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ABSTRACT

With the development of the COVID-19 epidemic, there is an urgent need to establish a system for determining the ef-
fectiveness and neutralizing activity of vaccine candidates in biosafety level 2 (BSL-2) facilities. Previously, researchers
had developed a pseudotyped virus system for SARS-CoV and MERS-CoV, based on HIV-1 core, bearing virus spike pro-
tein. During the development of a pseudotyped SARS-CoV-2 system, a eukaryotic expression plasmid expressing SARS-
CoV-2 spike (S) protein was constructed and then co-transfected with HIV-1 based plasmid which containing the firefly
luciferase reporter gene, into HEK293T cells to prepare the pseudotyped SARS-CoV-2 virus (ppSARS-2). We have suc-
cessfully established the pseudotyped SARS-CoV-2 system for neutralization and entry inhibition assays. Huh7.5 cell
line was found to be the most susceptible to our pseudotyped virus model. Different levels of neutralizing antibodies
were detected in convalescent serum samples of COVID-19 patients using ppSARS-2. The recombinant, soluble,
angiotensin-converting enzyme 2 protein was found to inhibit the entry of ppSARS-2 in Huh7.5 cells effectively. Fur-
thermore, the neutralization results for ppSARS-2 were consistent with those of live SARS-CoV-2 and determined using
the serum samples from convalescent patients. In conclusion, we have developed an easily accessible and reliable tool
for studying the neutralizing efficiency of antibodies against SARS-CoV-2 and the entry process of the virus in a BSL-2
laboratory.

© 2020 Chinese Medical Association Publishing House. Published by Elsevier B.V. This is an open access article under the

CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The causative agent of the unprecedented global pandemic of corona-
virus disease 2019 (COVID-19) is a novel beta-coronavirus [1-3], named
as SARS-CoV-2 (also called as COVID-19 virus in China) [4]. The control
of the COVID-19 pandemic is a great challenge because SARS-CoV-2 is a
highly contagious virus, and COVID-19 has diverse clinical manifestations
(such as asymptomatic infection, common cold, and pneumonia) [5].
Therefore, there is an urgent need to develop vaccines or therapeutics
against COVID-19. However, currently, SARS-CoV-2 live virus-associated
experiments can only be conducted in a biosafety level 3 (BSL-3) facility,
which limits the development of SARS-CoV-2 vaccines and drugs to
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several scientific teams and local departments of disease control and pre-
vention. Hence, a reliable, rapid, and convenient neutralization assay,
that can be handled in a BSL-2 laboratory is essential for screening and
evaluation of antibodies and therapeutic agents against the SARS-CoV-2
infection.

Previous studies have suggested that the glycosylated spike
(S) protein is the major surface protein responsible for receptor bind-
ing and entry of the virus into the host cell [6-8], and that both
SARS-CoV-2 and SARS-CoV have the same main receptor, which is
angiotensin-converting enzyme 2 (ACE2) [9,10]. Pseudotyped viruses
based on the HIV-1 backbone consist of an envelope protein of a heter-
ologous virus and reporter genes, which make them reliable and safe
models for assessment of neutralization efficiency and entry inhibition
[11-13].

Here, a pseudotyped model with the SARS-CoV-2 infection property has
been developed, based on optimized S expression plasmid and the HIV-1
packaging system incorporating luciferase reporter [14,15]. Cell lines sen-
sitive to this pseudotyped model were identified. The application and au-
thenticity of the system were verified by the neutralization assay based
on live SARS-CoV-2.

2590-0536/© 2020 Chinese Medical Association Publishing House. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).
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HIGHLIGHTS

Scientific question

To establish a pseudotyped SARS-CoV-2 system for determining
the effectiveness and neutralizing activity of vaccine candidates
in biosafety level 2 (BSL-2) facilities.

Evidence before this study

Coronavirus disease 2019 (COVID-19) has become a global pan-
demic. Currently, SARS-CoV-2 live virus-associated experiments
need to be handled in biosafety level 3 (BSL-3) facilities. Previ-
ously, researchers had successfully established an HIV based
pseudotyped virus system for studies on MERS-CoV and Ebola vi-
rus. Using the pseudotyped virus system, viral entry associated re-
search, e.g. neutralization assays and /in vitro pharmacodynamics,
can thus be carried out in the BSL-2 facilities.

New findings

In this study, we have developed a pseudotyped SARS-CoV-2
system that efficiently operates in a BSL-2 facility. With transfec-
tion of two plasmids into HEK293T cells, we have developed an
HIV-1 core-based pseudotyped virus consisting of SARS-CoV-2
spike protein and found Huh7.5 cell line suitable for analysis of
our pseudotyped SARS-CoV-2 system. We use the Convalescent
serum from 11 COVID-19 patients to compare the results of
SARS-CoV-2 live-virus microneutralization and the pseudotyped
SARS-CoV-2 system and notice a significant correlation between
the results obtained by the two methods.

Significance of the study

The pseudotyped SARS-CoV-2 system, developed in this study,
seems highly reliable for conducting the SARS-CoV-2 viral entry
associated research in a BSL-2 facility. The system is suitable for
high-throughput analysis and R&D of vaccines and drugs.

2. Materials and Methods
2.1. Cells and serum

HEK293T, Vero, Huh7, and Huh7.5 cells were purchased from ATCC
(US), and Vero E6 cells were provided by Beijing Sinovac Biotech Co.
(China) All cells were cultured under the same conditions throughout the
study. DMEM (Hyclone, US) containing 10% fetal bovine serum (FBS;
GEMINI Co., China) was used to culture the cells in a 5% CO,, incubator
at 37 °C.

2.2. Construction and identification of S expressing plasmid

The gene coding for the S protein of SARS-CoV-2 (GISAID, No.
EPI ISL, 402119) was synthesized (Genescript Co., China) using a
mammalian-optimized codon. It was then inserted into the eukaryotic ex-
pression vector, pcDNA3.1 (+), via Hind III and Xba I digestion, and
named as pcDNA3.1-nCoV S. The expression plasmid was transfected into
HEK293T cells with jetPRIME (Polyplus, France) transfection reagent for
48 h. The expression of S protein was identified by indirect immunofluores-
cence assay. After transfection, the cells were resuspended and fixed on a
microporous glass plate in 4% paraformaldehyde for 1 h. Later, the cells
were permeabilized and blocked using 10% goat serum in 0.2% TritonX-

100 PBS. Next, the cells were incubated with primary antibodies at 37 °C
for 2 h. Mouse anti-SARS-CoV-2 S pAb and convalescent serum from
COVID-19 patients, diluted at 1:200 and 1:50, respectively, were used as
primary antibodies. After the incubation period, the cells were washed
with PBST 10 times and were incubated with goat anti-mouse IgG FITC
or anti-human IgG FITC in 0.5% Evans blue PBS at RT for 1 h. The cells
were then washed with PBST, and mounted on cover slips using mounting
buffer. Fluorescence was observed using OLYMPUS IX50FL microscope and
the fluorescent images were captured using the DP70 digital camera
system.

2.3. Preparation and identification of pseudotyped SARS-CoV-2 virus

Two micrograms of pcDNA3.1-SARS-CoV-2 S expression plasmid (or
mock plasmid pcDNA3.1) and four micrograms of HIV-1 pseudotype pack-
aging plasmid, pNL4-3.Luc.R-E-, containing the Fluc reporter gene, were
diluted into Opti-MEM and mixed with 20 pL X-tremeGENE HP transfection
reagent (Roche, Germany) for 15 min before the plasmids were transfected
into the HEK293T cells. The culture medium was refreshed after 6 h. The
transfected cells were cultured for 48 h, then supernatant was harvested
and frozen at —70 °C.

SARS-CoV-2 pseudotyped virus and mock virus were ultracentrifuged
at 24,000 x g using 1 mL of 20% sucrose as a cushion. Then, the medium
was discarded, and the precipitated pseudoviruses were suspended in
200 pL of SDS-PAGE loading buffer. The samples were heated for
10 min at 95 °C and then subjected to SDS-PAGE for immunoblotting,
as previously described [16]. SARS-CoV-2 S protein was identified using
the mouse anti-SARS-CoV-2 S pAb (Sino biological, China), while HIV
P24, used as reference, was identified using the rabbit anti-p24 polyclonal
Ab (Sino biological).

2.4. Sensitive cell screening test for pseudotyped SARS-CoV-2 infection

Vero, Vero E6, Huh7, Huh7.5, and BHK21 cells were seeded into
96-well plates one day before infection. When infected, the cells were
approximately 60%-80% confluent. Following infection, the culture me-
dium was removed, and 50 pL of serum-free DMEM medium was added.
The cells were stabilized for 30 min, following which 50 pL of pseudotype
virus culture suspension was added to the cells. The culture medium was
replaced after 12-16 h with fresh DMEM supplemented with 2% FBS, and
the culture was continued for 24 h. Bright-Glo Luciferase Assay System
(Promega Co., US) was used to detect Fluc expression in the cells, and the
titer of pseudotype virus in different cell lines was obtained. Thus, sensitive
cell lines were identified.

2.5. Pseudotyped virus-based neutralization assay

The sensitive cells were grown to 60%-80% confluency for the exper-
iment. The serum was subjected to quadruplicate serial diluted (from
1:100 to 1:6,400) in DMEM with a total volume of 50 pL. The diluted
serum was mixed with equal volume of pseudovirus particles, and the
mixture was incubated at 37 °C for 1 h. Subsequently, the mixture was
added to Vero cells in 96-well plates in quadruplicates. The Bright-Glo Lu-
ciferase Assay System (Promega) was used to detect the expression of
Fluc in cells, and the appearance was recorded as relative light units
(RLU). After 48 h, the Bright-Glo luciferase assay substrate was added
to each well, and the luminescence was measured with GLOMAX
luminometer, and the neutralization efficiency was then calculated. The
inhibition rate of serum antibody in pseudotyped virus-based neutraliza-
tion test (ppNT) was expressed as the inhibition percentage and was cal-
culated wusing the following formula: Neutralization potency
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(percentage) = (RLU without serum - RLU with serum)/RLU without
serum*100%. The median neutralization dose (NDs,) was calculated by
Reed-Munch method.

2.6. Soluble ACE2 entry inhibition assay

Prof. Wenhui Li has generously provided the soluble human ACE2 pro-
tein. The experiment was conducted as previously described [7,17]. In
brief, recombinant soluble human ACE2 protein was serially diluted in
DMEM and mixed with pseudotyped viruses at room temperature. After
30 min of incubation, the mixture was added to Huh7.5 cells cultured in
a 96-well plate to 60%-80% confluency. After 48 h of 5% CO, incubation
at 37 °C, the infectious titer was measured using the Bright-Glo firefly lucif-
erase kit (Promega). The inhibition ratio was calculated as follows: Inhibi-
tion ratio = (Blank RLU-treatment RLU)/Blank RLU *100%. The median
inhibitory concentration (IC50) was calculated by nonlinear regression.

2.7. Live SARS-CoV-2-based neutralization (inhibition) assay

The experiment was conducted in a BSL-3 laboratory, as previously re-
ported [18]. Briefly, serum and live SARS-CoV-2 (C-Tan-nCoV Wuhan
strain 01) were diluted using 2% FBS-DMEM, and the mixtures were incu-
bated at 37 °C for 1 h, following which they were added to the seeded Vero
cells. After incubation at 37 °C for 48 h, CPE was observed, and 100 pL of
the culture supernatant was harvested for nucleic acid extraction and
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real-time fluorescence RT-PCR reaction. Median tissue culture infective
dose (TCIDsg) of the virus in the sample was calculated according to the
CT value of the sample and standard curve. The neutralization potency
(or inhibition rate) was calculated as follows: Inhibition ratio = (TCIDs,
without serum - TCIDs, with serum)/ TCIDso without serum *100%. The
median neutralization dose (NDs,) was calculated by Reed-Munch method.

2.8. Statistical analysis

The neutralization percentage curve was analyzed using nonlinear re-
gression function of GraphPad Prism 7 (GraphPad Software, Inc., San
Diego, CA, USA). One-way ANOVA was used for the comparison of multiple
groups of data. The correlation between results was analyzed using linear
regression function of using GraphPad Prism 7.

3. Results

3.1. Identification of SARS-CoV-2 S protein expression and SARS-CoV-2
pseudotyped virus

The construction of SARS-CoV-2 S protein expression plasmid
(pcDNA3.1- SARS-CoV-2 S) is shown in Fig. 1A. The expression of S protein
in HEK293T cells was analyzed via the immunofluorescence assay
(Fig. 1B), in which the cells were stained by the serum of COVID-19

S protein ORF region
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Fig. 1. Identification of SARS-CoV-2 S protein expression and SARS-CoV-2 pseudotyped virus. (A) Construction and identification of S expressing plasmid. SARS-CoV-2 S
protein gene was inserted in the pCDNA3.1 vector. (B) Immunofluorescence assay for S protein expression in pcDNA3.1-SARS-CoV-2 S plasmid. The expression was
determined using mouse pAb against SARS-CoV-2 S protein and convalescent serum samples from COVID-19 patients. (C) Identification of S protein expression in SARS-
CoV-2 pseudotyped virus by immunoblot assay. Bands corresponding to SARS-CoV-2 S and HIV-1 p24 proteins were detected at the same sample line in the gel.
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Fig. 2. Screening of sensitive cell lines for pseudotyped SARS-CoV-2 virus infection.
(A) Vero, Vero E6, Huh7, and Huh7.5 cells were analyzed to screen the cell line most
sensitive to infection by the pseudotyped SARS-CoV-2 system. BHK21 cells were
used as the negative control in this system, due to lack of SARS-CoV-2 receptor in
the cells.

convalescent patients, as it exhibited a robust expression of SARS-CoV-2 S
protein.

Pseudotyped virus bearing SARS-CoV-2 S protein was identified by
western blotting using antibodies against SARS-CoV-2 S and HIV-1
p24. Dedicated bands of full-length S, S1, and S2 proteins were ob-
served in concentrated pseudotyped virus cultural supernatant. HIV
p24 can be detected at the same sample line (Fig. 1C), indicating the
HIV core bearing SARS-CoV-2 spike protein pseudotyped virus were
successful packaged.

3.2. Screening of sensitive cell lines for pseudotyped SARS-CoV-2 virus infection

We analyzed several cell lines to screen for a cell line that is suitable for
infecting with the SARS-CoV-2 pseudotyped virus (Fig. 2). Among them,
the Huh7.5 cell line exhibited the highest reporter gene expression after
transduction with pseudotyped SARS-CoV-2 virus, while other cell lines
(Vero, Vero E6, BHK21) were substantially less permissive to SARS-CoV-2
pseudotyped virus entry.

3.3. Application of pseudotyped SARS-CoV-2 virus for neutralization or entry in-
hibition assay

The pseudotyped SARS-CoV-2 system was employed to test the neutral-
izing activities of several convalescent serum samples from COVID-19
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patients (Fig. 3A). The neutralizing titer of serially diluted serum samples
of convalescent patients can be determined using the pseudotyped SARS-
CoV-2 virus. Various levels of neutralizing antibodies were detected in
the serum samples from COVID-19 convalescent patients, which exhibited
50% neutralization (NDs() against ppSARS-2 from less than 1:50 dilution
to more than 1:2,048 dilution.

Since hACE2 has been reported as the SARS-CoV-2 entry receptor, we
have utilized soluble hACE2 as a binding competitor to inhibit the entry
of pseudotyped SARS-CoV-2 [9]. ppSARS-CoV-2 entry was blocked using
soluble ACE2, as indicated by the significant reduction in reporter gene ex-
pression level (Fig. 3B). The IC50 of soluble hACE2 was identified as
0.032 pg/mL.

3.4. Correlation analysis between pseudotyped SARS-CoV-2 system and live-
SARS-CoV-2 assays

To verify the true reliability of the system, serum samples of the SARS-
CoV-2 convalescent patients were analyzed by microneutralization using
live SARS-CoV-2 virus (Fig. 4A). Results revealed the similar neutralizing
potency between the pseudotyped-SARS-CoV-2 system and live-SARS-
CoV-2.

We then compared the results of the analysis conducted using the ppNT
and the live virus (Fig. 4B) and found that the results from the ppNT were
strongly correlated with those obtained using live virus (R? = 0.6931 and
p < 0.005).

4. Discussion

A reliable, rapid, and convenient neutralization assay is essential for
screening and evaluation of antibodies and therapeutic agents against
SARS-CoV-2 infection. The pseudotyped SARS-CoV-2 system developed
here contains firefly luciferase reporter gene, which is suitable for high-
throughput analysis and easy to handle in a BSL-2 facility. Various levels
of neutralizing antibodies were detected in serum samples of COVID-19
convalescent patients, and soluble ACE2 protein was found to effectively
inhibit the entry of ppSARS-2 in Huh7.5 cells. Moreover, we have verified
the correlation between the results from using a pseudotyped platform
and live SARS-CoV-2. Our data support that the pseudotyped SARS-
CoV-2 platform could be employed for R&D of vaccines and drugs as
well as for a deeper understanding of the transmission and infection of
SARS-CoV-2.

SARS-CoV-2 has been successfully isolated and cultured in Vero, Huh7,
and Calu-3 cell lines [19]. We have analyzed several cell lines to screen the
most susceptible one to SARS-CoV-2 pseudotyped virus infection. Huh7.5
cell line exhibits the highest infectious potency as compared to Vero and
Huh?7 cell lines. We speculated that the reason for the excellent perfor-
mance in the Huh7.5 cell line might be related to the defect of the
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Fig. 3. Neutralization or entry inhibition assay based on pseudotyped SARS-CoV-2 virus. (A) Neutralization assay based on SARS-CoV-2 pseudotyped-virus system. The serum
samples of 11 convalescent patients (P1-P11) was tested. The inhibition ratio decreased gradually with dilution. Ten out of 11 samples neutralized over 50% pseudotyped-
virus at 1:100 dilution. (B) Soluble ACE2 entry inhibition assay based on SARS-CoV-2 pseudotyped-virus system. Soluble ACE2 were serial diluted ten times. Results were
obtained from three technical replicates, and the medium inhibitory concentration is calculated by nonlinear regression equation.
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of 11 samples neutralized over 50% live-virus at 1:50 dilution. (B) Correlation between two methods was evaluated by NDs. A significant correlation was observed
between the results of the two methods (r = 0.8325). Data is analyzed by Pearson's correlation comparison.

interferon system and the expression of the new coronavirus-related recep-
tor, ACE2 [20]. Besides, we have validated that ppSARS-CoV-2 entry in vitro
can be effectively blocked using a novel, soluble ACE2, whose IC50 was de-
termined as 0.032 pg/mL, indicating that soluble ACE2 can be a promising
alternative strategy for prevention and treatment of COVID-19 [21,22].

Recently, two research groups have also reported the development of
pseudotyped SARS-CoV-2 based on the VSV platform bearing the full-
length S or C-terminal 18 amino-acids truncated S [22,23]. VSV-based
pseudotyped SARS-CoV-2 shows a broader range of target cell lines. How-
ever, the former platform, analyzed using the Huh?7 cell line and Fluc re-
porter, was not validated by live SARS-CoV-2 assays, whereas the latter
platform, analyzed using BHK21-hACE2 cell line and GFP reporter, was not
suitable for high-throughput quantitative analysis. In general, VSV-based
pseudotyped virus is not as practicable as an HIV-1-based pseudotyped sys-
tem, which can be effectively packaged via co-transfection of two or three
plasmids [14,15].

Collectively, the pseudotyped SARS-CoV-2 virus system, established in
this study, has good authenticity and reliability. Overcoming the limita-
tion of requirement of a BSL-3 lab, the pseudotyped SARS-CoV-2 virus
system can be widely used for large-scale serological screening for epide-
miological investigation on SARS-CoV-2. It can also be used to evaluate
the neutralization activity of vaccines and therapeutic antibodies, as
well as provide technical support for optimized drug development for in-
hibition of viral entry.
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