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Shared neural representations 
of tactile roughness intensities 
by somatosensation and touch 
observation using an associative 
learning method
Junsuk Kim   1,2,3, Isabelle Bülthoff1, Sung-Phil Kim4 & Heinrich H. Bülthoff   1

Previous human fMRI studies have reported activation of somatosensory areas not only during actual 
touch, but also during touch observation. However, it has remained unclear how the brain encodes 
visually evoked tactile intensities. Using an associative learning method, we investigated neural 
representations of roughness intensities evoked by (a) tactile explorations and (b) visual observation 
of tactile explorations. Moreover, we explored (c) modality-independent neural representations of 
roughness intensities using a cross-modal classification method. Case (a) showed significant decoding 
performance in the anterior cingulate cortex (ACC) and the supramarginal gyrus (SMG), while in the 
case (b), the bilateral posterior parietal cortices, the inferior occipital gyrus, and the primary motor 
cortex were identified. Case (c) observed shared neural activity patterns in the bilateral insula, the 
SMG, and the ACC. Interestingly, the insular cortices were identified only from the cross-modal 
classification, suggesting their potential role in modality-independent tactile processing. We further 
examined correlations of confusion patterns between behavioral and neural similarity matrices for each 
region. Significant correlations were found solely in the SMG, reflecting a close relationship between 
neural activities of SMG and roughness intensity perception. The present findings may deepen our 
understanding of the brain mechanisms underlying intensity perception of tactile roughness.

Visual assessment of a surface texture prior to actually touching is crucial when interacting with objects1. In 
particular, perceiving the intensity of surface characteristics is of great importance to refine planning of grasp-
ing movement. For example, it is necessary to perceive precise roughness intensity before touching sandpaper 
to avoid skin abrasions or exerting grasping forces to avoid dropping a slippery object. A number of human 
neuroimaging studies have consistently shown that simulated touch with no inherent tactile content, such as 
touch observation2–4, working memory5,6, and imagery4,7, evoked neural activation in the somatosensory cortices. 
Previous functional magnetic resonance imaging (fMRI) studies have demonstrated that observed touch activates 
the primary (S13,8) and the secondary somatosensory cortex (S22,9). Although recent studies have provided evi-
dence against this statement10,11, the involvement of the human somatosensory cortex for observed touch appears 
to be a plausible characteristic.

The involvement of somatosensory areas in tactile roughness perception is well documented by numerous 
physiological12 and neuroimaging studies13,14. For example, Kitada and colleagues observed various levels of acti-
vation in the parietal operculum when participants felt various rough surfaces. This finding suggests that this 
area is closely related to the perception of roughness magnitude14. On the other hand, only a few neuroimaging 
studies have so far investigated visually evoked neural representations of tactile intensities15. In the previous 
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study by Morrison and colleagues, participants watched video clips showing a left arm being stroked by a brush 
at two different velocities inside the fMRI scanner15. They observed increased neural responses in posterior 
insular cortex when contrasting both stroke speeds. Their results demonstrate distinct neural representations 
of different tactile intensities even though the intensity information was perceived visually in absence of any 
tactile sensation. Another fMRI study at 7 Tesla monitored S1 activity while participants were watching video 
clips depicting their hand being passively touched by sandpapers of various intensities16. The results reveal the 
involvement of the posterior region of S1 in tactile discrimination by sight. Although these studies have shown 
intensity-dependent neural activations in the somatosensory cortical areas, they have compared neural activities 
elicited by only two tactile intensities, not multiple levels of intensity. Using two intensities may reveal neural 
activity for discriminating different tactile intensities, but not for encoding the intensity. Moreover, none of these 
studies explicitly investigated neural representations of visually evoked tactile intensities: The former primarily 
focused on neural responses associated with pleasant caressing speeds15 and the latter primarily compared neural 
responses during observed touch of self and others16. According to these previous observations, it is plausible that 
somatosensory cortices can represent multiple levels of perceived tactile intensities elicited visually. However, 
no study has directly compared brain activities in response to tactile and visually observed tactile stimulations 
with multiple intensities. Such a comparison can reveal how tactile information delivered via intra-modal and 
cross-modal channels is represented in the brain and whether there is a brain region encoding tactile information 
in a modality-independent manner.

Why then have neural representations of observed tactile intensities not been explored in more detail with 
more intensity levels? One possible reason may be the difficulty of creating visual stimuli that can effectively 
trigger the perception of rough textures with various intensities. In the aforementioned fMRI study16, approxi-
mately 20% of participants could not properly distinguish between roughness intensities by sight, even though 
the particle sizes of sandpapers were large enough for visual discrimination. To overcome the limits of conven-
tional stimulations, we used an associative learning method in our study. Our participants learned to associate 
real and observed touch of sandpapers of different roughness levels. With associative learning, we expected that 
participants who had first experienced tactile roughness would recognize visually presented sandpaper of vari-
ous roughness intensities more easily. This associative learning method has been successfully employed in fMRI 
studies in other domains7,17. Note that we used an association method to investigate whether active and observed 
touches of rough textures share the same neural representation. Therefore, the activity evoked by observed touch 
was induced by association learning was neither a vicarious nor an automatic neural response.

This study aimed to investigate the neural representations evoked by tactile explorations and visual obser-
vations of surfaces with various levels of roughness. The sandpapers used as stimuli had different roughness 
intensities, which were indicated by the color of their surfaces. During learning participants formed a strong asso-
ciation between a stimulus roughness intensity perceived by touch and its visual appearance (i.e. color). Using a 
multivoxel pattern analysis (MVPA), we first tested the feasibility of decoding visually evoked roughness intensity 
from brain activation patterns and identified brain regions containing multivoxel patterns with significant decod-
ing performance. Then, these identified regions were compared with those obtained from the tactile explorations 
to uncover overlapping regions across sensory modalities. Furthermore, we also sought for a shared pattern of 
brain activity using a cross-modal classification method18. In the cross-modal classification, we trained a classifier 
on data from one modality and tested the data from the other modality. In particular, information-based search-
light MVPAs were used to look for brain regions exhibiting patterns of neural activity encoding perceived rough-
ness intensities19. Once we identified brain regions, we examined each region to find whether misclassification 
patterns (i.e. pattern of confusion) from neural decoding were similar to the pattern of perceptual confusion from 
behavioral responses. Since MVPAs only assesses correct classification performance, an investigation of the con-
fusion patterns could provide a richer description of the neural data20. In addition, comparing confusion patterns 
between neural and behavioral responses can help to find neural correlates of perceived roughness intensities.

Results
Summary.  In this study, we investigated neural representations of perceived roughness intensities evoked by 
tactile explorations and visual observations. Using an associative learning method, we designed a methodologi-
cally novel fMRI paradigm that enabled us to test neural responses to five levels of tactile roughness intensity (0.3, 
12, 40, 60, and 100 μm) delivered visually or by touch. We performed three searchlight MVPAs (a) on the data 
evoked by tactile explorations, (b) on the data evoked by visual observations, and (c) on the data evoked by both 
types of stimuli using the cross-modal classification method. In the case of (a), we decoded roughness intensity 
successfully from the multivoxel patterns in the anterior cingulate cortex (ACC) and the supramarginal gyrus 
(SMG). Case (b) showed that multi-level roughness information could be decoded from the bilateral posterior 
parietal cortex (PPC), the inferior occipital gyrus (IOG), and the primary motor cortex (M1) activity patterns, 
which were evoked by video clips that had been associated with tactile roughness intensities. This result demon-
strates the feasibility of tactile intensity decoding from brain signals elicited by the mere observation of touch 
actions. In the case of (c), we found shared neural representations between tactile explorations and visual obser-
vations in the bilateral insular cortices, the SMG, and the ACC. Interestingly, the insular cortices were identified 
solely from the cross-modal classification analysis, suggesting a putative role of insular cortex in modality-in-
dependent tactile intensity encoding. In the follow-up correlation analyses, we derived a perceptual similarity 
matrix from the behavioral experiment and correlated it with neural similarity matrices (confusion matrices) of 
each identified brain region. Significant correlations were found only in the SMG.

Behavioral data analysis.  Figure 1 shows the perceptual similarity matrices of the uni-modal tactile task 
and the learning session. We measured a correlation between these two similarity matrices to statistically estimate 
how well perceived roughness intensities with and without visual information matched each other. The result of a 



www.nature.com/scientificreports/

3SCIENTIFIC ReportS |            (2019) 9:77  | DOI:10.1038/s41598-018-37378-w

Mantel test demonstrates that participants perceived tactile roughness intensities similarly regardless of the visual 
cues (r = 0.975, p < 0.01). The spatial organization of the five roughness intensities indicates that the sandpaper 
with particle size of 100 μm was recognized more easily than the other four intensities.

Confirmatory analysis.  In the fMRI visual runs, it is likely that participants perceived roughness intensities 
mainly from the learned association with the color of the paper strips instead of the visual appearance of the tex-
ture. Therefore, there is a possibility that brain signals could be evoked not only by tactile roughness information 
but also by low-level visual information. If that was the case, our MVPA results could be confined to the decoding 
of the low-level visual stimulation rather than the visually evoked roughness intensity decoding. To eliminate 
this potential ambiguity, we tested the following hypothesis: The brain signals are unlikely to contain low-level 
visual information if brain activation levels are correlated with the tactile roughness intensities, but not with color 
information.

We contrasted each of the visual observations of five roughness intensities against resting periods to seek brain 
regions activated in common by all visual stimuli. Random-effect group analyses (N = 15) revealed increased 
activations in somatosensory cortices comprising the inferior parietal cortices, S2, and the supplementary motor 
area. These contrasts also revealed the activations within early visual areas including the primary visual cortex 
along calcarine sulcus and lingual gyrus (Supplementary Tables S1–S5). We looked for the voxels identified in 
common among the five activation maps and found that in total 291 voxels of the four brain regions were overlap-
ping: (1) 35 voxels in the right lingual gyrus, (2) 13 voxels in the right calcarine sulcus, (3) 38 voxels of the rolan-
dic operculum extending to the S2 in the left hemisphere, and (4) 205 voxels in the left SMG. Of these activated 
brain regions, the lingual gyrus and the calcarine sulcus are part of the visual information processing network and 
S2 and SMG are part of the tactile information processing network21.

We investigated how regional activation levels (t-values) for each identified cluster varied with low-level visual 
stimulation (luminance) and tactile roughness information (particle size), respectively. Between t-values and par-
ticle sizes, significant correlations were found in the S2 (r = 0.46, p < 0.01) and SMG (r = 0.09, p < 0.01), but not 
in the visual areas (Fig. 2). In contrast, between t-values and luminance, no significant correlation was found in 
any of the identified clusters (all rs < 0.28, ps > 0.98). Overall, we observed significant correlations solely in brain 
regions processing tactile information, even though the brain signals were elicited by the visual stimuli. Therefore, 
this result confirmed the hypothesis that neural activities elicited by the visual observation of tactile roughness 
intensities were mainly related to the associated tactile information, not to the low-level visual information.

Functional imaging data analysis.  The purpose of searchlight MVPA was not only to identify brain 
regions allowing discrimination of the five roughness intensities, but also to explore the correspondence between 
brain activity patterns when roughness intensities were presented in different modalities. To this end, we per-
formed three different searchlight analyses.

The first searchlight analysis, which was performed on data evoked by tactile explorations with the right fin-
ger, found two significant clusters (p < 0.001 uncorrected, size > 50) located in the ACC extending to the medial 
prefrontal cortex (MPFC) in the ipsilateral hemisphere and the SMG in the contralateral hemisphere (Fig. 3 and 
Table 1). Decoding accuracies obtained from each identified cluster were as follows (presented as mean ± stand-
ard deviation for each cluster): 29.4 ± 3.4% for the ACC; and 28.7 ± 2.7% for the SMG. The second searchlight 
analysis, which was performed on data evoked by visual observations, identified four significant clusters located 
in the bilateral PPC, the IOG including primary visual cortex (V1), and the M1 in the ipsilateral hemisphere 
(p < 0.001 uncorrected, size > 50). Decoding accuracies obtained from each identified cluster were as follows: 
26.7 ± 3.3% for the contralateral PPC; 27.4 ± 3.5% for the ipsilateral PPC; 26.8 ± 3.6% for the M1; and 26.0 ± 2.1% 
for the IOG. The third searchlight analysis employed a cross-modal classification method to uncover neural 
representations of perceived roughness independent to the sensory modalities. The classifier was trained on data 
elicited by tactile explorations and tested on data elicited by visual observations, and vice versa (see Materials 

Figure 1.  Results of the tactile task and associative learning sessions. Similarity matrices were computed based 
on the estimated difference of perceived roughness intensities between each pair of sandpapers (a) without 
and (b) with visual cues. These matrices were significantly correlated (r = 0.975, p < 0.001), suggesting that 
perceived roughness intensities were similar regardless of visual information. (c) The relative positions of five 
roughness intensities depicted in a 2-dimensional MDS map.
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Figure 2.  Results of the confirmatory analysis. To confirm that brain signals in the fMRI visual runs are 
mainly related to the associated tactile information and not to low-level visual stimulation, we conducted a 
confirmatory analysis. Using univariate GLM analyses, we found brain regions consistently activated across 
five roughness intensity conditions. Two visual (lingual gyrus and calcarine sulcus) and two somatosensory (S2 
and SMG) regions were identified. Next, we correlated the activation levels (t-value) with the tactile roughness 
information (particle size) and the low-level visual information (luminance) for each identified cluster. 
Significant correlations were found only in the somatosensory regions when correlating t-values with particle 
sizes. Therefore, these results confirmed that neural signals in the visual runs contain relevant associated tactile 
information, not low-level visual information.

Figure 3.  Results of the whole-brain searchlight analyses. Three searchlight analyses identified voxel clusters 
exhibiting patterns of neural activity carrying information for roughness intensity. The clusters identified from 
tactile exploration, visual observation, and both modalities are colored in orange, blue, and green, respectively. 
In addition, activated brain regions evoked by tactile explorations using a univariate GLM contrasting tactile 
stimulations (including all five roughness intensities) against resting periods are highlighted in purple. 
Significant activations were found in the contralateral M1 and S1 regions (p < 0.001 uncorrected, size > 50). The 
lower part of the figure shows the classification performances of each identified cluster. The graphs are shown in 
the colors specified above. Chance level is indicated by the dashed line (20%) and error bars indicate standard 
errors. Abbreviations: ACC, anterior cingulate cortex; SMG, supramarginal gyrus; PPC, posterior parietal 
cortex; M1, primary motor cortex; S1, primary somatosensory cortex; MPFC, medial prefrontal cortex; IOG, 
inferior occipital gyrus; INS, insular cortex.
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and Methods). As results, the bilateral insular cortices, the SMG in the contralateral hemisphere, and the ACC 
in the ipsilateral hemisphere were identified (p < 0.001 uncorrected, size > 50). Decoding accuracies obtained 
from each identified cluster were as follows: 27.6 ± 4.4% for the ACC; 25.6 ± 2.9% for the contralateral insula; 
26.4 ± 2.9% for the ipsilateral insula; and 26.0 ± 3.3% for the SMG. These values were averaged across the two 
folds of cross-modal classification, i.e. an average of tactile-to-visual and visual-to-tactile cross-classifications. 
Thus, we further investigated whether these regions discriminated roughness intensities with a similar level of 
performance for each fold separately. As a result, all identified brain regions showed high classification perfor-
mance for both folds (Supplementary Table S6). The bootstrap procedure demonstrated that the obtained clusters 
were unlikely to have been found by chance22. The probability of obtaining a cluster as large as ours was less than 
0.05.

Correlation analysis.  Having found brain regions carrying information for roughness intensity discrimi-
nation as shown above, we further explored the relationship between behavioral and neural representations of 
perceived intensities. We achieved this by comparing the pattern of confusions20. Since confusions in the tactile 
task occurred mainly for similar levels of roughness intensity (i.e. 0.3 and 12 μm levels, Fig. 1), we expected the 
same tendency from the fMRI decoding results as well. First, we extracted confusion matrices for each searchlight 
cluster (Fig. 4). In Fig. 4, the values on a row j and column k in each matrix represents a probability that the pres-
entation of roughness j was predicted as roughness k. The diagonal entries are for correct classifications and all 
off-diagonal entries are for misclassifications: thus, an ideal confusion matrix would contain ‘1’ everywhere on the 
diagonal and ‘0’ in the off-diagonal entries. The confusion matrices obtained from each cluster were then corre-
lated with a behavioral similarity matrix. In particular, we computed correlation coefficients between off-diagonal 
elements of behavioral and neural confusion matrices. Among the 10 identified clusters, we found two significant 
correlations, both of which were found in the contralateral SMG (all ps < 0.05; r = 0.75 for the searchlight cluster 
identified from the tactile explorations and r = 0.65 for the searchlight cluster from the cross-modal classifica-
tion) (Fig. 4). Thus, confusion matrices in SMG showed patterns similar to the behavioral responses regardless 

Regions Side

MNI coordinates Cluster 
size T Zx y z

Tactile exploration

Anterior cingulate cortex Right 2 52 12 192 8.99 5.10

Medial prefrontal cortex Right 0 44 26 6.87 4.47

— Right 12 50 24 6.59 4.38

Supramarginal gyrus Left −50 −26 16 382 8.20 4.89

— Left −58 −38 12 7.51 4.68

— Left −60 −24 40 7.42 4.65

Visual observation

Posterior parietal cortex Left −24 −52 50 201 6.69 4.41

— Left −30 −52 60 5.88 4.11

— Left −20 −60 44 5.08 3.77

Precentral gyrus Right 40 −12 48 171 6.57 4.37

— Right 46 −6 42 6.38 4.30

Postcentral gyrus Right 44 −24 56 5.92 4.12

Posterior parietal cortex Right 34 −48 58 216 5.69 4.03

— Right 22 −56 56 5.68 4.03

— Right 16 −62 56 5.18 3.82

Inferior occipital gyrus Right 34 −86 −6 134 5.41 3.91

— Right 34 −74 −6 5.34 3.88

Cross-modal decoding

Anterior cingulate cortex Left −14 32 10 193 7.27 4.61

— Left −10 32 2 7.05 4.53

— Left −8 28 14 6.39 4.30

Insula Right 50 2 2 98 7.07 4.54

— Right 40 −2 −2 6.18 4.22

Supramarginal gyrus Left −52 −30 40 74 6.20 4.23

Inferior parietal cortex Left −56 −38 48 5.93 4.13

— Left −48 −36 52 5.42 3.92

Insula Left −44 12 −2 61 6.04 4.17

— Left −46 2 −4 5.89 4.11

Table 1.  Identified brain regions in which the local activity patterns allowed to discriminate the roughness 
intensities (p < 0.001 uncorrected, size > 50). Cluster size indicates N voxels, T indicates peak t-values, Z 
indicates peak z-values. Entries without brain region labels or in italics indicate sub-peaks within the cluster 
named above.
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of the stimulus modalities. All other searchlight clusters did not show any significant correlation (all ps > 0.07, 
rs < 0.48). It is also noticeable that the highest decoding accuracies in each confusion matrix were mostly found 
when the sandpaper with particle size of 100 μm was presented (observed in 7 out of 10 matrices). This observa-
tion is in line with the behavioral responses (Fig. 1).

To examine whether these group-level results (N = 15) were consistent with individual-level results, we carried 
out the same correlation analysis in each identified cluster using single subject data (Supplementary Tables S7–
S9). In the ACC and SMG, which were identified from the searchlight analysis of tactile explorations, zero and 
seven (all ps < 0.05; rs > 0.46) participants showed significant correlations, respectively. In the left PPC, right PPC, 
IOG, and M1, which were identified from the searchlight analysis of visual observations, one (p = 0.05; r = 0.55), 
zero, one (p = 0.05; r = 0.59), and one (p = 0.04; r = 0.59) participant showed significant correlations, respectively. 
In the ACC, SMG, left insula, and right insula, which were identified from the searchlight analysis of cross-modal 
classification, two (both ps < 0.05; rs > 0.45), six (all ps < 0.05; rs > 0.47), one (p = 0.03; r = 0.63), and two (both 
ps < 0.03; rs > 0.55) participants showed significant correlations, respectively.

Discussion
The present study aimed to explore how the human brain encodes roughness intensities perceived by tactile 
explorations and learning-based associated visual observations. Using searchlight MVPAs, we tested whether 
roughness intensities could be decoded from brain signals elicited from (a) tactile explorations, (b) observa-
tion of tactile explorations, and (c) both sensory modalities. Case (a) revealed successful decoding of roughness 
intensity in the ACC and the SMG and case (b) identified the bilateral PPC, the IOG, and the M1. Case (c) found 
significant decoding performances in the bilateral insula, the SMG, and the ACC. In the follow-up correlation 
analyses, we correlated the perceptual similarity matrix with the neural similarity matrices of each identified 
region. Interestingly, significant correlations were found only in the SMG.

Tactile and visual responses to surface roughness intensity.  Our searchlight analysis revealed that 
the SMG and the ACC were implicated in the discrimination of tactile roughness intensities. However, we did 
not observe any activation in S1, which is known as a main sensory receptive area for the sense of touch23. Our 
observation conforms to the hierarchical view of the human somatosensory system24. According to this view, 
tactile information is relayed from the thalamus to S1 and then distributed to adjacent cortical regions including 
the SMG for higher level processing24,25. We thus speculate that these results reflect the different roles of the SMG 
(high-level tactile processing, such as stimulus discrimination) from the S1 (low-level tactile processing, such as 
stimulus detection). Consistent with this perspective, a human fMRI study using vibrotactile stimulations showed 
that discrimination of stimulated location evoked activations in SMG but not in the S1, while detection of tactile 
stimulus evoked S1 activity but no SMG activity26. We also found significant decoding performance in ACC, but 
this might be related to the processing of affective pain27. We will discuss in detail in the next section.

Although a number of studies have reported somatosensory cortex activations during touch observation, 
it is still debated which brain region is mainly associated with observed touch processing, e.g. S13,8,28, S22,9, and 
PPC11. On one hand, Schaefer and colleagues found a significant increase of activity in S1 by contrasting brain 
activities evoked by seeing a hand being touched against those evoked by seeing a hand not being touched28. On 
the other hand, Keysers and colleagues observed neural activity changes in S2 when participants watched tactile 
stimulations on legs2. A more recent study with a large number of participants showed that touch observations 
primarily activated the PPC, not the S1 or S211. In line with the last study, our searchlight analysis demonstrated 

Figure 4.  Confusion matrices for fMRI decoding in identified clusters. The rows of the matrix indicate the 
actual roughness intensity provided to the participants and the columns indicate the predictions by a neural 
classifier. An ideal confusion matrix would have ‘1’ on the diagonal (correct classifications) and ‘0’ in the off-
diagonal entries (errors). Correlations of off-diagonal entries between behavioral similarity matrix and neural 
confusion matrix were calculated. Resulting correlation coefficients and significances are shown above each 
matrix. Significant correlations (indicated by *) were found in two SMG clusters (p < 0.05).
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that the bilateral PPC encoded visually evoked tactile information. Although we observed activations in ipsilat-
eral S1 (Table 1), we cannot confirm this S1 engagement, given that the majority of previous studies have reported 
brain activations in contralateral S111,16. Therefore, among the three brain regions mentioned above, our results 
supported a hypothesis that the PPC plays a role in information processing of observed touch.

Significant decoding performance in IOG is also an interesting observation. It is known that visual texture 
and shape information are processed separately in the ventral stream29,30. For instance, Cant and Goodale visually 
presented objects with various textures and shapes to participants during fMRI signal acquisition30. Their results 
showed that visual texture information was processed in the IOG and collateral sulcus (CoS), while visual shape 
information was processed in the lateral occipital complex (LOC). Similar to this finding, our results showed an 
involvement of the IOG in visual texture information processing.

Shared neural representations in insular cortices.  One of the key findings in this study is that the 
cross-modal classification analysis revealed successful decoding in insular cortices. Human neuroimaging studies 
have suggested the insula as an essential brain region for multimodal sensory processing (e.g. visual-tactile31,32; 
auditory-visual33). For instance, Gentile and colleagues investigated brain activation during visual-tactile integra-
tion tasks and revealed that the insula was one of the main brain regions binding information from the multiple 
sensory modalities32. Moreover, positron emission tomography (PET) studies have demonstrated the involvement 
of insular cortices in cross-modal processing of visuotactile information34,35. In agreement with these previous 
functional imaging studies, our results provide additional evidence that the insula is crucial for the integration of 
visual and tactile information.

Our results successfully showed that insular cortices encoded roughness intensities shown in the video clips 
in patterns similar to the actually felt intensities, which can be considered as neural evidence for a shared neu-
ral representation with respect to touch sensation. The modality-independent property of insular cortices has 
been supported by several human somatosensory studies3,15. For example, Morrison and colleagues provided 
convincing evidence of a shared neural representation in insula between felt and observed touch15. Their par-
ticipants saw video clips showing the arm of another person being stroked. The authors compared their vis-
ually evoked activation patterns with the activations from felt touch and similar uni- and multi-variate responses 
were observed in the insula. Based on this observation, they argued that the posterior insular cortices carry a 
shared representation of touch sensation. Together with these findings, our results support the hypothesis that the 
modality-independent neural representation for touch sensation is located in the insular cortices. It is noteworthy 
that insular cortices were not identified by single-modal decoding analyses. Although further investigations are 
needed, this suggests that uni- and supra-modally encoded roughness information are characterized by different 
neural activity patterns.

In addition to the bilateral insular cortices, our cross-modal classification analysis found significant decoding 
performance in ACC and SMG. Interestingly, all of the identified brain regions are well known as substantial 
parts of the brain networks processing pain generated by nociception36,37. Accordingly, our observation leads 
us to form another hypothesis, namely that the neural encodings in those regions are attributed to affective pain 
processing. A number of neuroimaging studies have suggested that somatic and vicarious pain activations include 
overlapping brain areas38,39. Corradi-Dell’Acqua and colleagues examined the brain responses evoked by somatic 
and vicarious pain and found shared neural representations in the bilateral insula and ACC38. Moreover, they 
claimed that the identified common neural patterns in these areas were not specific to pain, but also reflected a 
more general aspect of negative emotional experience. In the current study, participants explored fine-textured 
and harmless sandpapers during the functional image acquisition. However, we cannot rule out the possibility 
that the rough stimuli could evoke a complex feeling, rather than a simple tactile sensation. Perceived roughness 
might have aroused a negative emotion or some discomfort to the participants, which might be reflected in the 
activations of insula, ACC, and SMG.

Neural activity patterns associated with roughness intensity perception.  We further investigated 
how neural activity patterns are related to behavioral tactile roughness perception using correlation analyses of 
confusion matrices (i.e. off-diagonal elements of neural and behavioral similarity matrices). Methodologically 
similar to our study, previous MVPA studies showed that the examination of confusion patterns could provide a 
richer description than mere decoding performance20,40. In the current study, we found that neural activity in the 
SMG was closely associated with the behavioral data. Remarkably, significant correlations were found between 
the SMG activation and behavior independent of the sensory cues. Numerous studies have suggested that the 
neural activities in the SMG were related to the behavioral performance in tactile tasks41–43. A previous study 
observed that the SMG was strongly activated during temporal order judgment tasks of tactile stimulations and 
suggested an important role of the SMG in behavioral tactile discriminations42. In addition, a case study of a right 
parietal damaged patient demonstrated a close functional connection of the SMG to somatosensory perception43. 
Combining evidence from the present and the previous findings, we suggest that neural activity in the SMG is 
more closely related to human tactile perceptual discrimination than the activities in other brain regions.

Limitations.  In the fMRI visual runs, participants perceived roughness intensities from the association with 
the color of sandpapers instead of texture of the paper strips itself. In other words, they did not perceive rough-
ness intensity (i.e. particle size) directly. Nonetheless, our confirmatory analysis demonstrated that neural data 
contained relevant tactile information, not low-level visual information. We therefore argue that associative learn-
ing could be an effective way to evoke tactile sensation via visual stimuli when tactile sensations are not easily 
recognizable by sight. However, our argument could have been more solid if we had also examined the neural 
activity patterns evoked by other colors not associated to any roughness levels. For example, if we had visually 
presented participants sandpapers with colors other than the five associated colors and compared the result with 
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the present one, we could have explicitly assessed the effects of the associative learning methods. In a similar vein, 
a previous tactile imagery study successfully eliminated the influence of visual cue presentation by virtue of pre-
senting a meaningless visual cue as a control condition7. This will be investigated in our next study.

The decoding accuracy level seems low compared to other tactile decoding studies. For example, Beauchamp 
and colleagues obtained 75% of decoding accuracy for the 2-level discrimination task (stimulus on left vs. right 
hand, chance performance was 50%)44. However, it should be acknowledged that the tactile intensity decoding as 
performed in our study might be more challenging than the tactile stimulus site decoding, because the brain areas 
specializing in different parts of the body are well-developed (e.g. cortical homunculus), while it still remains 
an open question how the human brain encodes tactile intensity levels. In the present study, our statistical tests 
successfully verified that the decoding accuracies for each region were significantly above chance, even though 
performances do not seem very high.

Using the data from only 6 fMRI runs might not be enough to validate the decoding performance. To alleviate 
this problem, in our classification analysis, we modeled individual regressors for each trial of each fMRI run in 
order to increase the number of input features for a searchlight analysis. The generated 150 regressors (25 regres-
sors per run) were then used to build and test a classifier for each participant. It may still not provide enough data 
to validate decoding outcomes completely, but previous cross-modal studies have also reported decoding results 
with less than 3 fMRI runs per modality18,45,46. Touch experiments require very long sessions, our total experi-
ment took approximately two hours, thus increasing the number of fMRI runs was not feasible.

Materials and Methods
Participants and ethics approval.  Fifteen healthy volunteers (9 females, average 26.7 ± 3.6 years old) 
with no contraindications against MR investigations and no history of neurological disorders participated in the 
experiment. All participants were right-handed and had no deficits in tactile processing. Experimental proce-
dures were approved by the ethical committee of the University Clinics Tübingen (649/2016BO2) and the study 
was conducted in accordance with the Declaration of Helsinki. All participants were informed about the experi-
mental procedure and gave informed consent prior to their participation.

Stimuli.  Tactile stimuli.  Sandpapers (aluminum-oxide abrasive paper, 3 M Center, St. Paul, MN, USA) with 
ten different roughness levels were prepared in the size of 5 × 3 cm2 and attached on a black plastic plate sized 
5 × 8 cm2. These sandpapers were successfully used and validated in a previous fine surface texture perception 
study47. The average particle sizes assigned by the manufacturer were 0.3, 1, 3, 5, 9, 12, 30, 40, 60, and 100 μm 
where a larger particle size formed a rougher surface and each particle size were indicated by a different surface 
color (Fig. 5).

A pilot experiment was conducted to select stimuli delivering distinct roughness intensities. Five volunteers 
(2 females, average 27.8 ± 3.0 years old) participated in this pilot experiment and were presented each sandpaper 
strip five times. After explorations with their right index fingertip, participants were asked to rate the perceived 
roughness intensity on a scale of 0 (very smooth) to 100 (very rough). A one-way ANOVA revealed that rough-
ness intensity was perceived differently across the particle sizes (F9,240 = 145.49, p < 0.01) and post-hoc t-tests 
revealed four distinct roughness intensity groups (all ps < 0.01): (1) 0.3, 1, 3, 5, 9, 12, (2) 30, 40, (3) 60, and (4) 
100 μm. One particle size was chosen in each group as stimulus: 12, 40, 60, and 100 μm. Moreover, we added the 
0.3 μm stimulus so as to investigate the influence of under threshold roughness, based on the previous report that 
the absolute detection threshold for roughness was approximately 1 μm in particle size47. Thus, five roughness 
intensities (0.3, 12, 40, 60, and 100 μm, in the colors white, yellow, blue, gray, and brown) were selected for the 
main experiment.

Figure 5.  Tactile exploration of a sand paper (the white color indicates a texture with particle size of 0.3 μm). 
This is a screenshot from one of the videos used for visual roughness stimulation. The arrow indicates the finger 
motion used to explore the surface.
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Visual stimuli.  Video clips of tactile explorations were recorded with the resolution of 1920 × 1080 at 60 frames 
per second. Each clip displayed a right hand exploring one of the five sandpaper strip by stroking it horizon-
tally with the index finger at a constant speed. To reduce a potential gender effect, video clips were recorded 
for each roughness level once with a male and once with a female hand. In the experiment, video clips showing 
tactile explorations by female’s hand were presented to female participants and vice versa. To create an associa-
tion between participants’ perceived tactile roughness intensities and participants’ view on their own sandpaper 
explorations, the visual information provided in the clip was as similar as possible to their visual input when 
participants were actually exploring the surface texture. The recording video camera was positioned at a distance 
of 20 cm from the stimulus surface toward the participant and 30 cm above from the tabletop, which was close to 
the point of view of a participant. All videos were recorded in a fixed position and a constant illumination level 
was provided. Each video clip lasted 3 s and did not contain any auditory contents.

Experimental design.  To minimize confounding factors due to finger movement variations across partic-
ipants, participants performed a training session to standardize their finger movements. The main experiment 
consisted of four sessions: (1) Tactile task, (2) associative learning, (3) association test, and (4) fMRI scanning 
(Fig. 6). Tactile task, associative learning, and association test sessions were conducted outside of the MR room.

Tactile task.  Participants used an eye mask to block visual information and completed five blocks of 20 trials 
(counterbalanced pairwise combinations of five stimuli: 5P2 = 20 trials). In each trial, two sandpapers were pre-
sented one after the other and participants explored each with their fingertip. Maximum exploration duration was 
3 s per stimulus and there was a 1 s inter-stimulus interval. Thereafter, participants were asked to rate perceived 
dissimilarity between two sand papers and verbally reported their rating in a free modulus scale. This method was 
chosen to reduce any bias due to different internal scales across participants48. Pair presentation was randomized 
in each block. The responses obtained from the first block were not used in the data analysis (considered as a 
practice block).

Associative learning.  The procedure of the associative learning session was identical to that of the tactile task 
session, except that participants were not wearing a mask. Therefore, they could form an association between the 
perceived roughness of the sandpapers and their appearance. More specifically, they could associate the tactile 
roughness of a sandpaper strip with its color, surface properties and finger movement difference triggered by the 
roughness intensity levels. However, participants were not likely to visually recognize roughness level based either 
on finger movement difference or on particle size. Recall that all sandpapers were finely textured and it was diffi-
cult to distinguish particle sizes with the naked eyes. Therefore, the color-coding of roughness intensity played a 
central role in the associative learning between tactile and observed touch.

Association test.  First, participants viewed the five video clips on a wide 27-inch monitor (Dell, 60 Hz). Next, 
they were asked to arrange on the screen all clips in an increasing order of perceived roughness intensity. The 
correct order was shown at the end of the test. If participants failed to arrange the clips in the correct order, they 
repeated one learning block and were tested again until responding correctly. This procedure guaranteed that 
every participant had a sufficient level of association before taking part in the fMRI scanning session. Only one 
participant needed one more learning block.

Figure 6.  Schematic overview of the experimental design. Participants took part in tactile task, associative 
learning, and association test sessions outside of MR room. In the tactile task session, participants responded 
the perceptual dissimilarity between two roughness intensities after exploration of sandpaper pairs without 
visual cues. In the associative learning session, participants performed the same tasks, but they observed their 
surface explorations with their eyes. The associated level between perceived roughness intensities and their view 
on sandpaper explorations was tested before fMRI scanning sessions. Functional images were acquired in six 
runs, with three runs for visual and tactile explorations, respectively. Participants viewed video clips showing 
finger movements on different colors of sandpaper in the fMRI visual runs, while participants actually explored 
the sandpapers following to the visual instruction on the screen in the fMRI tactile runs.
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fMRI scanning.  Participants laid in a supine position with their right arm comfortably placed along the magnet 
bore. They wore earplugs and watched a computer screen with a projector resolution of 1280 × 1024 pixels at a 
refresh rate of 60 Hz via an angled surface-mirror. Functional MRI data were acquired in six runs, with three runs 
for visual observations and three for tactile explorations, respectively. Visual and tactile blocks were tested one 
after another. 8 participants started with the visual block and 7 participants started with the tactile block. Each 
run started with a 10 s baseline period. Then, 25 trials were presented in five blocks of five trials (5 repetitions × 5 
roughness intensities). Roughness intensities in each block were presented in a randomized order. In the visual 
observation runs, each trial consisted of a stimulation period of 3 s followed by a fixation resting period of 9 s. In 
the stimulation period, participants were asked to recall the associated perceived roughness intensity while they 
watched a video clip. In the tactile exploration runs, participants rested their right index finger on the MR table 
for 7 s before a stimulus was given. When ‘Ready!’ was displayed at the center of the screen, they placed their 
finger on the given sandpaper and maintained the pose for 2 s. Then, when ‘Stimulus ON!’ was displayed, partici-
pants explored the sandpaper surface for 3 s with the same motions as they performed in the associative learning 
session (moving their right index fingertip from side to side). After each tactile exploration, participants slightly 
lifted their finger while an experimenter exchanged the stimulus. For both types of run, the duration of each trial 
was 12 s and each run lasted 5 min 10 s.

MR data acquisition and preprocessing.  Neuroimaging data were acquired on a 3 Tesla Siemens 
Prisma system with a 64-channel head coil (Siemens Medical Systems, Erlangen, Germany). Anatomical images 
were obtained using a T1-weighted sequence (ADNI, 192 slices) with the following parameters: repetition time 
(TR) = 2,000 ms, echo time (TE) = 3.06 ms, flip angle = 9°, field of view (FOV) = 256 mm, and voxel size = 1 mm³. 
Functional images were acquired using a slice-accelerated multiband gradient-echo-based echo planar imaging 
(EPI) sequence using T2

*-weighted blood oxygenation level dependent (BOLD) contrast (multiband acceler-
ation factor: 2): 46 slices, TR = 1,520 ms, TE = 30 ms, flip angle = 68°, FOV = 192 mm, slice thickness = 3 mm, 
and in-plane resolution = 3 × 3 mm2. The functional images covered the whole cerebrum. Standard preproc-
essing of the fMRI data was performed using SPM8 (Wellcome Department of Imaging Neuroscience, UCL, 
London, UK) and a high-pass filter of 128 s was used to remove low frequency noise. The EPI data were cor-
rected for slice-timing differences, realigned for motion correction, co-registered to the individual T1-weighted 
images, normalized to the Montreal Neurological Institute (MNI) space, and spatially smoothed by a 2-mm 
full-width-half-maximum (FWHM) Gaussian kernel.

Data analysis.  Behavioral data analysis.  Since the behavioral responses of perceptual differences between 
two roughness intensities were recorded in different subjective scales, these were normalized by a two-step proce-
dure49. First, a geometric mean (Mp) of subjective responses over all conditions for each participant and a grand 
geometric mean (Mg) over all conditions and participants were calculated. The response of each participant was 
multiplied by the scaling factors, Mn = Mg/Mp. Next, to scale the values between 0 and 1, the minimum value of 
the responses was subtracted from each of the responses and the resulting value was divided by the new maxi-
mum for each participant. These normalized behavioral responses were averaged across all participants to obtain 
a group-level dissimilarity matrix. An entry at the j-th row and the k-th column of the dissimilarity matrix was 
the average perceived difference in a normalized scale when the j-th intensity was presented followed by the k-th 
intensity (j, k = 1, …, 5). We then applied a multidimensional scaling (MDS) to this dissimilarity matrix to yield a 
spatial organization of perceptual responses for the five different roughness intensities. For MDS plots calculated 
for the tasks, the Kruskal’s stress values representing the goodness of fit were less than 0.01. Regarding a rule of 
thumb for a stress value50, Kruskal stated that “Our experience with experimental and synthetic data suggests the 
following verbal evaluation: 20% poor, 10% fair, 5% good, 2.5% excellent, 0% perfect.”. Since our stress value of 
2-dimensional spaces was less than 0.01 (1%), we considered that 2-dimensional spaces were sufficient to describe 
the behavioral data.

Confirmatory analysis.  We first measured the luminance of the color of sandpapers in each presented video 
clips with a UDT S370 photometer (Graseby Optronics, Orlando, FL). Displayed mean luminances of the surface 
colors were 42.3, 31.7, 14.5, 29.6, and 29.1 for the white (particle size: 0.3), yellow (particle size: 12), blue (particle 
size: 40), gray (particle size: 60), and brown (particle size: 100), respectively. Since luminance is a measure to 
describe the perceived brightness of a color51, we assumed that luminance could characterize this low-level visual 
information. Moreover, a previous fMRI study has demonstrated the effects of luminance of visual stimuli on 
BOLD responses in human primary visual areas52. In particular, a significant increase in the neural activities was 
observed as the luminance increased. The confirmatory analysis consisted of two steps. First, univariate general 
linear model (GLM) group analyses were carried out to search for brain areas showing significant BOLD signal 
changes between the visual observation and the resting conditions. Specifically, we performed five GLM analyses 
contrasting visual observation on each of roughness intensities against resting periods, e.g. 0.3 (particle size) – 
resting, 12 – resting, 40 – resting, etc. Then, the common brain regions activated by the five different intensities 
were obtained. Second, we examined how neural activation levels (i.e. t-values) within each of the identified brain 
regions correlated with luminance or particle size. The resulting correlation coefficients were used to test our 
hypothesis.

Functional imaging data analysis.  Our multivariate analysis aimed to identify brain regions representing 
roughness intensity information according to the stimulus modality: Visual observations (viewing video clips 
associated with perceived tactile intensities) and tactile explorations (exploring different intensities of surface 
roughness). To this end, we performed volume-based searchlight MVPAs to seek local neural activity patterns 
that would allow successful classification of the five roughness intensities.
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We first used a GLM to convert functional imaging data into data for classifier training and testing in search-
light MVPAs. Specifically, standard predictors were made by the convolution of a box-car function of the stimu-
lus ‘on’ periods with a hemodynamic response function (HRF) implemented in SPM8. Each regressor modeled 
an individual trial in order to increase the number of examples. As results, a total of 150 regressors (6 fMRI 
runs × 5 blocks × 5 trials) were built to model the data for each participant. Obtained parameter estimates were 
used as input features for a searchlight analysis implemented in the Searchmight Toolbox53. We constructed a 
searchlight consisting of a center voxel and its neighborhood within a 3 × 3 × 3 voxels cube. In each searchlight, 
a 5-class Gaussian Naïve Bayes (GNB) classifier decoded the spatial pattern of the parameter estimates in the 
voxels into one of the five roughness intensity categories. We performed three searchlight analyses: (a) analysis 
on data evoked by tactile explorations, (b) analysis on data evoked by visual observations, and (c) analysis on 
data evoked by both stimuli types. In cases of (a) and (b), each experimental run was considered as one-fold and 
a 3-fold cross-validation procedure was performed. The resulting decoding accuracies were stored in the center 
voxel of the searchlight cube. Chance-level accuracy (0.2 in this case) was subtracted from the value stored in each 
voxel to yield deviations from chance. A random-effects group analysis was then performed on these individual 
accuracy maps to identify commonalities among individual neural activity patterns. This test was implemented as 
a one-sample t test against 0 to identify above-chance decoding accuracy in the MVPA. In case of (c), all analysis 
steps were identical except for the cross-validation procedure. Here, data elicited by tactile explorations were 
labeled as ‘Group 1’ and data elicited by visual observations were labeled as ‘Group 2’. In the first step, the classifier 
was trained on ‘Group 1’ data and tested on ‘Group 2’ data. In the second step, ‘Group 2’ data were used for train-
ing and ‘Group 1’ data for testing (a cross-modal classification method). The resulting decoding accuracies from 
both cross-validation steps were averaged and assigned to the center of the searchlight cube. This method ensured 
that the classifier could correctly decode the roughness intensities only if a shared pattern of neural activity was 
evoked by tactile explorations and visual observations.

To correct the searchlight results for multiple comparisons, we estimated an empirical cluster size threshold 
for a group of participants in searchlight accuracy maps. Following the sign-flipping permutation procedure22, a 
cluster size obtained from our group analysis was compared with a reference distribution of a cluster size that one 
would obtain by chance. Under the null hypothesis, searchlight accuracy values would be distributed between 
−0.2 and 0.8 after chance level subtraction. Namely, under the null hypothesis, the sign of the searchlight accura-
cies would be ‘+’ or ‘−’ with a probability of 80% and 20%, respectively. To estimate how large clusters could be 
formed under this condition, we randomly flipped the sign of the searchlight accuracy maps of a random num-
ber of participants. These maps were then considered as group samples under the no-effect condition. Then, a 
random-effect analysis on these maps was performed to assess the size of the biggest cluster. The null-distribution 
of cluster sizes was yielded by 1,000 repetitions of this procedure. In this study, we reported the clusters in the 5% 
of the upper tail as significant, i.e. p < 0.05 corrected for multiple comparisons via cluster size.

Correlation analysis.  If certain stimuli are more similar to each other than others, humans would show higher 
confusion rates for these stimuli in their behavioral response as well as in fMRI decoding from neural activities 
that contribute to their behavioral decision20. Inspired by this notion, the identified clusters from the searchlight 
analyses were further investigated to find which brain areas showing the identified clusters were more closely 
related to the perception of roughness intensity in behavioral responses. We examined whether a correlation 
existed between confusion patterns of behavioral and neural similarities. As an indicator for behavioral similar-
ity, we created a similarity matrix by subtracting each value of the behavioral dissimilarity matrix from 1. As an 
indicator for neural similarity, we averaged the confusion matrices of each participant for each identified cluster. 
Then, we employed the Mantel test to calculate a correlation between the behavioral and neural similarity matri-
ces40. The significance of the test was determined from the probability distribution obtained by 10,000 times of 
repeated permutations. For each permutation, we permuted the values of each similarity matrix and determined 
the expected distribution of the statistics under the null hypothesis. The probability of the observed correlation 
arising by chance was then yielded by observing where the statistic calculated from the observed data fell in the 
permuted distribution. Together with the group-level analyses, we performed the identical correlation analyses 
at the single subject level.

Data Availability Statement
Both the original and processed fMRI images related to this publication will be available to share upon request 
with a legitimate reason such as to validate the reported findings or to conduct a new analysis (Junsuk Kim; jun-
suk.kim@skku.edu).
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