneration, and neuronal loss, notably in cholinergic neurons

in the nucleus basalis of Meynert. Increasing “senile plaques”, a term used to describe the
extracellular deposition of B-amyloid protein, in the cortex and neurofibrillary tangles from
the intracellular accumulation of tau protein are hallmarks of the disease. Cerebral amyloid
can also deposit in the media and adventitia of small and medium vessels in the brain and
leptomeninges, increasing the risk of hemorrhage and vascular disease (Alzheimers Dement,
2020).

Several murine models are used to model AD in the laboratory. Male and female mice
differ in both biome composition throughout disease progression and in amyloid deposition
during aging, with females having a higher A burden (Carranza-Naval et al., 2021; Wang
et al., 2003). These differences are strain dependent, with FAD mice showing sex differences
in microbiota a-diversity (Maldonado Weng et al., 2019; Parikh et al., 2020). Female
APPPsL mice had a decreased Ruminococcaceae which correlated with cognitive deficits,
and increased butyrate levels in females positively associated with better working- and
object recognition-memory compared to males (Cuervo-Zanatta et al., 2021). Gut dysbiosis,
characterized by changes in Lactobacillus and Ruminococcus, precedes accumulation of AB
in male and female Tg2576 mice (Honarpisheh et al., 2020). Male and female germ-free
APPPSI mice both demonstrated an increase in plaque formation and decreased cognitive
function after gut colonization with SPF APPPS! mice (Colombo et al., 2021), a finding

that was further supported by decreasing plaque formation by depleting the gut microbiome
with long term antibiotic treatment in male and female APPSWE/PS12E9 mice (Minter et

al., 2016). Human gut microbiome studies have attempted to control for sex differences by
balancing male and female patients to explore the role of the gut microbiota and gut integrity
in the development of AD, particularly in the formation of senile plaques (see Table 2a).
Additionally, researchers are exploring potential biological markers that may serve as a way
to diagnose AD early, and while promising results have been found (Table 2b) more work

is required to validate them. A summary of microbiome-based treatments that are being
explored in an effort to develop disease modifying interventions are summarized in Table
2c. The complex interactions between the host and the microbiome also can contribute to
disease phenotype, as highlighted in Table 2d.

Parkinson’s Disease (PD) involves the progressive depletion of dopaminergic neurons
within the basal ganglia, specifically in the substantia nigra. The age of onset is typically
60 years, and most cases are idiopathic, with only 10-15% of cases attributed to genetic
risk factors (mutations in a-synuclein, glucocerebrosidase, LRRK2, and PARK?2) (Kalia
and Lang, 2015; Pringsheim et al., 2014). Other risk factors for PD include environmental
exposures, diet/metabolic factors (low levels of vitamin D, high iron intake, and obesity),
and/or a history of traumatic brain injury. Early symptoms present as constipation, anosmia,
sleep disturbance, and mood disorders such as depression, apathy, and anxiety. Eventually,
this progresses to PD’s hallmark motor symptoms of bradykinesia, resting tremor, rigidity,
and postural instability (Kalia and Lang, 2015). Variations in PD include multiple system
atrophy, which is characterized by degermation of the substantia nigra, striatum, cerebellum,
inferior olivary nuclei, and/or ventromedial column of the spinal cord. Onset is ~60 years
and is divided into a Parkinson form (MSA-P) and the olivopontocerebellar (MSA-C)
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variant, both of which have unknown etiology (Deutschlander et al., 2018). Progressive
supranuclear palsy (PSP) is another variant of PD in which atrophy of structures in the
midbrain-diencephalic junction and cerebellum, as well as mid-cortical atrophy. The age of
onset is also 60-80 years old. However, PSP progresses more rapidly than the other PD
variants, and is often fatal within 5-10 years of onset (Deutschlander et al., 2018).

PD is the second most common neurodegenerative disease and has a 1.4-3.7 times higher
incidence in males than females (Abraham et al., 2019; Cerri et al., 2019). The exact

cause of the difference in incidence is not fully understood; however, there is evidence

that estrogen has neuroprotective activity on dopaminergic neurons (Lee et al., 2019). The
importance of estrogen in the development of PD is further supported by the increased risk
of PD in females who have undergone oophorectomies before menopause (Canonico et al.,
2021; Cereda et al., 2013; Rocca et al., 2008). As previously discussed, the gut microbiome
can influence estrogen levels through mechanism such as B-glucuronidase levels (Baker et
al., 2017). However, estrogen levels are just one of the many potential mechanisms for how
the gut microbiome can influence PD development.

Gut dysbiosis promotes a.-synuclein mediated motor dysfunction and enhances PD
progression (Sampson et al., 2016). One study by Sampson et al. found that gut bacteria £.
coli can produce an amyloid protein called “curli” which enhances a-synuclein pathologic
changes and behavior abnormalities in mice. They determined that microbiota derived
amyloid has a causative role in PD development, as monocolonization by curli producing
bacteria exacerbated neurological injury which could then be alleviated with administration
of a gut specific amyloid inhibitor (Sampson et al., 2020). Most clinical studies control

for sex and do not pursue investigations on sex differences. There are extensive human
clinical studies characterizing gut microbiome changes using 16S rRNA sequencing and

its correlation with clinical presentation of motor symptoms(Table 3a). Two consistent
trends in PD dysbiosis were a decrease in Lachnospiraceae and increased Lactobacillaceae
(Barichella et al., 2019; Hasuike et al., 2020; Hill-Burns et al., 2017; Hopfner et al.,

2017; Mihaila et al., 2018; Petrov et al., 2017; Pietrucci et al., 2019). Studies have also
examined Multiple System Atrophy (MSA) and followed these patients longitudinally to
assess stability/progression over time and associated pharmacological effects on the biome.
Additionally, studies have investigated the role of microbial derived metabolites, such as
reduced levels of SCFAs and SCFA producers (Hill-Burns et al., 2017; Tan et al., 2021), as
well as the influence of the gut microbiome on other metabolic processes, such a bile acids
(Lietal., 2021) and tryptophan metabolism (Cassani et al., 2015), in Parkinson’s patients
(Table 3b). Many of these studies have been used as the foundation of interventions at the
level of the gut microbiome, by means of probiotics, prebiotics, and fecal matter transplants
(Table 3c). The microbiome has been used as a potential source for biomarkers for PD that
can been screened for early detection (Table 3d). Finally, the role of gut inflammation and
gastrointestinal (GI) symptoms such as constipation as correlating with PD development and
disease severity in both males and females (Table 3e). Unfortunately, most murine studies
resulting from Pubmed searches were only performed in male mice, and so were excluded
from this review. Of the animal models used to study PD, rhesus monkeys treated with
MPTP are the gold standard. One study used a cohort of 5 rhesus monkeys and found
males were more susceptible to PD development, and had an increased ratio of Firmicutesto
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Bacteroidetes (Joers et al., 2020). While these results are from a small cohort, it highlights
potential sex-based variations that are under investigated in human populations.

Huntington’s Disease (HD) is a genetic neurodegenerative disease, resulting from CAG
repeats in the Huntingtin gene on chromosome 4. Age of onset is typically ~40 years;
however, due to genetic anticipation, it presents earlier in each successive generation
(Walker, 2007). Less research on the microbiome is done in HD, given its heritable
mechanism; however, in recent years studies have investigated the role that the gut
microbiome may play in the progression of the disease. While Huntington’s disease
primarily manifests with brain pathology, HD is a systemic disease and mutant Huntingtin
is expressed throughout the body, including the gut. Dysbiotic changes, characterized by
an increase in diversity in males only (Kong et al., 2020; Wasser et al., 2020) as well as
microbial derived metabolite changes both correlate with HD progression (Rosas et al.,
2015). This research is new, and more is needed as gut microbiota studies in HD serve to
both expand our understanding of host-microbiome interactions and may also provide more
insights into understanding early and systemic presentations of HD (Table 4).

Stroke is the 5th cause of death in the United States (Virani et al., 2020). Unlike

the aforementioned diseases, there are many known modifiable risk factors for stroke
prevention. Risk factors such as obesity and atherosclerotic disease also are strongly
influenced by the gut microbiome in women (Haro et al., 2016). Female reproductive
senescence is associated with poorer outcomes after stroke when compared to pre-
menopausal women and in animal models (Haast et al., 2012; Manwani et al., 2013; Park

et al., 2020). The mechanism for these differences in recovery are not fully understood;
however, the gut microbiome may contribute. Reproductively senescent female Sprague-
Dawley rats showed baseline elevation in Firmicutes/Bacteroidetes (F:B), decreased a-
diversity, and significant shifts in p-diversity which worsened after stroke as compared

to younger female adult rats (Park et al., 2020). This study also performed a fecal matter
transplant between ovariectomized females, with and without estrogen supplementation, and
intact females. Adult and middle-aged, estrogen-treated, ovariectomized (OVX + E) females
had increased Prevotellaand Lactobacillus, with decreased SFCA and increased LPS levels.
This indicates that the gut biome and microbial metabolites are affected by estrogen. Most
importantly, when the middle aged, reproductively senescent rat’s dysbiotic biome was
transplanted by an adult OVX + E female, there was a significant improvement in infarct
volume and behavioral outcomes. The importance of examining the role of the biome is
further supported by increased mortality after stroke in female mice with antibiotic depleted
microbiome (Winek et al., 2016); however this study was only conducted in females, and

so it cannot be determined if this was a sex specific effect. Studies evaluating interventions
at the level of the gut microbiome for stroke are detailed in Table 5a. Gut dysbiosis after
stroke is often investigated in parallel to gut functional changes (Table 5b) and worsening
gut function is useful in determining the role of gut inflammation in gut microbiota-brain
communications (Ahnstedt et al., 2020; Li et al., 2019; Roth et al., 2020; Stanley et al.,
2016). Once a stroke has occurred, there is an increase in gut permeability and decreased
mucin production (Crapser et al., 2016). Furthermore, gut and microbiome disruptions lead
to changes in microbiota diversity and metabolite production (Table 5¢). Microbially derived
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TMAQO negatively impacts the outcomes of atherosclerotic diseases, such as stroke (Jones
et al., 2020a). Collectively the baseline microbiome diversity, immunity, and gut function in
reproductively senescent females results in increased mortality and morbidity after stroke
when compared to non-senescent females. In addition to susceptibility and incidence,

there are sex differences in post stroke recovery, with aged males fairing worse than aged
females as measured by mortality and hemorrhagic conversion two weeks after an induced
stroke (Ahnstedt et al., 2020). These changes were associated with more persistent changes
in gut integrity, microbiome composition, and inflammation in males. However, studies
specifically investigating sex differences in clinical populations have not yet included the
examination of human gut microbiome. Therefore, more work should be done to determine
if female dysbiosis influences stoke incidence and outcomes in humans.

5.1. Future directions

The gut microbiome is a major factor in both the development and progression of
neurological diseases, and its effects and interactions with the immune system differs

in a sex specific manner. The potential to develop new treatments for these age-related
neurological disorders, many of which have no cure, by targeting the microbiome is

an area of active investigation. While this literature review focused primarily on post-
menopausal females, the impact of the gut microbiome begins long before senescence.
The gut microbiome also has effects that are transmitted from mother to fetus and has the
ability to impart transgenerational effects (Gohir et al., 2014). Understanding the effects
of the gut microbiome in the mother can lead to a better appreciation of the risk for
neurological disability and stroke predisposition in offspring. By improving our awareness
of the effects of the gut microbiome in females, we may better predict, prevent, and treat
various neurodegenerative diseases in aged women, as well as in young women who will
give rise to the next generation.
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Graphical depiction of change in estradiol levels, gut integrity and biome over the lifespan

on females.
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Graphical depiction of the microbiota-gut-brain axis in the context of neurodegenerative

diseases.
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Gut microbiome studies throughout the female lifespan.
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Pre-pubertal

Pre-menopausal

Menstruation

Pregnancy

Post-Menopausal

Microbiota changes at puberty in

mice (Steegenga et al., 2014)

Sex differences and microbiota
changes at puberty in humans
(Yuan et al., 2020)

Pediatric gut microbiome
(Hollister et al., 2015)

Estrus cycle show no biome changes in
changes in mice (Wallace et al., 2018)

Follicular and luteal phase microbiota
composition, and hormonal contraceptive
effects in humans (Mihajlovic et al., 2021)

Irregular estrus cycle and gut microbiota
changes in rats (Guo et al., 2016)

Alterations during pregnancy
in humans (Koren et al.,
2012)

Microbiota changes in
preeclampsia and abnormal
placenta growth in humans
(Huang et al., 2021)

Changes in microbiota
diversity in
postmenopausal women
(Fuhrman et al., 2014)
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Table 3a
Literature review of Parkinson’s Disease and gut microbiome in females.
Key findings Study type Model Sex  References
Observational Gut-Microbiome Alterations
MPTP *administration has a greater effect in males than 5 rhesus monkeys (Macaca  FIM  (Joersetal,,
females with | Firmicutes, \ Firmicutes to Bacteroidetes ratio, mulatta, 5-7 yrs. of age, 3 2020)
and * Verrucomicrobia females, 2 males)
1 opportunistic * oral pathogens were detected in males, both PD patients (oral: n=72, — F/M (Pereiraetal,
with and without PD. <>nasal microbiota PD patients nasal: 7= 69) control (oral: 2017)
n=176, nasal: n=67)
\Lachnospiraceae family in PD | Prevotellaceae Observational PD (n= 193, 39 drug naive) F/IM  (Barichellaetal.,
Verrucomicrobia, Lactobacillaceae, Verrucomicrobiaceae PSP (n=22), MSA (n = 22), 2019)
in MSA | Lachnospiraceae, Streptococcaceae,and HC (n=113)
* Verrucomicrobia, Christensenellaceae, Verrucomicrobiaceae
in PSP
\ Clostridium coccoides, C. leptum, and Bacteroides fragilis * Prospective 39 PD 19 SIBO+, 16 SIBO-, F/M  (Hasuike et al.,
Lactobacillus ¥ antiparkinsonian drug dosage, serum TG and investigation 4 equivocal 2020)
bilirubin levels in Small intestinal overgrowth (SIBO+) patients
<>caloric intake
Differentially abundant gut microbes (Akkermansia) and no Stool and nasal wash from F/M  (Heintz-Buschart
differences in nasal microbiota in PD 80% of differential gut 76 PD, 21 idiopathic rapid etal., 2018)
microbes in PD versus healthy controls showed similar trends eye movement (REM) sleep
in idiopathic rapid eye movement sleep behavior disorder behavior disorder patients, 78
(Anaerotruncus and several Bacteroides spp., and correlated controls
with nonmotor symptoms)
* Lactobacillaceae, Barnesiellaceae and Enterococcacea with 29 PD, 29 age-matched F/IM  (Hopfher et al.,
PD controls 2017)
Different abundances of Lactobacillus, Gordonibacter, 40 MSA patients (23 MSA- F/IM  (Duetal., 2019)
Phascolarctobacterium, and Haemophilus in feces and of P, 17 MSA-C) and spouses
Leucobacter, and Bacteroides in blood between MSA (HC)
patients and healthy controls (HC). { Phascolarctobacterium,
Ruminococcus in MSA-P than those in MSA-C Blastococcus,
Bacillus, and Acinetobacterin blood were different between
MSA subtypes. The differential genera were associated with
disease duration, anxiety, and autonomic dysfunction
Y Akkermansia muciniphila and Bilophila wadsworthia drive Longitudinal de  PD and healthy controls F/IM  (Hertel et al.,
PD-specific patterns in microbial-host sulfur co-metabolism novo 2019)
that may contribute to PD severity Parkinson’s
disease
(DeNoPa)
1 Akkermansia, \ Megamonas, Bifidobacterium, Blautia, and 15 MSA 15 controls F/IM  (Wanetal,
Aggregatibacterin MSA 2019)
\ Tenericutes, Euryarchaeota, Firmicutes \ Lachnospiraceae in 75 patients with PD and 45 F/M  (Linetal., 2018)
PD * Rikenellaceae, Deferribacteraceae \ Phytobacteriumin age-matched controls
PD for more than five years. <> Ruminococcaceae <>a.- and
B-diversity not significantly different between early and late
PD onset
Significant changes in a set of 9 host miRNAs, correlating Saliva of 8 PD subjects and F/IM  (Mihaila et al.,
with some of the significantly changed microbial taxa. Robust 36 healthy controls 2018)
correlations between many microbiota and cognition, balance,
and disease duration t Bifidobacteriaceae and Lactobacillaceae
\ Dorea, Bacteroides, Prevotella, Faecalibacterium, Bacteroides 89 PD 66 controls (patients F/IM  (Petrov et al.,
massiliensis, Stoquefichus massiliensis, Bacteroides coprocola, w/out severe somatic 2017)
Blautia glucerasea, Dorea longicatena, Bacteroides dorei, pathology w/parkinsonism)
Bacteroides plebeus, Prevotella copri, Coprococcus eutactus,
and Ruminococcus callidust Christensenella, Catabacter,
Lactobacillus, Oscillospira, Bifidobacterium, Christensenella
minuta, Catabacter hongkongensis, Lactobacillus mucosae,
Ruminococcus bromii, and Papillibacter cinnamivorans.
 Clostridium 1V, Aquabacterium, Holdemania, Sphingomonas, Feces of 45 patients and their  F/M  (Qianetal.,
Clostridium XVIII, Butyricicoccus and Anaerotruncus healthy spouses 2018)

Neurobiol Dis. Author manuscript; available in PMC 2022 November 03.
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Key findings Study type Model

Sex

References

\ Escherichia/Shigella correlates w/ Tdisease duration. | Dorea
and Phascolarctobacterium correlates w/ Tlevodopa equivalent
doses (LED). t Butyricicoccus and Clostridium X/IVicorrelates
w/ { cognition

* Lactobacillus, Akkermansia, and Bifidobacterium

Meta-analysis 23 studies on microbiome of

\ Lachnospiraceae family and the Faecalibacterium genus, most  re-analyzing PD using metagenomics
consistent PD gut microbiome alterations 16S

microbiome

datasets

(Romano et al.,
2021)

*

Aok

:Lactobacillus, Capnocytophaga, Leptotrichia, Veillonella, Aggregatibacter, Porphyromonas, and Prevotella.

Neurobiol Dis. Author manuscript; available in PMC 2022 November 03.

:1-Methy-4-phenyl-1,2,5,6-tetrahydropyridine (MPTP) is a potent neurotoxin extensively used to model Parkinson’s disease (PD).
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Table 3b

Literature review of Parkinson’s disease and gut microbiome in females.

Page 33

Key findings Study Model Sex References
type
Gut-Microbiome derived metabolite differences
| N-acyl-phosphatidylethanolamines (NAPES) in plasma of PD 319 controls; 268 F/IM/M  (Hamid et al.,
patients, with sex-specific profiles PD, mouse strain 2019)
undisclosed
Urinary indican 1 in PD and DPD (tryptophan metabolism is Case- Urine 68 PD with FIM (Cassani et al.,
characteristically impaired in PD patients, with a significant control levodopa (PD) 34 de 2015)
reduction in its metabolites) study novo PD (DPD) 50
control
LSCFAs lcognition and low BMI. Stool from 104 PD and F/IM (Tan et al., 2021)
| butyrate postural instability—gait disorder scores. 96 controls
"t Akkermansia, Bifidobacterium, Lactobacillus, Clostridium
saccharolyticum, Veillonella, and Coriobacteriia
* Akkermansia, Lactobacillus, and Bifidobacterium and 197 PD and 130 FIM (Hill-Burns et al.,
\ Lachnospiraceae in PD, consistent with SCFA depletion controls 2017)
1 Burkholderia ssp. encode the rate-limiting enzyme for secondary Appendix of PD FIM (Lietal., 2021)
bile acid synthesis (bile-acid dehydratase) patients
Parkin dysfunction may perturb several metabolic pathways, 15 PARK2 patients, 19 FIM (Okuzumi et al.,
signifying common pathomechanisms in PARK?2 and iPD subjects healthy controls 2019)
Profiles from PARK2 patients 1 of fatty acid (FA) metabolites
and oxidized lipids, and Jantioxidant, caffeine, and benzoate-related
metabolites
* Lactobacillaceae, Enterobacteriaceae and Enterococcaceae 80 PD and 72 healthy FIM (Pietrucci et al.,
in PD patients \ Lachnospiraceae \ Lachnospiraceae and controls 2019)

1 Enterobacteriaceae families also correlated with *disease severity
and motor impairment Metagenomics indicated a significant
variation of genes involved in the metabolism of short chain fatty
acids amino acids, and in lipopolysaccharide biosynthesis

Neurobiol Dis. Author manuscript; available in PMC 2022 November 03.
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Table 3c

Literature review of Parkinson’s disease and gut microbiome in females.

Page 34

Key findings Study type Model Sex  References
Therapeutics

Consumption of a multi-strain probiotic (Hexbio®) over 8 PD patients with F/M  (lbrahimetal.,
weeks improved bowel opening frequency and whole gut transit constipation (ROME 2020)

time in PD patients with constipation. 111 criteria)

B. subtilis probiotic strain PXN21 inhibits a-synuclein C. elegans strain - (Goya et al., 2020)
aggregation and clears aggregates in C. elegans model of NL5901

synucleinopathy, partly mediated by DAF-16. B. subtilfs strains

protect via spores, vegetative cells, biofilm formation, and

sphingolipid metabolism (genes lagr-1, asm-3, and sptl-3)

The UDPRS I1I significantly improved and the levodopa- Case-control study 54 PD 32 healthy F/IM  (Hegelmaier et al.,
equivalent daily dose ¥ after vegetarian diet and fecal enema controls (HC) 2020)

in a one-year follow-up Significant correlation between the gut

microbiome diversity and the UPDRS 111 and the abundance of

Ruminococcaceae. \ Clostridiaceae after enema.

Inconclusive rifaximin treatment for SIBO Single-center, SIBO-positive PD FIM  (Vizcarraetal.,

double-blind,
placebo-controlled,
randomized clinical
trial (NCT02470780)

2018)

Neurobiol Dis. Author manuscript; available in PMC 2022 November 03.
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Table 3d

Literature review of Parkinson’s disease and gut microbiome in females.

Page 35

Key findings Study type

Model

Sex

References

Predictive/ Diagnostic ¥ Dysbiosis correlates with clinical phenotypes
and severity. Altered plasma cytokine profiles associated with

gut microbiome composition alterations suggest aberrant immune
responses may contribute to inflammatory processes in PD
 Verrucomicrobia, Mucispirillum, Porphyromonas, Lactobacillus, and
Parabacteroides \Prevotella

1 Bacteroides were increased in patients with non-tremor PD subtype
than patients with tremor subtype

PD predicted based on selected OTUs after the binary transformation, Computational
age, and sex

\ Bifidobacterium and Bacteroides fragilis at year 0 associated with
worsening of UPDRSI scores in 2 years. I Bifidobacterium at year 0

1 hallucinations/delusions in 2 years I B.fragilis at year 0 {motivation/
initiative in 2 years Deteriorated group { Bifidobacterium, B. fragilis,
and Clostridium leptium than the stable group at year 0 but not year2

T WP_087393524.1 protein of Akkermansia muciniphila, Case-control
<>Prevotellaceae/Prevotella in PD study

Predictive
modeling OTUs

36 patients

Feces from 40 PD
and healthy
spouses Cohort of
78 PD, 75 control
subjects, 40 MSA
and 25 AD.

FIM

FIM

FIM

FIM

(Linetal., 2019)

(Dong et al.,
2020)

(Minato et al.,
2017)

(Qianetal.,
2020)

Neurobiol Dis. Author manuscript; available in PMC 2022 November 03.
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Table 3e

Literature review of Parkinson’s disease and gut microbiome in females.

Page 36

Key findings

Study type

Model

Sex

References

Gut integrity

1Gl-symptoms | performance on letter fluency, visuospatial,
learning and memory tests. Cognitive performance was
uniquely associated with GI-symptoms and unrelated to
non-Gl autonomic symptoms.

PD may have colonic dysfunction beyond constipation
as part of a dysautonomic non-motor phenotype IBS-like
symptoms had more non-motor symptoms and | Prevotella

Gl infections correlated with 1 risk for PD

SIBO was highly prevalent in PD, and nearly one-third was
detected. SIBO was associated with worse gastrointestinal
symptoms and worse motor function.

Secondary analysis
of Parkinson’s
Progression Markers
Initiative (PPMI)

Case—control study

Prospective cohort
study, human

423 newly diagnosed
PD patients followed
for up to 5 years.

74 PD patients with 75
controls

82 PD, and 200
controls

F/IM

F/IM

F/IM

F/IM

(Jones et al., 2020b)

(Mertsalmi et al.,
2017)

(Nerius et al., 2020)

(Niu et al., 2016)

Neurobiol Dis. Author manuscript; available in PMC 2022 November 03.
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Table 5a

Literature review of stoke and gut microbiome in females.

Page 38

Outcomes Bacteria Markers Model Sex Reference
Treatments
Fecal transfer from adult OVX +E <> Tserum Sprague-Dawley rats (a) gonadally F (Park et al.,
ovariectomized and estrogen-treated  phyla, 1 Prevotel/a and endotoxin ¢ intact adult and middle-aged, (b) 2020)
(OVX + E) to middle-aged OVX + Lactobacillus {Butyrate ~ SCFAs 1 OVX + E (c) in middle-aged OVX
E | infarct volume, and Tbehavioral  baseline in the middle- IL-17A + E after fecal microbiome transfer
recovery aged OVX + E TLPS in

OVX + E post-stroke
<>infarct volumes ¥ survival Antibiotic depleted gut C57BL/6 J mice after an 8-week F (Winek et al.,
in microbiota-depleted mice biome decontamination with quintuple 2016)

compared to MCAO-SPF and
sham-microbiota-depleted mice.

All microbiota-depleted animals
developed severe colitis. This was

broad-spectrum antibiotic cocktail.
Microbiota-depleted animals were
subjected to 60 min middle cerebral
artery occlusion or sham operation
(ABX stopped 3 days pre MCOA)

rescued by continuous Abx or
colonization with SPF microbiota

pre-op

Neurobiol Dis. Author manuscript; available in PMC 2022 November 03.
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