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Abstract: High doses of paracetamol (APAP) can cause irreversible liver damage. Piperine (P) inhibits
cytochrome P450, which is involved in the metabolism of various xenobiotics, including paracetamol.
We evaluated the hepatoprotective effects of piperine with or without N-acetylcysteine (NAC) in
APAP-induced hepatotoxicity. The mice were treated with two doses of piperine (P20 or P40) and/or
NAC at 2 h after administration of APAP. The NAC+P20 and NAC+P40 groups showed a reduced
area of necrosis, MMP-9 activity, and Casp-1 expression. Furthermore, the NAC+P20 group was the
only treatment that reduced alanine aminotransferase (ALT) and increased the levels of sulfhydryl
groups (-SH). In the NAC+P40 group, NLRP-3 expression was reduced. Aspartate aminotransferase
(AST), thiobarbituric acid-reactive substances (TBARS), and IL-1β expression decreased in the NAC,
NAC+P20, and NAC+P40 groups compared to the APAP group. The liver necrosis area, TNF levels,
carbonylated protein, and IL-18 expression decreased in the P40, NAC, NAC+P20, and NAC+P40
groups compared to the APAP group. The cytokine IL-6 was reduced in all treatments. Piperine can
be used in combination with NAC to treat APAP-induced hepatotoxicity.
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1. Introduction

The drug acetaminophen (N-acetyl-ρ-aminophen, APAP), also known as paracetamol,
is widely used worldwide for its analgesic and antipyretic properties. However, APAP
intoxication induces necrosis in the centrilobular region of the liver, causing acute liver
failure (ALI) and possibly death [1].

When administered, paracetamol is metabolized by about 10% to 20% by the cy-
tochrome P450 (CYP) pathway where the CYP2E1 isoenzyme contributes the most and, to
a lesser extent, the CYP1A2 and CYP3A4 isoenzymes also contribute. In this oxidation step,
the toxic adduct N-acetyl-p-benzo-quinone imine (NAPQI) is formed [2–5].

In therapeutic doses, the metabolite NAPQI can be easily detoxified by glutathione
(GSH). However, excessive doses of APAP cause glutathione depletion, and the toxic
metabolite binds to cellular proteins, especially in the mitochondria, inducing the formation
of reactive species [3,6].

N-acetylcysteine (NAC) has been used for the treatment of paracetamol intoxication
since the 1970s. The therapeutic effect of NAC is due to its capacity to stimulate the
synthesis of reduced glutathione, the concentration of which in cells decreases in the
presence of APAP. However, NAC has significant side effects such as nausea, vomiting,
bronchospasm, and anaphylaxis, and there is still some uncertainty regarding the dose to
be administered and the duration of treatment [4,7–9].
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Black pepper (Piper nigrum) belongs to the Piperaceae family and is widely used
in cooking because of its characteristic flavor. It has also been used as a preservative,
perfume, food additive, and traditional medicine, mainly to treat epilepsy and headaches,
among other conditions [10,11]. Its therapeutic effects are attributed to piperine (1-(5-[1,3-
benzodioxol-5-yl]-1-oxo-2,4-pentadienyl) piperidine), an organic alkaloid with a molecular
weight of 285 g/mol [12].

Some therapeutic compounds reported in the literature for their low bioavailabil-
ity were associated with piperine and demonstrated an increase in bioavailability and
the ability to potentiate protective effects [13]. This characteristic of piperine enhanced
the properties of curcumin [14], phyllanthin [15], quercertin [16], resveratrol [17], and
other compounds.

Previous studies show that piperine is a selective inhibitor of the cytochrome P450
2E1 complex, which is involved in the metabolism of different xenobiotics, including
paracetamol, and has hepatoprotective effects [18,19].

Piperine has several biological functions, including anti-inflammatory properties, and
plays an important role in the inhibition of TNF and IL-6, which are pro-inflammatory
cytokines responsible for the initiation of the inflammatory response [20,21]. Furthermore,
it has an antioxidant activity, which results in reduced levels of malondialdehyde (MDA),
an aldehyde resulting from lipid peroxidation [22].

Thus, based on the actions of piperine (i.e., as a cytochrome P450 inhibitor, antioxidant,
and anti-inflammatory agent) and the fact that APAP at toxic doses is metabolized by
cytochrome P450, generating oxidative and inflammatory stress, we hypothesize that
piperine may reduce redox and inflammatory imbalance and, consequently, inhibit the
mechanisms responsible for hepatocyte necrosis. Thus, the aim of this study was to evaluate
the hepatoprotective effects of piperine in combination with NAC in the treatment of liver
injury induced by APAP.

2. Materials and Methods
2.1. Animals

C57BL/6 male mice with an average weight of 23 to 25 g were used. The animals were
purchased from the Animal Science Center of the Federal University of Ouro Preto (UFOP),
Brazil, and housed at a controlled temperature (24 ± 1 ◦C), with 12-h light/dark cycles and
ad libitum feed. The study was approved by the Ethics Committee on Animal Use of UFOP
(protocol number 5402121118).

2.2. Experimental Design

The animals were fasted for 6 h before receiving paracetamol (500 mg/kg) or vehicle
(distilled water) by orogastric gavage. The dose used to develop the APAP-induced liver
injury model has been described in the literature [23,24] and standardized by the laboratory
team [25–27]. Two hours after APAP administration, we performed the treatments with
300 mg/kg of N-acetylcysteine (NAC) and/or piperine dissolved in 0.5% carboxymethyl-
cellulose at doses of 20 mg/kg or 40 mg/kg. The control and APAP groups received the
vehicle carboxymethylcellulose 0.5%. Euthanasia occurred 12 h after APAP intoxication.
There was no weight loss or death in the animals at 12 h after overdose. Blood was collected
for serum, and the liver was fractionated for histology and other analyses. The experi-
mental groups were as follows: the control group (C; N = 7), paracetamol (APAP; N = 7),
N-acetylcysteine (NAC; N = 7), piperine 20 mg/kg (P20; N = 7), piperine 40 mg/kg (P40;
N = 7), piperine 20 mg/kg in combination with N-acetylcysteine (NAC+P20; N = 7), and
piperine 40 mg/kg in combination with N-acetylcysteine (NAC+P40; N = 7). The number
of animals in each group (N = 7) was selected using the BioEstat 5.3 program.
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2.3. Liver Function

Serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels
were measured using commercial kits from the LABTEST® (Lagoa Santa, MG, Brazil)
according to the manufacturer’s protocols.

2.4. Liver Histological Analysis

Liver fragments were preserved in buffered formalin (4%). Liver tissues were fixed
by processing in an alcohol series (70–100%) and subsequently immersed in paraffin.
Paraffin sections (4 µm) were obtained using a semi-automatic microtome and placed on
histological slides. Sections were stained using the hematoxylin and eosin (H&E) technique.
Photomicrographs of the liver were taken using a Leica optical microscope coupled to a
DM5000 digital camera, at 40×magnification using the Leica Application Suite® analysis
software. Morphometric analysis was performed using ImageJ software (version 1.32j) to
quantify the area of necrosis, hyperemia index, and binucleation of hepatocytes. Randomly
obtained images were analyzed using ImageJ software to delimit and quantify the necrotic
areas. Hepatocyte binucleation and hyperemia were evaluated using ImageJ software
based on qualitative methods by summing the photomicrographs of the positive fields for
the respective lesions.

2.5. Biomarkers of Damage Caused by Lipid and Protein Oxidation

To determine the dosages, liver homogenates (100 mg) were prepared in the presence
of 1 mM protease inhibitor (PMSF). Oxidized lipids are biomarkers of lipid peroxidation
and have affinity for thiobarbituric acid (TBA), allowing the detection of reactive species
and performing thiobarbituric acid-reactive substances (TBARS) quantification at 532 nm
absorbance as described by Draper et al. [28]. The oxidation of proteins by reactive oxygen
species (ROS) induces the formation of carbonylated proteins, which are indicators of
this oxidation. The levels of carbonylated proteins were determined using the method of
Levine et al. [29]. The absorbance of the supernatant was read using a UV spectrophotome-
ter at a wavelength of 370 nm. The data for both were expressed as nmol/mg protein.

2.6. Analysis of Antioxidant Defenses

Glutathione is an important molecule in the antioxidant defense of the liver upon
APAP intoxication, which has a sulfhydryl (-SH) group in its structure. Sulfhydryl groups
are known to decrease as oxidative stress increases [30].

The technique uses the thiol groups of the samples and reacts with 0.01 M DTNB
(2-nitrobenzoic acid) in addition to methanol. For the standard curve, we performed serial
dilutions of L-cysteine reagent dissolved in 0.02 M triethanolamine (TEA). The absorbance
of the supernatant was read using a UV spectrophotometer (412 nm). The values were
normalized to the total protein content of the samples.

2.7. Cytokine Analysis

The inflammatory cytokines TNF and IL-6 and the immunoregulatory cytokine IL-10 in
serum were quantified by enzyme-linked immunosorbent assay (ELISA) using commercial
kits from Peprotech ® (Rocky Hill, NJ, USA and Biorbyte, Cambridge, UK).

2.8. Cytochrome P450 2E1 (CYP2E1) Assay

Cytochrome P450 2E1 (CYP2E1) was quantified in liver homogenates using an ELISA
immunoassay kit for mouse samples. A CYP2E1-specific antibody was pre-coated onto
a microplate. The samples and standard were pipetted into the wells and any CYP2E1
present was bound by the immobilized antibody. The unbound substances were washed
away, and a biotin conjugate antibody specific for CYP2E1 was added to the wells. After
washing, streptavidin A conjugated with horseradish peroxidase (HRP) was added to
each well. Subsequently, the wells were washed to remove excess of streptavidin-enzyme
conjugates. A substrate solution was added to the wells and color developed in proportion
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to the amount of CYP2E1 bound in the initial step. Color development was stopped, and
the color intensity was measured by the colorimetric method (450 nm) (Abbkine, Wuhan,
Hubei, China).

2.9. Real-Time Reverse Transcription PCR (qRT-PCR)

Total RNA was extracted from liver samples using TrizolTM (Invitrogen, Carlbad,
CA, USA) and chloroform reagents (Sigma-Aldrich, St. Louis, MO, USA). For RNA iso-
lation, isopropanol was added to precipitate RNA and the samples were centrifuged
at 12,000× g for 10 min at 4 ◦C. The RNA pellet was washed with ethanol (75%) and
dissolved in milli Q water. The isolated RNA was quantified in a nanodrop (260 nm),
and the purity indicator (260/280 nm) was evaluated. RNA integrity was analyzed by
agarose gel electrophoresis. Synthesis of complementary deoxyribonucleic acid (cDNA)
was performed using a quantity of the extracted total RNA (2 µg) and the Capacity cDNA
reverse transcription kit (Thermo Fisher, Waltham, MA, USA). Diluted cDNA (1 µL), SYBR®

Green PCR Master Mix (5 µL) (Thermo Fisher, Waltham, MA, USA), and DNAse-free
water (3 µL) were used for sample preparation. qRT-PCR amplification was performed
using the Applied Biosystems ABI 7300 instrument. The expression of genes of interest
was normalized to that of β-actin (Actb). The sequences of the primers used were as fol-
lows: CYP2E1 F′TTTCCCTAAGTATCCTCCGTGAC, R′TCGTAATCGAAGCGTTTGTTG;
CYP1A2 F′ACAAGACCCAGAGCGAGAAG, R′GCAGCAGGATGGCTAAGAAG; NLRP3
F′GGCGAGACCTCTGGGAAAAA, R′CCAGCAAACCCATCCACTCT; Casp-1 F′CTGGGA
CCCTCAAGTTTTGCC, R′GGCAAGACGTGTACGAGTGGT; IL-1β F′AGAGCCCATCCTC
TGTGACT, R′GGAGCCTGTAGGTGCAGTTGT; IL18 F′ATTTTACTATCCTTCACCGAGA
GG, R′TGTTCGAGGATATGACTGATATTGA; β-actin F′CACTGTCGAGTCGCGTCCA,
R′TCATCCATGGCGAACTGGTG. Expression level analyses were performed using the
relative gene expression quantification method (comparative Cq or ∆Cq). Upregula-
tion and downregulation of genes of the inflammasome pathway and the isoenzymes
(CYP2E1 and CYP1A2) of cytochrome P450 was determined using a heat map (http:
//www1.heatmapper.ca/expression/ accessed on 7 April 2022).

2.10. Zymography

To evaluate the activity of metalloproteinase 9 (MMP-9), we used the zymography tech-
nique [31,32]. The liver samples were prepared in the presence of a protease inhibitor. The
samples were electrophoresed in polyacrylamide gels (8%) copolymerized with 2 mg/mL
gelatin. Then, the gels were washed in Triton X-100 solution (2.5%) and incubated in an
incubation buffer [50 mM Tris, 150 mM NaCl, 5 mM CaCl2 and 0.05% NaN3 (pH 7.5)] for
18 h at 37 ◦C. The gels were stained using Coomassie Brilliant Blue G-250 (0.05%) and subse-
quently destained in methanol (4%) in the presence of acetic acid solution (8%). Bands were
detected using the optical density of each band, and densitometry was performed using
the IMAGEJ version 1.32 software (National Institutes of Health, Bethesda, MD, USA).

2.11. Statistical Analyses

Data are represented as the mean and standard error of the mean. The results were
analyzed using GraphPadPrism 8.0 (GraphPad Software Inc., San Diego, CA, USA) and the
Kolmogorov–Smirnov test for normality. Statistical analysis was performed by one-way
ANOVA with Tukey’s post-test. For the results that did not show a normal distribution, we
used contingency analysis and Fisher’s exact test, and the data were expressed with a dot
plot. Statistical significance was set at p < 0.05.

3. Results

To evaluate liver function after intoxication, serum levels of ALT and AST were
measured. A significant increase in ALT activity was observed 12 h after APAP intoxica-
tion (Figure 1A), and only the group treated with the combination of NAC and piperine
20 mg/kg showed a significant reduction in serum ALT. In the other experimental groups,

http://www1.heatmapper.ca/expression/
http://www1.heatmapper.ca/expression/
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no significant differences were observed compared to the APAP group. A reduction in AST
was observed in the NAC, NAC plus piperine 20 mg/kg, and piperine 40 mg/kg groups
compared to the APAP group (Figure 1B).
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Figure 1. Evaluation of liver function by measuring ALT (A) and AST (B) concentration in C57BL/6
mice intoxicated with paracetamol (500 mg/kg). Statistical analysis was performed using one-way
analysis of variance and Tukey’s post-test. Different letters (a, b) indicate significant difference
between groups (p < 0.05), whereas the same letters indicate no significant difference between groups
(p > 0.05). (+) Presence or (−) absence of paracetamol, piperine 20 mg/kg, piperine 40 mg/kg,
N-acetylcysteine. ALT: alanine aminotransferase; AST: aspartate aminotransferase.

After observing an improvement in the liver function of the mice treated with the
combination of piperine and NAC, we performed histological analyses to consolidate the
hepatoprotective effects of the treatment with the combination of NAC and piperine. We
evaluated the necrosis index (Figure 2I), binucleated hepatocytes (Figure 2J), and hyperemia
index (Figure 2K).

Regarding necrosis in the centrilobular region of the liver (Figure 2, Figure 2I), the
P40 (Figure 2D) and NAC (Figure 2E) groups showed a decreased area of necrosis. The
NAC+P20 (Figure 2F) and NAC+P40 (Figure 2G) groups showed a marked reduction in
the levels of necrosis when compared to the APAP group, and intact and well-defined
hepatocytes were observed.

We assessed liver regeneration at the cellular level using semiquantitative binucleation
analysis of hepatocytes (Figure 2J). We observed a significant increase in binucleated cells in
the P40, NAC, NAC+P20, and NAC+P40 groups, suggesting a higher rate of regeneration in
these groups than in the APAP group. In the APAP and P20 groups, there was a significant
decrease in binucleated cells compared to the other groups. Analysis of hyperemia revealed
that, compared to the control, P40, and NAC groups, the APAP, P20, NAC+P20, and
NAC+P40 groups had an increased hyperemia index (Figure 2K), suggesting increased
blood flow.

Knowing that piperine has antioxidant potential, we evaluated the cellular redox
status, represented by the levels of sulfhydryl groups (Figure 3A), and the possible damage
caused by protein and lipid oxidation, represented by the levels of carbonylated proteins
(Figure 3B), TBARS (Figure 3C), and metalloproteinase 9 (MMP-9) activity (Figure 3D).

We determined the levels of sulfhydryl groups to evaluate the antioxidant profile
of the experimental groups. We observed a reduction in the levels of the sulfhydryl
groups in the APAP, P20, P40, NAC, and NAC+P40 groups compared to the control
group. In the NAC+P20 group, no statistically significant difference was observed when
compared to the control group, suggesting that this was the only group that maintained
the antioxidant levels.
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Figure 2. Representative photomicrographs, percentage of hepatic necrosis, and histopathologi-
cal evaluation of the effects of paracetamol on liver function. Histological sections of the liver of
C57BL/6 mice intoxicated with paracetamol (500 mg/kg) and treated after 2 h of intoxication with
piperine and/or NAC. (A) The control group (40×), histological section showing normal architec-
ture. (B) APAP group. (C,D) Groups treated with piperine 20 mg/kg and 40 mg/kg, respectively.
(E–G) Groups treated with NAC and the combination of NAC with piperine 20 mg/kg or 40 mg/kg,
respectively. (G) Representative insert with binucleated hepatocyte (indicated by black arrow).
(H) Image of the APAP group at lowest magnification (20×). Staining: Hematoxylin and Eosin (HE).
Objective with 40×magnification. (I) Represents area of hepatic necrosis. (J) Represents the hepato-
cyte binucleation. (K) Represents the hyperemia index. Control group: no treatment; APAP group
(500 mg/kg); Piperine-treated group (20 mg/kg); Piperine-treated group (40 mg/kg), NAC-treated
group (300 mg/kg); NAC+P20 group, and NAC+P40 group. Results are expressed as median and
interquartile range (n = 7). In graphs (J,K), contingency statistical analysis was evaluated by the
chi-square test and Fisher’s exact test, with different letters indicating statistical differences between
the groups. Differences were considered significant at p < 0.05. (+) Presence and (−) absence of
paracetamol, piperine 20 mg/Kg, piperine 40 mg/Kg, N-acetylcysteine.

As shown in Figure 3B, we observed an increase in carbonylated proteins in the
APAP, P20, and P40 groups compared to the control group. The groups treated with NAC,
NAC+P20, and NAC+P40 showed a significant reduction when compared to the APAP
group, which did not differ significantly from the control group. Regarding the lipid
oxidation profile (Figure 3C), we observed an increase in TBARS in the APAP, P20, and
P40 groups compared to the control group, which was similar to that observed in the
oxidation of proteins, and the groups treated with NAC, NAC+P20, and NAC+P40 showed
a reduction in TBARS compared to the APAP group, which did not differ significantly
from the control group. In Figure 3D, we evaluated the activity of metalloproteinase-9
(MMP-9), which is an enzyme activated during hepatocyte damage. We observed that



Pharmaceutics 2022, 14, 1800 7 of 15

only the NAC+P20 and NAC+P40 groups had a significant reduction in MMP-9 activity
compared to the APAP group.
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Figure 3. Evaluation of sulfhydryl group concentration (A). The levels of carbonylated protein (B).
The levels of thiobarbituric acid-reactive substances (TBARS) (C). The enzymatic activity of matrix
metalloproteinase (MMP-9) (D) in paracetamol intoxicated C57BL/6 mice. Statistical analysis was
performed using one-way analysis of variance and Tukey’s post-test. Different letters (a, b) indicate
significant difference between groups (p < 0.05), whereas the same letters indicate no significant
difference between groups (p > 0.05). (+) Presence or (−) absence of paracetamol, piperine 20 mg/kg,
piperine 40 mg/kg, N-acetylcysteine.

One of the main features of the mechanism of paracetamol-induced hepatotoxicity is
the formation of a toxic metabolite produced by the cytochrome P450 system. Therefore,
we evaluated the levels of cytochrome P450 through the CYP2E1 isoenzyme. After 12 h
of APAP intoxication, we observed a reduction in the CYP2E1 level (Figure 4A), the main
isoenzyme in the metabolism of paracetamol, in the APAP, P40, and NAC+P40 groups. In
the groups treated with P20, NAC, and NAC+P20, the levels of CYP2E1 did not differ from
that of the control group.

Figure 4 shows the expression of the CYP2E1 (Figure 4G) and CYP1A2 (Figure 4H)
genes. We observed that the expression of the CYP1A2 gene increased in the NAC,
NAC+P20, and NAC+P40 treatments. Furthermore, the APAP, P20, P40, and NAC+P40
groups showed increased CYP2E1 gene expression compared to the control group and
decreased expression compared to the NAC and NAC+P20 groups.



Pharmaceutics 2022, 14, 1800 8 of 15

Pharmaceutics 2022, 14, x FOR PEER REVIEW 8 of 15 
 

 

APAP intoxication, we observed a reduction in the CYP2E1 level (Figure 4A), the main 
isoenzyme in the metabolism of paracetamol, in the APAP, P40, and NAC+P40 groups. In 
the groups treated with P20, NAC, and NAC+P20, the levels of CYP2E1 did not differ 
from that of the control group. 

Figure 4 shows the expression of the CYP2E1 (Figure 4G) and CYP1A2 (Figure 4H) 
genes. We observed that the expression of the CYP1A2 gene increased in the NAC, 
NAC+P20, and NAC+P40 treatments. Furthermore, the APAP, P20, P40, and NAC+P40 
groups showed increased CYP2E1 gene expression compared to the control group and 
decreased expression compared to the NAC and NAC+P20 groups. 

 
Figure 4. Levels of the CYP2E1 isoenzyme (A). Evaluation of the expression of CYP2E1 (B) and 
CYP1A2 (C) isoenzyme genes of cytochrome P450 and genes of the inflammasome pathway (D–G). 
Statistical analysis was performed using one-way analysis of variance and Tukey’s post-test. Differ-
ent letters (a, b, c) indicate significant difference between groups (p < 0.05), whereas the same letters 
indicate no significant difference between groups (p > 0.05). (+) Presence or (−) absence of paraceta-
mol, piperine 20 mg/kg, piperine 40 mg/kg, N-acetylcysteine. The mRNA heat map shows upregu-
lated and downregulated genes with red and blue coloration, respectively (H). The genes evaluated 
were from the inflammasome pathway (NLRP-3, Casp-1, IL-1β and IL-18) and cytochrome P450 
(CYP2E1 and CYP1A2) (B). Abbreviation: CYP1A2: cytochrome P450 1A2; CYP2E1: cytochrome 
P450 2E1; Casp-1: caspase 1; IL-1β - interleukin 1β; IL-18: interleukin 18; and NLRP3: pyrin domain 
of the NLR family containing 3 proteins. 

Furthermore, we evaluated the expression of genes related to the inflammasome 
pathway (NLRP3, CASP-1, IL-1β, and IL-18) (Figure 4C–F). As shown in Figure 4C, there 

Figure 4. Levels of the CYP2E1 isoenzyme (A). Evaluation of the expression of CYP2E1 (B) and
CYP1A2 (C) isoenzyme genes of cytochrome P450 and genes of the inflammasome pathway (D–G).
Statistical analysis was performed using one-way analysis of variance and Tukey’s post-test. Dif-
ferent letters (a, b, c) indicate significant difference between groups (p < 0.05), whereas the same
letters indicate no significant difference between groups (p > 0.05). (+) Presence or (−) absence of
paracetamol, piperine 20 mg/kg, piperine 40 mg/kg, N-acetylcysteine. The mRNA heat map shows
upregulated and downregulated genes with red and blue coloration, respectively (H). The genes
evaluated were from the inflammasome pathway (NLRP-3, Casp-1, IL-1β and IL-18) and cytochrome
P450 (CYP2E1 and CYP1A2) (B). Abbreviation: CYP1A2: cytochrome P450 1A2; CYP2E1: cytochrome
P450 2E1; Casp-1: caspase 1; IL-1β—interleukin 1β; IL-18: interleukin 18; and NLRP3: pyrin domain
of the NLR family containing 3 proteins.

Furthermore, we evaluated the expression of genes related to the inflammasome
pathway (NLRP3, CASP-1, IL-1β, and IL-18) (Figure 4C–F). As shown in Figure 4C, there
was a significant reduction in NLRP3 gene mRNA levels only in the NAC+P40 group when
compared to the other groups, and its expression did not differ from that of the control
group. Regarding the expression of the CASP-1 gene (Figure 4D), there was a significant
reduction in the groups treated with NAC+P20 and NAC+P40 when compared to the APAP,
P20, P40, and NAC groups. IL-1β gene expression (Figure 4E) was higher in the APAP, P20,
and P40 groups than in the control group. In contrast, the NAC groups with or without
P20 or P40 showed a reduction in IL-1β gene expression when compared to the APAP, P20,
and P40 groups. In addition, we observed a reduction in the IL-18 mRNA levels P40 and
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NAC groups with or without P20 and P40 when compared to the APAP and P20 groups
(Figure 4F). The genes were compared using a heat map to evaluate the upregulated and
downregulated genes (Figure 4B). We can qualitatively observe that in the control group,
both the genes related to the inflammasome pathway and the genes related to cytochrome
P450 were downregulated. In the APAP group, the inflammasome pathway and CYP2E1
genes were upregulated. In the NAC+P40 group, the genes related to the inflammasome
and cytochrome P450 pathway were downregulated.

Regarding the serum inflammatory profile, we only observed an increase in TNF
(Figure 5A) in the APAP and P20 groups. In the groups treated with P40, NAC, NAC+P20,
and NAC+P40, the TNF levels were reduced compared to those in the APAP and P20
groups. There was a significant reduction in IL-6 (Figure 5B) in all the treatment groups
compared to the APAP group. In addition, there was no statistical difference in the IL-10
levels (Figure 5C) between groups.
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Figure 5. Evaluation of cytokines concentration in the serum: TNF (A); IL-6 (B); and IL-10 (C).
Statistical analysis was performed using one-way analysis of variance and Tukey’s post-test. Different
letters (a, b) indicate significant difference between groups (p < 0.05), whereas the same letters indicate
no significant difference between groups (p > 0.05). (+) Presence or (−) absence of paracetamol,
piperine 20 mg/kg, piperine 40 mg/kg, N-acetylcysteine. Abbreviation: TNF: tumor necrosis factor;
IL-6: interleukin 6; IL-10: interleukin 10.

The treatments performed after 12 h of paracetamol intoxication are summarized in
the representative design in Figure 6.



Pharmaceutics 2022, 14, 1800 10 of 15

Pharmaceutics 2022, 14, x FOR PEER REVIEW 10 of 15 
 

 

The treatments performed after 12 h of paracetamol intoxication are summarized in 
the representative design in Figure 6. 

 
Figure 6. Representative drawing of the APAP-induced liver intoxication after 12 h and the treat-
ments (NAC+P20 and NAC+P40). Paracetamol was administered at a dose of 500 mg/kg and the 
hepatic, histological, oxidative, and inflammatory changes are represented in the boxes and indi-
cated with the red arrow. As treatment, we used piperine (P) associated or not associated with n-
acetylcysteine (NAC) and the results are represented in the boxes and indicated with black arrow. 
Upward arrows indicate an increase and downward arrows indicate a decrease in the evaluated 
indexes. Abbreviations: paracetamol (APAP), N-acetylcysteine (NAC), piperine 20 mg/kg (P20), 
piperine 40 mg/kg (P40), alanine aminotransferase (ALT), aspartate aminotransferase (AST), car-
bonylated protein, thiobarbituric acid-reactive substances (TBARS), metalloproteinase-9 (MMP-9), 
sulfhydryl (-SH) group, caspase-1(casp-1), interleucina 1 beta (IL-1β), interleucina 18 (IL-18), inter-
leucina 6 (IL-6), and tumor necrosis factor (TNF). 

4. Discussion 
APAP overdose can cause liver necrosis, redox imbalance, and increased inflamma-

tory cytokines [33]. Our data corroborate with those of others, demonstrating that APAP 
overdose leads to liver damage [25,34]. NAC is known to be the only therapeutic option 
for APAP overdose; however, this drug has its limitations, including adverse effects and 
a narrow therapeutic window [35]. Therefore, studies aimed at evaluating drug reposi-
tioning to improve the efficacy and therapeutic time of NAC are important. In recent 
years, the protective effects of natural products against APAP-induced hepatotoxicity 
have been studied [36]. In this direction, piperine has been considered for the treatment 
of APAP overdose, since it has antioxidant [15] and anti-inflammatory properties [37]. 
One of the most critical parameters of APAP intoxication is the death of hepatocytes as a 
result of necrosis, and our data showed that the area of liver necrosis was reduced follow-
ing treatment with two different doses of piperine (20 or 40 mg/kg) in combination with 
NAC, increasing the efficacy of this drug. The treatments with NAC with or without 20 
or 40 mg/kg piperine was also effective in reducing AST, whereas the treatment with NAC 
in combination with 20 mg/kg piperine was effective in reducing ALT. Thus, it is possible 
that the hepatoprotective capacity of piperine already described in the literature [15,38] 
may potentiate the beneficial effects of NAC in the treatment of paracetamol intoxication. 

Figure 6. Representative drawing of the APAP-induced liver intoxication after 12 h and the treatments
(NAC+P20 and NAC+P40). Paracetamol was administered at a dose of 500 mg/kg and the hepatic,
histological, oxidative, and inflammatory changes are represented in the boxes and indicated with
the red arrow. As treatment, we used piperine (P) associated or not associated with n-acetylcysteine
(NAC) and the results are represented in the boxes and indicated with black arrow. Upward arrows
indicate an increase and downward arrows indicate a decrease in the evaluated indexes. Abbrevia-
tions: paracetamol (APAP), N-acetylcysteine (NAC), piperine 20 mg/kg (P20), piperine 40 mg/kg
(P40), alanine aminotransferase (ALT), aspartate aminotransferase (AST), carbonylated protein, thio-
barbituric acid-reactive substances (TBARS), metalloproteinase-9 (MMP-9), sulfhydryl (-SH) group,
caspase-1(casp-1), interleucina 1 beta (IL-1β), interleucina 18 (IL-18), interleucina 6 (IL-6), and tumor
necrosis factor (TNF).

4. Discussion

APAP overdose can cause liver necrosis, redox imbalance, and increased inflammatory
cytokines [33]. Our data corroborate with those of others, demonstrating that APAP
overdose leads to liver damage [25,34]. NAC is known to be the only therapeutic option
for APAP overdose; however, this drug has its limitations, including adverse effects and a
narrow therapeutic window [35]. Therefore, studies aimed at evaluating drug repositioning
to improve the efficacy and therapeutic time of NAC are important. In recent years, the
protective effects of natural products against APAP-induced hepatotoxicity have been
studied [36]. In this direction, piperine has been considered for the treatment of APAP
overdose, since it has antioxidant [15] and anti-inflammatory properties [37]. One of
the most critical parameters of APAP intoxication is the death of hepatocytes as a result
of necrosis, and our data showed that the area of liver necrosis was reduced following
treatment with two different doses of piperine (20 or 40 mg/kg) in combination with
NAC, increasing the efficacy of this drug. The treatments with NAC with or without 20 or
40 mg/kg piperine was also effective in reducing AST, whereas the treatment with NAC in
combination with 20 mg/kg piperine was effective in reducing ALT. Thus, it is possible
that the hepatoprotective capacity of piperine already described in the literature [15,38]
may potentiate the beneficial effects of NAC in the treatment of paracetamol intoxication.

The proliferation of liver cells from binucleated hepatocytes indicates cell turnover;
thus, our results demonstrate that treatment with 40 mg/kg piperine or NAC with or with-
out piperine (20 or 40 mg/kg) increased the binucleation index, indicating the regenerative
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capacity of hepatocytes. The increase in hyperemia may be related to both vasodilation
and accumulation of red blood cells induced by the inflammatory process [39]. Thus, the
cause of increase in hyperemia in the APAP group is different from the P20, NAC+P20, and
NAC+P40 groups. The first case was attributed to the inflammatory process characteristic
of intoxication with APAP, and the second case demonstrated the ability of piperine to act
as a physiological vasodilator [40]. Results demonstrate that piperine induces vasodilatory
effects in the aorta of rats [41], which may be one of the factors responsible for favoring
synergy with the increased bioavailability of NAC in the piperine-associated groups.

It has been shown that APAP intoxication induces redox imbalance and oxidative
damage [35]. In our study, we observed that TBARS and carbonylated protein levels
were reduced in the groups treated with NAC with or without piperine. In addition, the
40 mg/kg piperine group showed also a reduction in carbonylated protein levels compared
to the APAP group. These results are in agreement with those of other studies suggesting
that piperine protects against oxidative damage to proteins and lipids [42,43].

The antioxidant defense levels provided by the availability of glutathione to eliminate
NAPQI upon APAP overdose were evaluated based on the concentration of the sulfhydryl
groups. Only the treatment with NAC plus 20 mg/kg piperine was able to increase the
levels of -SH. It has been suggested that the hepatoprotective effect of piperine may be
mediated through its antioxidant potential, the reduction in lipid peroxidation, and the
intensification of the antioxidant defense system [13,44]. The antioxidant potential of NAC
has been confirmed in various studies; however, the ability of piperine to potentiate the
effects of controlling changes in redox state demonstrates the improved efficacy of the drug.
Notably, a 20 mg/kg dose of piperine showed a greater and more beneficial synergistic
effect on most parameters.

APAP intoxication induces activation of matrix metalloproteinase 9 (MMP-9), a gelati-
nase involved in extracellular matrix (ECM) degradation, increasing leukocyte infiltration
and inflammatory status, and is detrimental to liver function [45]. Previous studies reported
the role of MMP-9 in the induction of liver damage and microcirculation dysfunction in
animals intoxicated with APAP [34]. It has been shown that MMP-9 activity modifies vas-
cular integrity and liver regeneration, suggesting that MMP-9 inhibition may be considered
an important target for regulating liver inflammation and damage [46,47]. We confirmed
that only the piperine group (20 and 40 mg/kg) associated with NAC significantly re-
duced gelatinase levels. This suggests that the combination of NAC and piperine exerts a
hepatoprotective mechanism.

The metabolism of high-dose APAP in the liver depends on CYP450 isoenzymes,
which are responsible for the oxidation of the drug and the formation of the reactive
metabolite NAPQI [48,49]. Increased CYP2E1 mRNA expression may contribute to APAP-
induced hepatotoxicity [3]. However, inhibition of CYP2E1 by APAP, as demonstrated in
our APAP group, has been reported in previous studies, even at lower doses than those
used in our study (300 mg/kg APAP) after 12 h of intoxication [50]. Thus, APAP may
decrease CYP2E1 activity in vivo to counter-regulate the formation of toxic NAPQI [50,51].
The increase in CYP2E1 mRNA expression in these groups may be related to piperine
metabolism via the same pathway as APAP [19]. Similar to other natural compounds
containing methylenedioxyphenyl substituents, piperine affects cytochrome P450 isoforms
and may inhibit or activate cytochrome, depending on the CYP isoform and the dose of
piperine used [52]. A lower dose of piperine may be metabolized by CYP2E1, thus acting
as a competitor for APAP metabolism.

Studies have demonstrated the immunomodulatory potential of piperine [37]; there-
fore, our next step was to evaluate the expression of inflammasome pathway genes and
serum cytokines. It is known that the inflammasome complex contributes to the aggravation
of APAP-induced liver injury [53]. NLRP-3 activation is associated with advanced stages of
APAP intoxication [54]. We observed a significant increase in NLRP-3 gene expression in
the APAP group and a reduction in its expression only in the group treated with NAC+P40.
A previous study with piperine demonstrated its ability to reduce NLRP-3 gene expression
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in the kidneys of diabetic rats at a dose of 30 mg/kg [55]. The expression of CASP-1, which
is activated by NLRP-3, was reduced in the NAC+P20 and NAC+P40 groups. We also
observed that expression IL-1β was reduced in NAC groups with or without piperine and
expression of IL-18 was reduced in the P40, NAC, NAC+P20, and NAC+P40 groups com-
pared to the APAP group. Thus, piperine in combination with NAC may have contributed
to the decreased expression of components of the inflammasome pathway and was shown
to enhance the immunoregulatory role by reducing the activation of this pathway, which
may be an important factor in reducing liver injury in APAP intoxication.

The pro-inflammatory cytokines IL-6 and TNF are important mediators of inflamma-
tion activation and pathological progression in APAP-induced hepatotoxicity [50,51]. We
observed that TNF was produced upon APAP intoxication and was able to stimulate the
secretion of IL-6 [56]. Our results showed that IL-6 was reduced in all treated groups and
TNF was reduced in the P40, NAC, NAC+P20, and NAC+P40 groups. Correspondingly,
others have also demonstrated that piperine reduces pro-inflammatory factors such as TNF
and IL-6 [37]. The reduction in TNF following piperine treatment indicates that it can re-
duce inflammation [21]. IL-6 plays an important role in neutrophil-mediated inflammation
and is activated in response to tissue injury and infection [57,58]. The reduction of TNF
and IL-6 suggests the anti-inflammatory efficacy of piperine and may be an indication of
reduced cell death in the liver.

5. Conclusions

The association of piperine and NAC effectively reduced liver injury, as observed by
the reduction in necrosis and oxidative damage biomarkers, the downregulation of the
inflammasome pathway, and the reduction in serum TNF and IL-6 levels. In addition,
the association of NAC with the lowest dose of piperine reduced serum ALT levels and
increased hepatic thiol levels. Therefore, the therapeutic effects of NAC can be potentiated
by piperine to treat paracetamol-induced hepatotoxicity.
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