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Background: The heaviest period of cannabis use coincideswith ongoingwhitematter (WM)maturation. Further,
cannabis-related changes may be moderated by FAAH genotype (rs324420). We examined the association be-
tween cannabis use and FAAH genotype on frontolimbic WM integrity in adolescents and emerging adults. We
then tested whether observed WM abnormalities were linked with depressive or apathy symptoms.
Methods: Participants included 37 cannabis users and 37 healthy controls (33 female; ages 18–25). Multiple re-
gressions examined the independent and interactive effects of variables on WM integrity.
Results: Regular cannabis users demonstrated reduced WM integrity in the bilateral uncinate fasciculus (UNC)
(MD, right: p = .009 and left: p = .009; FA, right: p = .04 and left: p = .03) and forceps minor (fMinor) (MD,
p = .03) compared to healthy controls. Marginally reduced WM integrity in the cannabis users was found in
the left anterior thalamic radiation (ATR) (FA, p = .08). Cannabis group ∗ FAAH genotype interaction predicted
WM integrity in bilateral ATR (FA, right: p = .05 and left: p = .001) and fMinor (FA, p = .02). In cannabis
users, poorer WM integrity was correlated with increased symptoms of depression and apathy in bilateral ATR

and UNC.
Conclusions: Consistentwith prior findings, cannabis usewas associatedwith reduced frontolimbicWM integrity.
WM integrity was also moderated by FAAH genotype, in that cannabis-using FAAH C/C carriers and A carrying
controls had reducedWM integrity compared to control C/C carriers. Observed frontolimbicwhitematter abnor-
malities were linked with increased depressive and apathy symptoms in the cannabis users.
© 2014 Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Cannabis use remains the most popular illicit substance among
youth, with 22.7% of high school seniors and roughly 20% of college stu-
dents reporting past month use (Johnston et al., 2014). Considering the
decline in perceived risk of use (Johnston et al., 2013), understanding
the neurocognitive consequences of regular cannabis use in youth is a
significant public health priority.

Consistent with high cannabinoid receptor 1 (CB1) frontolimbic re-
ceptor density, the endogenous endocannabinoid system is thought to
regulate emotion-relatedmemory, affective processing, stress response,
and executive functioning (see Egerton et al., 2006; Horder et al., 2009;
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Marco and Lavioloa, 2012). Adult daily cannabis users demonstrate sig-
nificant downregulation of CB1 density, especially within frontolimbic
regions (Hirvonen et al., 2012). CB1 receptors are localized on axons in
high concentrations as well as oligodendrocytes, which myelinate
axons (see Mackie, 2005; Molina-Holgado et al., 2002; Moldrich and
Wenger, 2000). Diffusion tensor imaging (DTI) provides in-vivo analysis
of WM integrity, measured by fractional anisotropy (FA), andmean dif-
fusivity (MD), quantifying the direction and coherence ofWM fibers. In
general, greater FA and lower MD values indicate highly cohesive WM
bundles (see Johansen-Berg and Behrens, 2009). Adolescence and
early adulthood are characterized by substantial increases inwhitemat-
ter (WM) volume, consisting of axons and oligodendrocytes, and im-
proved cohesion in the frontal and limbic networks (Ashtari et al.,
2007; Barnea-Goraly et al., 2005; Bava et al., 2010a; Giorgio et al.,
2008; Giorgio et al., 2010; Simmonds et al., 2014; Toga et al., 2006),
which is associated with improved cognitive efficiency, especially in af-
fective processing and complex executive functioning (Bava et al.,
2010a; Blakemore and Choudhury, 2006; Nagy et al., 2004; Steinberg,
2005; Yurgelun-Todd, 2007). Further, this WM neurodevelopment
-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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coincideswith increases in CB1 receptor density, especially in frontolimbic
areas (Terry et al., 2009).

Therefore, chronic cannabis exposure during adolescence and young
adulthoodmay significantly disrupt frontolimbicWM integrity. Howev-
er, to date, most studies examining white matter integrity in cannabis
users have focused on the corpus callosum (fMinor), memory and
sensory-motor relays, finding poorer integrity in the genu (Abou-
Saleh, 2010; Arnone et al., 2008; Gruber et al., 2011; Gruber et al.,
2014), internal capsule (Gruber et al., 2014), arcuate fasciculi (Ashtari
et al., 2009), and tracts within the hippocampus (Yücel et al., 2010;
Zalesky et al., 2012), but not the corona radiata (Gruber et al., 2014).
Only a few studies have specifically examined WM integrity in frontal
projecting fibers that underlie emotional regulation (such as the
uncinate fasciculus, anterior thalamic radiation, and forceps minor;
Blumenfeld, 2002) in cannabis users. For example, Clark et al. (2012)
found lowered FA in PFCWM in adolescentswith polysubstance use dis-
orders (89% cannabis use disorder), including the frontal pole, frontal
superior, frontal caudal middle, frontal rostral middle, and inferior fron-
tal gyrus. In contrast, another study found increased apparent diffusivity
coefficient in PFC regions in cannabis users and controls, with no differ-
ences in FA (DeLisi et al., 2006). Filbey et al. (2014) found increased FA in
the forcepsminor in heavy cannabis users, although this sample was on
average 28 years old; therefore, results may be unique to this age group.
Perhapsmost relevant to the current study, Jacobus et al. (2013b) found
reductions in whitematter in cannabis users with comorbid alcohol use
in a 3-year longitudinal investigation, with significant group by time in-
teractions revealing decreased FA with cannabis use in the left anterior
internal capsule and uncinate fasciculus.

Inconsistent findings in this literature may be related to methodolog-
ical differences including decreased power associated with whole-brain
analysis (DeLisi et al., 2006; Jacobus et al., 2013b) and sample age
(Filbey et al., 2014). Alternatively, genes that regulate endocannabinoid
signaling (ECS) may clarify variability in cannabis-related WM findings.
An enzyme called fatty acid amide hydrolase (FAAH) is involved in de-
creasing CB1 receptor activation by degrading the naturally occurring ag-
onist anandamide (AEA; see Ho and Hillard, 2005). As the PFC continues
to develop during adolescence, persistent increases in the reliance of
FAAH activity have been noted (Long et al., 2012), suggesting that varia-
tion in FAAH signalingmay regulate white matter integrity in young can-
nabis users. The most common single nucleotide polymorphism (SNP)
results in a missense from C to A at position 385 (rs324420) for the
gene encoding for the enzyme FAAH (FAAH) with C/C representing the
most common genotype and A/A representing the least common (Sipe
et al., 2002; Sipe et al., 2010). Carriers of the A nucleotide have increased
levels of AEA thought to be attributed to a less stable form of FAAH (Sipe
et al., 2010). The FAAH genotype has been linked with behavioral pheno-
types (Conzelmann et al., 2012; Filbey et al., 2010; Flanagan et al., 2006;
see Gunduz-Cinar et al., 2013; Hariri et al., 2009; Haughey et al., 2008;
Schatch et al., 2009; Sipe et al., 2002; Sipe et al., 2010; Tyndale et al.,
2007). Functional relationships have been reported between FAAH and
frontolimbic behavioral phenotypes in young adult cannabis users.
Haughey et al. (2008) examined self-report assessments of subjective ex-
perience and found that individuals with the C/C genotype reported sig-
nificantly greater craving following abstinence compared to A carriers
and A homozygotes may be at reduced risk for developing THC depen-
dence (Tyndale et al., 2007). A follow-up study indicated that the C/C
genotype individuals reported greater withdrawal symptoms post-
abstinence and increased happiness after smoking relative to A carriers
(Schatch et al., 2009). On balance, in non-using controls, those with A al-
lele status have been found to have an increase in startle response toward
unpleasant stimuli coupledwith reduced reactivity toward pleasant stim-
uli (Conzelmann et al., 2012). In contrast, previous studies reported the
opposite with C/C carriers demonstrating increased amygdala or threat-
related reactivity and decreased ventral striatal or reward reactivity
(Hariri et al., 2009); yet, Filbey et al. (2010) noted enhanced reward-
related activation in orbitofrontal and anterior cingulate regions within
the PFC among cannabis users with the C/C genotype. No studies to date
examined whether the FAAH genotype interacts with cannabis exposure
to predict frontolimbic WM integrity in youth.

The primary aim of the current study was to measure whether
cannabis use and the FAAH genotype are independently or interac-
tively associated with frontolimbic WM integrity in a sample of ado-
lescents and emerging adults (ages 18–25). Our secondary aim was
to examine whether observed abnormalities in WM integrity were
associated with mood and/or apathy symptoms in the cannabis
users. Based on previous findings, we hypothesized that cannabis
users would demonstrate poorer WM integrity (increased MD or de-
creased FA values) in frontolimbic tracts compared to controls; ROIs
included the forceps minor (fMinor), UNC, and ATR (Abou-Saleh,
2010; Arnone et al., 2008; Ashtari et al., 2009; Gruber et al., 2011;
Gruber et al., 2014; Houenou et al., 2007; see Mahon et al., 2010;
Oertel-Knöchel et al., 2014; Simmonds et al., 2014; Steffens et al.,
2011; Wang et al., 2008; Yücel et al., 2010; Zalesky et al., 2012). On
the basis of previous FAAH findings (Filbey et al., 2010; Haughey
et al., 2008; Schacht et al., 2009; Tyndale et al., 2007), we hypothe-
sized a significant group by genotype interaction such that cannabis
users with the FAAH C/C genotype will demonstrate the lowest WM
integrity compared to controls and cannabis A carriers. Finally, it
was hypothesized that significant correlations would exist between
poorer white matter integrity and increased depressive and apathy
symptoms in the cannabis users (Bloomfield et al., 2014;
Degenhardt et al., 2003; Hayatbakhsh et al., 2007; Medina et al.,
2007a; Medina et al., 2007b; Verdejo-García et al., 2006).
2. Methods and materials

2.1. Participants

Participants included 67 (33 cannabis-users) right-handed adoles-
cents and emerging adults from a larger imaging genetics study (PI:
Lisdahl, NIDA R03 DA027457; see Lisdahl and Price, 2012 for additional
details). Participants were between the ages 18–25 (35 males; see
Table 1). The exclusions included current or past history ofmajor neuro-
logic, medical or Axis I disorders with the exception of substance use
disorders; history of LD or special education; current psychoactivemed-
ication use; MRI contraindications; and failure to maintain abstinence
for 7 days (for the detailed exclusion criteria see Lisdahl and Price,
2012). The eligible cannabis use criteria included more than 50 lifetime
joints andmore than 25past year joints (on average, the group used 548
joints in the past year). Control status included less than or equal to 5
past year and 10 lifetime joints. Groups werematched as closely as pos-
sible on gender, age, education, verbal IQ, and ethnicity. Participants
reporting N8 standard drinks per week on average as indicated in the
Cahalan criteria as “very heavy drinkers” were excluded from the
analyses.
2.2. Procedures

All aspects of the study were approved by the University of Cincin-
nati Institutional Review Board. Recruitment included advertisements
in fliers and newspapers. Interested participants were phoned to assess
the eligibility criteria. This included a semi-structured interview based
on the DSM-IV-TR criteria for Axis I anxiety, mood, and psychotic disor-
ders (determined by Dr. Lisdahl; First et al., 2001). Eligible participants
then completed either one or two sessions. Those with considerable
substance use completed the questionnaires, drug use interview, neuro-
psychological battery and MRI scan in two sessions in order to ensure
abstinence. Participants were paid $160 for two sessions and $110 for
completing one session. They also received reimbursement for parking,
images of their brain, and local substance treatment resource literature.



Table 1
Demographic & substance use information according to group & genotype.

Cannabis users (N = 33) Controls (N = 34) FAAH carrier of A (N = 24) FAAH C/C (N = 43)

Age 21.21 [18–25] 21.12 [18–25] 21.92* [18–25] 20.74* [18–25]
% Male 63.64% 41.18% 45.83% 55.81%
% ethnic minority 33.33% 32.35% 54.17%** 20.93%**
% FAAH C/C carriers 54.55% 73.53%
WRAT-4 Reading, standard score 103.36 [73–134] 100.97 [81–120] 98.08* [81–120] 104.42* [73–134]
Education 13.12 [9–17] 13.88 [11–18] 13.54 [9–17] 13.49 [11–18]
Beck Depression, Inventory Total-2 5.12* [0–17] 3.38* [0–14] 2.96* [0–8] 4.95* [0–17]
FrSBE apathy T scores 52.97 [28–84] 51.88 [25–87] 50.54 [28–84] 53.47 [25–87]
Past year nicotine use 1788.67** [0–7350] 469.26** [0–3680] 719.17 [0–3680] 1342.35 [0–7350]
Cotinine levels 3.89** [0–6] 1.32** [0–6] 3.04 [0–6] 2.33 [0–6]
Past year alcohol use 282.91* [0–1724] 104.26* [0–878] 193.25 [2–1724] 191.70 [0–1238]
Past year cannabis use 548.36** [26–3895] .41** [0–5] 339.83 [0–1662] 231.49 [0–3895]
Past year other drug use 9.82 [0–171] .12 [0–3] 1.0 [0–12] 7.07 [0–171]

Drug use categorieswere as follows: alcohol, cannabis, nicotine: cigarettes, chewing tobacco/snuff/pipe, cigars/hookah, and ‘other’ drug use,whichwas a total including all of the following
categories: sedatives, ecstasy, stimulants, opioids, hallucinogens, inhalants, and other (anything else notmentioned). For this particular study, otherwas a sumof the following: stimulants,
ecstasy, inhalants, hallucinogens, sedatives, and opioids.

* p b .05.
** p b .01.
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2.3. Screening inventories and questionnaires

2.3.1. Demographic information.
Demographic variables were collected via a Background Question-

naire (see Table 1).
2.3.2. Biological samples
Participants completed a breathalyzer test and provided urine sam-

ples for assessing recent substance use and pregnancy testing. Individ-
uals with positive drug and/or alcohol tests with the exception of
cannabis and nicotine were not included in these analyses. THC metab-
olite levels were assessed via mass spectrometry testing in participants
that tested positive; abstinence was ensured by subtracting the session
2 total from the session 1 THC metabolite ratio totals while controlling
for creatinine.
2.3.3. Drug use
The Time-line Follow-back (Sobell et al., 1979) assessed past year

substance use in standard units (standard drinks for alcohol; cigarettes
or cigars for nicotine; joints for cannabis; grams for stimulants; tablets
for ecstasy; hits or pills for: inhalants, hallucinogens, opioids, and seda-
tives; see Table 1). The Customary Drinking and Drug Use Record
(CDDR) estimated past 3-month and lifetime substance use and
assessedwithdrawal, abuse and dependence criteria (DSM-IV), and dif-
ficulties related to substance use (Brown et al., 1998; Stewart and
Brown, 1995).
2.3.4. Self-report measures
Current depressive symptoms were measured by the Beck Depres-

sion Inventory-II (Beck et al., 1996). Greater cannabis use has previously
been associated with greater apathy scores on the Frontal Systems
Behavioral Scale (FrSBE) (Verdejo-García et al., 2006), thus current
symptoms of apathy were measured by the FrSBE, and age, gender,
and education-normed T scores were used in all analyses (Grace and
Malloy, 2001).
2.4. Neuropsychological assessment

2.4.1. Premorbid intelligence
Estimates of verbal intelligence were measured by The Wide Range

Achievement Test-4th Edition (WRAT-4) Reading subtest (Wilkinson,
2006), which may be sensitive to quality of education (see Manly
et al., 2002). We controlled for this estimate in the analyses in order to
reduce any pre-existing differences between groups.
2.5. Genotyping

2.5.1. FAAH
The FAAH variant was genotyped by a trained geneticist using the

TaqMan (fluorogenic 5′ nuclease) assay (for an example see Egan
et al., 2003). The primers and the probes were obtained from Applied
Biosystems, and PCRwas conducted via an ABI 9700 thermocycler. End-
point results were scored using the ABI 7900HT Sequence Detection
System. For these analyses, individuals fit into one of two FAAH geno-
type groups: C/C genotype or A carrier (e.g., C/A or A/A genotype).

2.6. MRI data acquisition

2.6.1. Parameters
Images were obtained from a 4 T Varian, Unity MRI scanner. T1-

weighted, 3-D SPGR anatomical brain scan was obtained using a modi-
fied driven equilibrium Fourier transform (MDEFT) sequence (FOV =
25.6 cm, 256 × 256 × 192 matrix, slice thickness = 1 mm, in-plane
resolution=1 × 1mm, TR= 13ms, TE= 5.3ms, flip angle= 22°). Dif-
fusion tensor imaging (DTI) was obtained using 12 diffusion directions
with b≈ 600 s/mm2 (FOV=25.6 cm, 64× 64×30matrix, resolution=
4 × 4 × 4 mm3, TR = 8000 ms, TE = 88.8 ms, flip angle 90°). A neuro-
radiologist at CIR reviewed anatomical scans, and participants with
noted abnormalities were excluded from this sample.

2.7. MRI processing

2.7.1. PFC underlying WM integrity
TheWMpathwayswere reconstructed using voxel based 3 × 3 sym-

metric tensor matrices. ROI-based comparison was computed through
FreeSurfer version 5.3 tractography software TRACULA providing both
measures of average weighted fractional anisotropy (FA) andmean dif-
fusivity (MD) (Yendiki et al., 2011) for the following tracts: the corpus
callosum forcepsminor (fMinor), and bilateral: anterior thalamic radiation
(ATR), and uncinate fasciculus (UNC) (see Fig. 1).

2.8. Data analysis

All analyses were conducted using SPSS. ANOVAs and Chi-square
tests were run to examine potential demographic differences as well
as differences in past year drug use histories between the drug and ge-
notype groups. For the primary aim, general linear modeling (GLM) in
SPSS was used to examine whether group, FAAH genotype, or a
group ∗ FAAH genotype interaction were significantly associated with
average weighted FA andMD for each ROI. Standard least squares mul-
tiple regression was used; block one included covariates (WRAT-4
Reading score, age, gender, ethnicity, past year alcohol use, cotinine



Fig. 1. White matter (WM) regions of interest.
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levels), group, and genotype; block two included the interaction be-
tween group and FAAH genotype. If the interaction (cannabis ∗ FAAH
genotype) was not significant, only block one was interpreted. All de-
pendent variableswere normally distributed and therewas no evidence
of multicollinearity. For the secondary analysis, Pearson correlations
were run in the cannabis users between BDI-II depressive symptoms,
FrSBE apathy symptoms, and WM ROIs that significantly differed be-
tween groups or by genotype × group interactions. Significancewas de-
termined if p b .05 for all analyses.

3. Results

3.1. Demographic & mood information

3.1.1. Demographics: drug group
ANOVAs and Chi-square tests revealed that groups did not differ in

gender [χ2(1)3.39, p = .07], ethnicity [66.67% Caucasian for cannabis
users and 67.65% controls], [χ2(1).007, p= .93], WRAT-4 Reading stan-
dard score [F(1,65) = .55, p= .46], age [F(1,65)= .03, p= .87], educa-
tion [F(1,65) = 3.2, p = .08], annual income [F(1,65) = .05, p = .83],
body mass index [F(1,64) = .43, p = .52], or FrSBe apathy T scores
[F(1,65)= .17, p=.72]. As reported previously, cannabis users and con-
trols significantly differed in BDI-II depressive symptoms [F(1,65) =
3.84, p= .05], with cannabis users reportingmore symptoms than con-
trols (primarily in irritability and self-criticalness). Cannabis users re-
ported an average BDI-II total of 5, which is consistent with minimal
depressive symptoms (see Table 1).

3.1.2. Demographics: FAAH genotype
ANOVAs and Chi-square tests noted significant differences between

C/C and A carriers in ethnicity [χ2(1)7.72, p= .005], (22.93% of C/C indi-
viduals and 54.17% of A carriers identified as an ethnic minority); this is
consistent with rates in the general population, as African Americans
have previously been reported to have greater levels of P129T haplotype
diversity compared to Caucasians (Flanagan et al., 2006). There were
also significant differences between genotypes in age [F(1,65) = 4.07,
p = .05], and BDI-II depressive symptoms [F(1,65) = 4.71, p = .03]
(see Table 1). No differences were found between genotypes in the
WRAT-4 Reading standard score [F(1,65) = 3.71, p = .06], body mass
index [F(1,64) = .45, p = .5], gender [χ2(1).62, p = .43], education
[F(1,65) = .01, p= .91], income [F(1,65) = 3.1, p= .08], or FrSBe apa-
thy T scores [F(1,65) = .85, p = .36].

3.2. Allele frequencies

3.2.1. FAAH genotype
FAAH allele frequencies for 67 subjects were: 24 A carriers and 43 C/C

genotype (11 A carrying and 24 C/C males; 13 A carrying and 19 C/C
females; see Table 1). There were no significant differences between can-
nabis users and controls in the FAAH genotype [χ2(1)2.63, p= .11].

3.3. Drug use

3.3.1. Cannabis group
Cannabis users differed from controls in past year uses of nicotine

[F(1,65) = 7.7, p= .007], alcohol [F(1,65)= 6.2, p= .02] and cannabis
[F(1,65)=17.18, p b .001] and recent nicotineusemeasured by cotinine
level [F(1,65) = 22.33, p b .001] (see Table 1). There was no difference
between past year other drug use [F(1,65) = 3.48, p = .07] and past
year drinking patterns [χ2(5)3.84, p = .57] between the groups. The
cannabis group had an average age of regular (at least weekly for
6 months) cannabis use onset of 17.9 (range 10–24).

3.3.2. FAAH group
No differences in any drug use variable were noted between C/C car-

riers and A carriers.

3.4. Primary results

3.4.1. Primary aim: white matter integrity: cannabis group status
After controlling for theWRAT-4 Reading score, age, gender, ethnicity,

past year alcohol use and cotinine levels, cannabis users demonstrated in-
creasedMD in fMinor (MD, [t(58)=2.17, beta=.30, p=.03]), and bilat-
eral UNC (MD, right: [t(58) = 2.69, beta= .39, p= .009]); left: [t(58) =
2.69, beta = .39, p = .009]. Likewise, cannabis users demonstrated de-
creased FA in bilateral UNC (FA, right: [t(58) = −2.07, beta = −.32,
p= .04]; left: [t(58)=−2.27, beta=−.34, p= .03])WM tracts. Canna-
bis users also demonstrated marginal reductions in WM integrity in the
left ATR (increased MD, t(58) = 1.79, beta= .26, p= .08).

3.4.1.1. FAAH genotype. FAAH genotype did not independently predict
WM integrity.

3.4.1.2. Cannabis ∗ FAAH interaction. FAAH genotype interacted with can-
nabis group status to significantly predict FA in fMinor and bilateral ATR.
C/C cannabis users and A carrier controls demonstrated reduced FA in
fMinor [t(57) = 2.43, beta = .31, p = .02], and C/C cannabis users
demonstrated reduced bilateral ATR (FA, right [t(57) = 1.99, beta =
.25, p = .05]; left: [t(57) = 3.53, beta = .41, p = .001]) (see Figs. 2, 3
& 4).

3.4.1.3. Covariates. Lower WRAT-4 Reading score [t(58) = −2.42,
beta = −.32, p = .02], Caucasian ethnicity [t(58) = −2.55,
beta = −.32, p = .01], and greater cotinine level [t(58) = 2.1,
beta = .27, p = .04] predicted increased MD in the right ATR. Lower
WRAT-4 Reading score [t(58) = −2.69, beta = −.37, p = .009] and



Fig. 2.Mean FA for fMinor varies by group and FAAH genotype.
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Caucasian ethnicity [t(58) = −2.0, beta = −.26, p = .05] predicted in-
creased MD in the left ATR. Caucasian ethnicity [t(58) = −1.97,
beta = −.26, p = .05] predicted increased MD in the left UNC. Lower
WRAT-4 Reading score [t(58) =−2.15, beta=−.28, p= .04] and Cau-
casian ethnicity [t(61)=−2.2, beta=−.28, p=.03] predicted increased
MD in fMinor.

3.4.2. Secondary aim: brain–behavior relationships in cannabis users
(n = 33)

Greater symptoms of depression were associated with decreased FA
in bilateral ATR (right: [r=−.36, p=.04]; left: [r=−.35, p=.04]) and
FA in the rightUNC [r=−.34, p=.05], and increasedMD in the left ATR
[r = .45, p = .009]. Increased self-reported apathy symptoms were
Fig. 3. Mean FA for right ATR varies by
associated with decreased FA in bilateral UNC (right: [r = −.52, p =
.002]; left: [r = −.59, p b .001] see Fig. 5).

4. Discussion

The current study measured the relationship between cannabis
group status, FAAH genotype, and frontolimbic WM integrity in a
sample of adolescents and emerging adults (18–25 years old) without
comorbid psychiatric disorders. Consistent with the predicted hypothe-
ses, cannabis users had poorerWM integrity in fMinor and bilateral un-
cinate fasciculi (UNC) compared to controls. Further, consistent with
proposed direction, cannabis users with the C/C genotype had reduced
WM integrity in bilateral anterior thalamic radiation (ATR) compared
FAAH genotype in cannabis users.



Fig. 4. Mean FA for left ATR varies by FAAH genotype in cannabis users.
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to cannabis A carriers and controls. Examination of brain–behavior rela-
tionships noted that in cannabis users, greater self-reported depressive
symptomswere significantly associatedwith poorer integrity in bilater-
al ATR and right UNC, while greater apathy scores were associated with
poorer integrity in bilateral UNC, demonstrating a negative impact on
affective processing.

The present findings are consistent with previous research examin-
ing regions of the fMinor, hippocampal, and internal capsule in young
cannabis users (Abou-Saleh, 2010; Arnone et al., 2008; Gruber et al.,
2011; Gruber et al., 2014; Jacobus et al., 2013b; Yücel et al., 2010;
Zalesky et al., 2012). The PFC, especially the medial and orbital PFC,
plays a vital role in regulating emotional, cognitive and behavioral func-
tions (see Casey and Caudle, 2013; see Davidson, 2002), and such pro-
cesses are fine-tuned with ongoing neurodevelopment, such that
frontal regions exert greater top-down control over subcortical limbic
regions (Phan et al., 2005). It has been previously proposed that the
UNC has a bidirectional role in relaying associated memories of stimuli
and emotions from the temporal lobes to the orbital frontal regions re-
sponsible for evaluating stimuli and rewards for the purpose of modify-
ing behavior (see Von Der Heide et al., 2013). On balance, fMinor is
composed of a collection of fibers that allow the exchange of both inhib-
itory and excitatory influences on the homologous region of the contra-
lateral hemisphere within the PFC (see Bloom and Hynd, 2005; see van
der Knaap and van der Ham, 2011). Thus, the observed reductions in
fMinor and UNC integrity, tracts that connect the PFC to the limbic re-
gions, may provide insight into mood and apathy symptoms related to
cannabis use during this developmental period, perhaps influencing
top-down abilities and affective processing in users (Bolla et al., 2005;
Dorard et al., 2008; Gruber et al., 2009; Patton et al., 2002; Platt et al.,
2010). As cortico-limbic tracts are one of the last to develop (Simmonds
et al., 2014), the presentfindings demonstrated compromise in these par-
ticular bundles, suggesting disruption of neurodevelopmental processes
among cannabis using youth.

We also found moderations of WM integrity in cannabis users by
FAAH genotype. Consistent with previous research suggesting greater
risk associated with C/C genotype (Filbey et al., 2010; Haughey et al.,
2008; Schacht et al., 2009; Tyndale et al., 2007), C/C status in cannabis
userswas associatedwith reducedWM integrity in bundles terminating
on the prefrontal regions including the anterior cingulate and orbital
frontal cortices, and previous studies have highlighted the role of such
pathways in emotion processing, mood disorders, and reward-related
behavior (Coenen et al., 2012; Lai and Wu, 2014; Paul et al., 2006).
Filbey et al. (2010) examined functional changes between C/C and A
carriers and found heightened activation in reward circuitry regions, in-
cluding both anterior cingulate and orbital frontal cortex, among canna-
bis users with C/C genotype. Such findings suggest over-activation of
limbic regions, which may be at the expense of reduced inhibitory re-
sponse in the control regions of the PFC, and such patterns may occur
in concert with poorer WM integrity in fMinor and ATR in cannabis
usingC/C carriers as observed in this study. In controls, the opposite pat-
ternwas observed, with those carrying at least one A allele demonstrat-
ing a pattern in reduced FA in the fMinor. Endocannabinoid signaling
may impact myelination with evidence of communication between oli-
godendrocytes and neurons (Simons and Trajkovic, 2006). Therefore,
the relationship between endocannabinoid signaling and neuronal
health may be an inverse-U shaped curve, with too much or too little
endocannabinoid involvement being associated with poorerWM integ-
rity. Additional longitudinal studies characterizing the differences and
influences of endocannabinoid signaling on WM development are
needed.

We found that poorer WM integrity was significantly associated
with increased self-reported symptoms of depression and apathy in
the cannabis users. These brain–behavior findings are consistent with
our previous finding that reduced WM volume was associated with in-
creased depressive symptoms in adolescent cannabis users (Medina
et al., 2007b), longitudinal studies linking cannabis use with depressive
disorders (Patton et al., 2002), and studies linkingwhite matter integri-
ty with apathy in individuals with HIV (Kamat et al., 2014). Consistent
with our previous findings (Medina et al., 2007a), cannabis users as a
group did not significantly differ from controls in symptoms of apathy;
however, cannabis userswith poorerwhitematter integrity did demon-
strate increased apathy symptoms. Therefore, white matter integrity in
frontolimbic pathways may mediate apathy symptoms in cannabis
users. The reward system may also be involved, as cannabis-using
youth demonstrated a relationship between increased apathy and de-
creased dopamine production in the striatum (Bloomfield et al., 2014),
a subcortical region high in CB1 density (Terry et al., 2009). These WM
pathways have been shown to impart top-down executive control
(see Davison, 2002; Phan et al., 2005) and previous studies in adoles-
cents highlight the influence they have on affective activation (Swartz



Fig. 5. Scatter Plot — mean FA for the left UNC & apathy T score in cannabis users.
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et al., 2014); thus, frontal regions may not effectively regulate affective
processing in young cannabis users. Future studies may want to exam-
ine frontolimbic functional connectivity differences in affective process-
ing between young cannabis users and non-users.

There are limitations to the present study. Alcohol and cannabis are
the most frequently used substances among youth (Johnston et al.,
2014). The current study excluded individuals meeting the Cahalan
criteria for “very heavy” alcohol use, and we statistically controlled for
alcohol in the main analyses; however, it is possible that the effects of
simultaneous or combined cannabis and alcohol use on WM may be
influencing the observed results. For example, studies comparing non-
using controls with groups reporting alcohol only or combined alcohol
and cannabis use suggest that alcohol does indeed have damaging ef-
fects on WM in the frontal and temporal regions (Bava et al., 2009;
Bava et al., 2010b; Bava et al., 2013; Jacobus et al., 2009; Jacobus et al.,
2013a), though those transitioning to combined use may have greater
WM abnormalities (Jacobus et al., 2013b). Jacobus et al. (2013b) exam-
ined WM quality in youth prior to initiation of heavy cannabis and/or
heavy alcohol use and found significant reductions in WM integrity in
those with combined alcohol and cannabis use compared to those that
initiated heavy alcohol use alone. Thus, combined cannabis and alcohol
use appears to be detrimental to WM health in youth. Similarly, canna-
bis users indicated greater nicotine use than controls, consistent with
reported rates of co-use in youth, and associated with mood symptom-
atology (see Ramo et al., 2012). We also found that recent nicotine use
measured by saliva cotinine levels predicted WM integrity in the right
ATR, such that higher levels were associated with reduced integrity. Be-
cause this is a cross-sectional study, it is not possible to determine
whether results are due to premorbid differences. A longitudinal study
found that weekly or greater cannabis use during the teenage years
doubled the risk of later depression and anxiety, whereas depression
and anxiety as a teenager did not predict later cannabis use (Patton
et al., 2002), suggesting that mood symptoms may be related to long-
term regular use with earlier onset. Therefore, prospective, longitudinal
studies are needed to disentangle potential causal influences on find-
ings from cross-sectional datasets. Additionally, despite lack of differ-
ences observed in genotype between cannabis users and controls,
there were significant differences in age between C/C genotype and A
carriers. Although age was statistically controlled for, this may have
important implications related to the degree of development reached
between genotypes. Finally, ethnicity (coded as Caucasian or not) sig-
nificantly predicted white matter when the FAAH genotype was includ-
ed in regressions; due to power,wewere not able to examine ethnicities
separately. Larger cohorts may remedy this and address developmental
differences between genotypes.

5. Conclusions

In conclusion, this study found that regular cannabis use is associat-
ed with poorer frontolimbic WM integrity, and these findings were
moderated by the FAAH genotype. This reducedWM integrity was asso-
ciated with negative mood and greater apathy symptoms in cannabis
users. As use is predicted to rise in youth (Caulkins et al., 2012) in the
context of decreases in perceived risk (Johnston et al., 2013), it remains
an important public health priority to delay the onset of regular canna-
bis use until neuronal maturation has been reached (see Lisdahl et al.,
2013).
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