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Introduction
Hepatocellular carcinoma (HCC) is the most common type of 
liver cancer in China and account for the second leading cause 
of cancer death.1 An estimated 42,810 new cases were diag-
nosed as liver cancer in the United States and more than 30,160 
patients died of this disease, according to cancer statistic in 
2020.2 Risk factors for HCC included infection of chronic 
hepatitis B or C (HBV/HCV) virus, alcohol abuse, diet of 
aflatoxin, and progress to cirrhosis induced by nonalcoholic 
steatohepatitis.3,4 Treatment of HCC depends on the tumor 
stage, and different therapeutic options are available for early-
stage patients, including orthotopic liver transplantation, sur-
gical resection, radiofrequency ablation, and chemo- and 
radio-therapy.5,6 Despite great improvement in surgical treat-
ments over past decades, long-term outcome needs remain unmet, 
and patients with advanced stage still have limited therapeutic 
options. As for the greatly increased disease burden, it is impor-
tant to identify useful and reliable tumor biomarkers for early 
stage detection and prognosis prediction of advanced HCC.

Changes in genomic and subsequent transcriptome expres-
sion are the most common characteristics driving tumori-
genesis and have been extensively uncovered in liver cancer 
patients.7-9 The recent development of sequential transcrip-
tome analysis could potentially promote understanding of 
molecular mechanisms in human liver cancer. It facilitated the 
diagnosis and therapy of this disease. By using transcriptome 
analysis, researchers identified cohorts of genes as potential 
candidate biomarkers for prognosis in HCC patients, such as 
YWHAZ, ENAH, and HMGN4.10 Furthermore, based on 
RNA-seq analyses, Jiang et al. identified several genes and 
miRNAs that might be pathogenic biomarkers of HCC.11 
According to integrative analyses of genome and transcrip-
tome sequencing data, Miao et al. screened multiple prog-
nostic biomarkers in hepatitis B virus-related HCC patients, 
including protein kinase TTK.12 These findings provided 
novel insights and an important strategy to identify tumor 
biomarkers for early diagnosis and prognosis prediction of the 
disease.

Prognostic Score-based Clinical Factors and 
Metabolism-related Biomarkers for Predicting the 
Progression of Hepatocellular Carcinoma

Jia Yan1,2,3, Ming Shu1,2,3, Xiang Li1,2,3, Hua Yu1,2,3,  
Shuhuai Chen1,2,3 and Shujie Xie1,2,3

1Department of Hepatobiliary Pancreatic Surgery, Hwa Mei Hospital, University of Chinese 
Academy of Sciences, Ningbo, Zhejiang, China. 2Ningbo Institute of Life and Health Industry, 
University of Chinese Academy of Sciences, Ningbo, Zhejiang, China. 3Key Laboratory of 
Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo, Zhejiang, 
China.

ABSTRACT: Hepatocellular carcinoma (HCC) is a common malignant tumor representing more than 90% of primary liver cancer. This study 
aimed to identify metabolism-related biomarkers with prognostic value by developing the novel prognostic score (PS) model. Transcriptomic 
profiles derived from TCGA and EBIArray databases were analyzed to identify differentially expressed genes (DEGs) in HCC tumor samples 
compared with normal samples. The overlapped genes between DEGs and metabolism-related genes (crucial genes) were screened and func-
tionally analyzed. A novel PS model was constructed to identify optimal signature genes. Cox regression analysis was performed to identify inde-
pendent clinical factors related to prognosis. Nomogram model was constructed to estimate the predictability of clinical factors. Finally, protein 
expression of crucial genes was explored in different cancer tissues and cell types from the Human Protein Atlas (HPA). We screened a total of 
305 overlapped genes (differentially expressed metabolism-related genes). These genes were mainly involved in “oxidation reduction,” “steroid 
hormone biosynthesis,” “fatty acid metabolic process,” and “linoleic acid metabolism.” Furthermore, we screened ten optimal DEGs (CYP2C9, 
CYP3A4, and TKT, among others) by using the PS model. Two clinical factors of pathologic stage (P < .001, HR: 1.512 [1.219-1.875]) and PS 
status (P <.001, HR: 2.259 [1.522-3.354]) were independent prognostic predictors by cox regression analysis. Nomogram model showed a high 
predicted probability of overall survival time, and the AUC value was 0.837. The expression status of 7 proteins was frequently altered in normal 
or differential tumor tissues, such as liver cancer and stomach cancer samples.We have identified several metabolism-related biomarkers for 
prognosis prediction of HCC based on the PS model. Two clinical factors were independent prognostic predictors of pathologic stage and PS 
status (high/low risk). The prognosis prediction model described in this study is a useful and stable method for novel biomarker identification.

KeywoRdS: Hepatocellular carcinoma, prognosis, biomarker, metabolism

ReCeIVed: May 7, 2020. ACCePTed: July 24, 2020.

TyPe: Original Research

FundIng: The author(s) disclosed receipt of the following financial support for the 
research, authorship, and/or publication of this article: This study was funded by Ningbo 
Clinical Research Center for Digestive System Tumors (No.2019A21003), Ningbo Medical 
Science and Technology Foundation (No.2018A67) and Research Foundation of Hwa Mei 
Hospital, University of Chinese Academy of Sciences (No.2018HMKY03).

deClARATIon oF ConFlICTIng InTeReSTS: The author(s) declared no potential 
conflicts of interest with respect to the research, authorship, and/or publication of this 
article.

CoRReSPondIng AuTHoR: Shujie Xie, MD, Department of Hepatobiliary 
Pancreatic Surgery, HwaMei Hospital, University of Chinese Academy of Sciences, 
No.41, Northwest Street, Ningbo, Zhejiang Province 315010, China.  Email: 
siabc83@163.com

951571 EVB0010.1177/1176934320951571Evolutionary BioinformaticsYan et al.
research-article2020

https://uk.sagepub.com/en-gb/journals-permissions
mailto:siabc83@163.com


2 Evolutionary Bioinformatics 

In this study, we first analyzed the transcriptomic expression 
status of HCC derived from The Cancer Genome Atlas 
(TCGA) database and screened differentially expressed genes 
(DEGs) by integrated analysis of three genomic profiles related 
to the metabolism of amino acids, carbohydrates, and lipids. The 
prognostic score (PS) model was constructed to identify optimal 
prognosis-related genes. Finally, by analyzing the Human 
Protein Atlas (HPA) database, we analyzed the expression levels 
of critical genes in different cells, tissues, and cancer types. Our 
results identified novel prognostic biomarkers for HCC patients, 
which provides new insight on the understanding of HCC.

Materials and Methods
Microarray data resource

Microarray datasets of HCC downloaded from TCGA data-
base (https://gdc-portal.nci.nih.gov/) on 10 February 2020 
were tested on the Illumina HiSeq 2000 RNA Sequencing 
platform. The datasets comprised 423 samples, including 373 
liver cancer samples and 50 normal samples. There were 367 
tumor samples labeled with clinical prognostic information. 
This dataset was used as training data set.

Moreover, the genomic profiles of liver cancer under 
access number E-TABM-3613 were derived from EBIArray 
database14 (https://www.ebi.ac.uk/arrayexpress/) and tested on 
GPL96 [HG-U133A] Affymetrix Gene Chip Human 
Genome HG-U133A platform. E-TABM-36 dataset included 
a total of 65 samples, which comprised 11 normal samples and 
44 liver cancer tissue samples with prognostic information. 
E-TABM-36 was considered as validation dataset.

Screening metabolism-related DEGs in liver cancer 
samples

Limma package15 in Version 3.34.7 (https://bioconductor.org/
packages/release/bioc/html/limma.html) was used to screen 
the DEGs between tumor samples and normal tissue samples 
in TCGA training sets under the criteria of FDR < 0.05and | 
log2FC | > 1 (Parameters was set as 2 times).

After exacting the expression value of DEGs from the 
training data set, we used pheatmap16 (version1.0.8, https://
cran.r-project.org/web/packages/pheatmap/index.html) in 
R3.4.1 software to perform hierarchical clustering analysis by 
using the algorithm of centered Pearson correlation.17

All genes related to the metabolism of amino acids, carbo-
hydrates, and lipids were downloaded from the Gene Set 
Enrichment Analysis18 (GSEA, http://software.broadinstitute.
org/gsea/downloads.jsp) database. We analyzed the intersec-
tion between metabolism-related genes and DEGs of training 
datasets.

The overlapped genes were screened as candidate genes and 
by functional enrichment analysis, including GO biological 
process annotation and KEGG pathway analysis by using 
DAVID19,20 (version 6.8, https://david.ncifcrf.gov/) tool. 
P values lower than .05 were considered to indicate significant 
difference.

Construction of PS model

As for the overlapped genes screening from TCGA training 
set and metabolism cohort gene, we conducted Cox regression 
analysis using the survival package (version 2.41-1, http://bio-
conductor.org/packages/survivalr/).21 By the criteria of log-
rank p value less than 0.05, we screened the prognosis related 
DEGs.

Penalized package22 Version 0.9.50 (https://cran.r-project.
org/web/packages/penalized/index.html) were used to con-
struct the LASSO Cox regression model23 for optimal DEGs 
screening. The parameter of “lambda” in the filter model was 
calculated by 1000 cross-validation likelihood (CVL) algo-
rithm. Then, we developed a novel PS model by calculating the 
prognostic coefficient of each DEGs and the expression level 
of DEGs in training set samples. The formula for calculating 
PS was as follows:

Prognostic score PS  ExpDEGs DEGs( ) = ∑ ×β

βDEGs meant the prognostic coefficient of signature DEGs, 
and the Exp DEGs represented the expression levels of DEGs in 
the training dataset.

To assess the effectiveness and predictive ability of the prog-
nostic model, we first calculated the PS values of whole sam-
ples in the TCGA data set. Then, these samples were divided 
into high- and low-risk groups, based on median PS value. 
Kaplan Meier curves were generated to evaluate overall sur-
vival times of patients between the 2 groups by using survival 
package Version2.41. Furthermore, the expression values of 
DEGs were extracted from the validation dataset, and all spec-
imens were also divided into high- and low-risk groups accord-
ing to the median value. Kaplan Meier curves were generated 
to evaluate the correlation between prognosis and differential 
risk groups.

Identifying clinical factors with independent 
prognostic value in HCC

In the TCGA training dataset, the survival package was used to 
analyzed HCC samples. Univariate and multivariate Cox 
regression analyses were conducted to identify independent 
prognostic factors associated with the survival of patients by 
the criteria of log-rank P value < .05.

Thus, liver cancer samples derived from the training dataset 
were divided into different groups according to pathological 
stage I-IV. Stratified analyses were conducted to explore the 
correlation between risk grouping and clinical factors.

Moreover, we developed a nomogram model to predict the 
3 year- and 5 year- survival probability in liver cancer patients by 
using rms package24 (version 5.1-2, https://cran.r-project.org/
web/packages/rms/index.html). Nomogram is a logistic regres-
sion-based model that has been extensively applied in prognos-
tic prediction of various cancers, such as colorectal cancer, renal 
cancer, and bladder cancer.25-27 It formulates the scoring criteria 
according to regression coefficients of all independent variables 
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and assigns a score level for each independent variable. All of 
the selected samples entered the logistic regression model and 
the total score of each feature was calculated. The survival prob-
ability of each individual was calculated by the transfer function 
between the score and survival probability.

Expression analysis of target genes at the protein 
level (HPA database)

By using the Human Protein Atlas (HPA, https://www.pro-
teinatlas.org/) Version 18 database, we analyzed the expression 
of target genes at the protein level in various cell types and 
different cancer tissues. HPA is an online database containing 
large amounts of antibody proteomics and transcriptomics data 
generated from normal and cancer tissues profiling and RNA 
sequencing technologies.28-30 Although the HPA database 
provided immunohistochemistry images, proteomics, and tran-
scriptomics data, it may not be optimal for dataset analysis and 
automatic retrieval of images. In this study, we performed data 

mining for critical genes by using HPA analyze packager31 
(version 1.4.3, http://www.bioconductor.org/packages/release/
bioc/html/HPAanalyze.html), a software package designed for 
easy retrieval and analysis of HPA data.

Results
Screening DEGs associated with the metabolism of 
liver cancer

After data preprocessing, the specimens from TCGA data-
base were divided into tumor and control groups according to 
clinical information of relapse. By the criteria of FDR < 0.05 
and | log2FC | > 1, we screened a total of 1035 DEGs from 
tumor samples compared with normal specimens, including 
196 downregulated and 840 upregulated DEGs (Figure 1A). 
These DEGs were sorted by increased logFC value, and the 
top 50 upregulated and downregulated genes were selected to 
conduct expression level-based hierarchical clustering analysis 
(Figure 1B). The results showed that clinical samples can be 

Figure1. Screening of differentially expressed genes (DEGs) associated with the metabolism of liver cancer patients. (A) Volcano diagram visualizing the 

DEGs screening from TCGA and EBI Array dataset under FDR < 0.05 and | log2FC | > 1 threshold. The red and blue dots represent upregulated and 

downregulated DEGs. The line in horizontal axis represents FDR <0.05; while the 2 vertical dotted lines represent |log2FC| > 0.5. The dot size is 

consistent with absolute value of logFC. (B) Hierarchical clustering analysis results of the top 50 up- and down-regulated DEGs, sorted by increasing 

logFC values. (C) Venn diagram visualizing the crucial genes associated with liver cancer metabolism by taking the intersection of metabolism-related 

genes and DEGs of training datasets.
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clustered into 2 different directions. Based on GSEA data-
base screening, we obtained 372 amino acid metabolism 
related-genes, 293 carbohydrate metabolism-related genes, 
and 738 lipid metabolism-related genes. By comparison of 
DEGs, we identified 305 overlapped genes (Figure 1C).

Functional enrichment analysis revealed DEGs were mainly 
involved in 29 GO terms and 22 KEGG pathways (Figure 2, 
Table 1). GO terms included “oxidation reduction,” “lipid bio-
synthetic process,” “fatty acid metabolic process,” “steroid met-
abolic process,” “carbohydrate biosynthetic process,” among 
others. The signaling pathway categories were associated with 
“steroid hormone biosynthesis,” “glycerophospholipid metabo-
lism,” and “linoleic acid metabolism” pathway.

Prognostic model construction and assessment

Univariate analysis results showed 146 DEGs were associ-
ated with prognosis of liver cancer by criteria of log-rank 
P value < .05. Further multivariate cox regression analysis 
revealed 34 genes were identified as prognosis related genes. 
Based on the Cox-Proportional Hazards model, we screened 
10 optimal DEGs for further analysis, such as CYP2C9, 
CYP3A4, CYP4A11, CYP7A1, G6PD, HMMR, LPCAT1, 
PYCR1, TAT, and TKT (Table 2).

In addition, we constructed the PS model according to the 
prognostic coefficient of each pre and expression level of 

DEGs in training set samples. All samples from the TCGA 
training set (n = 367) and E-TABM-36 validation set (n = 44) 
were divided into high- and low-risk based on median PS 
value. Significant survival differences were shown in Kaplan-
Meier curves (Figure 3). Patients in low risk groups exhibit a 
longer overall survival time than those in high risk groups, 
and the result were consistent between both training datasets 
(P = 8.301e-08, HR:2.598 [1.809-3.730]) and validation 
datasets (P = 1.183e-02; HR:2.524 [1.197-5.324]). The 
results indicated that PS model-based risk grouping were sig-
nificant correlated with actual prognosis for HCC patients. 
The AUC value of receiver operating characteristic curve 
(ROC) was 0.837 and 0.795 in the training set and validation 
set, which represented a high predictive probability.

Independent prognostic factors for HCC patients by 
univariate and multivariate analysis

Univariate analysis of clinical factors showed that pathologic 
T(T1-T4/-, P = 7.867E-09), pathologic stage (I-IV /-, 
P = 4.468E-07) and PS status (High/Low, P = 8.301E-08) 
were significantly correlated with overall survival time (Table 3). 
A multivariate regression analysis was conducted and results 
indicated that only pathologic stage (I / II / III / IV /-, HR: 
1.512 [1.219-1.875], P = 1.680E-04) and PS status (High/
Low, HR: 2.259 [1.522-3.354], P = 5.250E-05) were 

Figure 2. Functional enrichment analysis of Gene Ontology (A) and Kyoto Encyclopedia of Genes and Genomes pathway (B).
The horizontal axis shows gene number; vertical axis represents biological terms or pathways categories. The dot size is consistent with gene number, while color 
intensity of dots corresponds to P-value. A darker red color means higher statistical significance.
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Table 1. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analysis for intersection genes associated with metabolism of 
hepatocellular carcinoma.

CATEGORY TERM COUNT P VALUE FDR

Biology process GO:0008610~lipid biosynthetic process 47 9.08E-26 1.53E-22

 GO:0055114~oxidation reduction 60 5.70E-23 9.58E-20

 GO:0006631~fatty acid metabolic process 30 7.19E-17 1.89E-13

 GO:0008202~steroid metabolic process 29 1.19E-15 2.05E-12

 GO:0016051~carbohydrate biosynthetic process 21 5.03E-14 8.46E-11

 GO:0006694~steroid biosynthetic process 19 9.78E-14 1.64E-10

 GO:0005996~monosaccharide metabolic process 28 1.06E-13 1.79E-10

 GO:0016053~organic acid biosynthetic process 24 1.08E-13 1.81E-10

 GO:0046394~carboxylic acid biosynthetic process 24 1.08E-13 1.81E-10

 GO:0019637~organophosphate metabolic process 25 3.54E-12 5.96E-09

 GO:0006575~cellular amino acid derivative metabolic process 23 3.92E-12 6.59E-09

 GO:0019318~hexose metabolic process 24 1.06E-11 1.77E-08

 GO:0016054~organic acid catabolic process 19 1.19E-11 2.00E-08

 GO:0046395~carboxylic acid catabolic process 19 1.19E-11 2.00E-08

 GO:0046164~alcohol catabolic process 16 9.03E-11 1.52E-07

 GO:0044275~cellular carbohydrate catabolic process 16 1.85E-10 3.11E-07

 GO:0006790~sulfur metabolic process 18 2.04E-10 3.44E-07

 GO:0006006~glucose metabolic process 20 3.76E-10 6.32E-07

 GO:0006644~phospholipid metabolic process 22 3.94E-10 6.62E-07

 GO:0009310~amine catabolic process 15 5.99E-10 1.01E-06

 GO:0016052~carbohydrate catabolic process 17 7.85E-10 1.32E-06

 GO:0009309~amine biosynthetic process 15 1.01E-09 1.70E-06

 GO:0016042~lipid catabolic process 20 3.08E-09 5.17E-06

 GO:0006576~biogenic amine metabolic process 15 1.15E-08 1.94E-05

 GO:0009100~glycoprotein metabolic process 20 3.98E-08 6.70E-05

 GO:0046486~glycerolipid metabolic process 18 4.21E-08 7.07E-05

 GO:0005976~polysaccharide metabolic process 15 6.68E-08 1.12E-04

 GO:0009101~glycoprotein biosynthetic process 17 1.74E-07 2.93E-04

 GO:0010817~regulation of hormone levels 15 2.99E-06 5.04E-03

KEGG Pathway hsa00590:Arachidonic acid metabolism 18 2.29E-11 3.03E-09

 hsa00140:Steroid hormone biosynthesis 15 1.39E-09 9.14E-08

 hsa00591:Linoleic acid metabolism 10 8.03E-07 3.53E-05

 hsa04070:Phosphatidylinositol signaling system 15 9.72E-07 3.21E-05

 hsa03320:PPAR signaling pathway 14 2.53E-06 6.67E-05

 hsa00562:Inositol phosphate metabolism 12 6.95E-06 1.53E-04

 hsa00051:Fructose and mannose metabolism 9 4.31E-05 8.13E-04

 (Continued)
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CATEGORY TERM COUNT P VALUE FDR

 hsa00564:Glycerophospholipid metabolism 12 6.79E-05 1.12E-03

 hsa00980:Metabolism of xenobiotics by cytochrome P450 11 1.13E-04 1.65E-03

 hsa00380:Tryptophan metabolism 9 1.48E-04 1.96E-03

 hsa00532:Chondroitin sulfate biosynthesis 7 1.69E-04 2.02E-03

 hsa00601:Glycosphingolipid biosynthesis 7 3.62E-04 3.97E-03

 hsa00534:Heparan sulfate biosynthesis 7 4.55E-04 4.61E-03

 hsa00150:Androgen and estrogen metabolism 8 5.57E-04 5.23E-03

 hsa00010:Glycolysis / Gluconeogenesis 10 5.63E-04 4.94E-03

 hsa00600:Sphingolipid metabolism 8 7.77E-04 6.39E-03

 hsa00531:Glycosaminoglycan degradation 6 1.19E-03 9.20E-03

 hsa00030:Pentose phosphate pathway 6 2.73E-03 1.98E-02

 hsa00830:Retinol metabolism 8 5.38E-03 3.68E-02

 hsa04910:Insulin signaling pathway 13 7.56E-03 4.88E-02

 hsa00350:Tyrosine metabolism 7 7.65E-03 4.71E-02

 hsa00290:Valine, leucine and isoleucine biosynthesis 4 8.27E-03 4.86E-02

Table 1. (Continued)

Table 2. The ten optimal signature differential expressed genes related to prognosis of liver cancer according to multi-variate cox regression 
analysis.

SYMBOL MULTI-VARIATE COX REGRESSION ANALYSIS LASSO COEFFICIENT

HR 95%CI P VALUE

CYP2C9 0.6841 0.533-0.878 2.830E-03 –0.09807

CYP3A4 1.2017 1.007-1.434 4.133E-02 0.01229

CYP4A11 1.7710 1.199-2.616 4.089E-03 0.04362

CYP7A1 0.7317 0.559-0.957 2.270E-02 –0.03181

G6PD 2.6743 1.199-5.966 1.627E-02 0.14709

HMMR 2.8779 1.263-6.555 1.184E-02 0.26357

LPCAT1 2.8097 1.414-5.583 3.190E-03 0.09797

PYCR1 1.6407 1.456-1.900 1.035E-02 0.01015

TAT 0.7211 0.531-0.979 3.622E-02 –0.00278

TKT 1.3329 1.133-1.833 1.878E-02 0.00218

independent prognostic predictors. KM curve in Figure 4A 
revealed patients with a lower pathologic stage could obtain a 
better prognosis, which was consistent with their actual 
prognosis.

Moreover, stratified analysis was conducted for patients in 
differential pathologic stage, stage I-II, and stage III-IV. After 
risk grouping, KM curve analysis showed (Figure 5) patients in 
low-risk group exhibited a better prognosis than high-risk 
group individuals (Stage I-II, P = 9.697e-05, HR:2.560 

[1.569-4.177]; Stage III-IV, P = 1.582e-02, HR:2.168 
[1.139-4.125])

In the nomogram model, 4 clinical factors were included, 
pathologic stage I -IV, PS status, and 3- and 5-year survival 
times. As shown in Figure 4A, total points in nomograms inte-
grated clinical factors to predict survival probability of each 
individual at 3-and 5-year times. The diagnostic value of the 
nomogram model was performed by comparison of the nomo-
gram-predicted probability of OS and actual OS. The C-index 
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Figure 3. Kaplan-Meier curves for liver cancer patients in TCGA (A) and E-TABM-36 dataset (B).
A-B left: Overall survival rates were analyzed based using the prognostic score prediction model. Blue and red color curves indicate low- and high-risk group patients, 
respectively.
A-B right: Receiver operating characteristic (ROC) curve analysis for the prognostic score model. The data in brackets represents the specificity and sensitivity of the 
ROC curve.

Table 3. Univariate and multivariate analysis result to identify independent prognostic clinical factors for liver cancer patients.

CLINICAL CHARACTERISTICS TCGA (N = 367) UNI-VARIABLE COX MULTI-VARIABLE COX

HR (95% CI) P VALUE HR (95% CI) P VALUE

Age (years, mean ± sd) 59.67 ± 13.33 1.012 [0.998-1.026] 8.662E-02 – –

Gender (Male/Female) 248/119 0.801 [0.562-1.142] 2.193E-01 – –

Pathologic M (M0/M1/-) 264/3/100 4.054 [0.974-12.90] 5.122E-02 – –

Pathologic N (N0/N1/-) 249/4/114 2.017 [0.494-8.231] 3.185E-01 – –

Pathologic T (T1/T2/T3/T4/-) 181/92/78/13/3 1.683 [1.404-2.018] 7.867E-09 1.352 [0.640-2.855] 4.290E-01

Pathologic stage ( I / II / III / IV /-) 171/85/83/4/24 1.670 [1.362-2.048] 4.468E-07 1.512 [1.219-1.875] 1.680E-04

Histologic grade (G1/G2/G3/G4/-) 55/176/119/12/5 1.114 [0.881-1.408] 3.687E-01 – –

Vascular invasion (Yes/No/-) 107/206/54 1.333 [0.880-2.019] 1.733E-01 – –

Radiation therapy (Yes/No/-) 8/338/21 0.979 [0.311-3.086] 9.717E-01 – –

Recurrence (Yes/No/-) 141/179/47 1.342 [0.892-2.018] 1.572E-01 – –

PS status (High/Low) 183/184 2.598 [1.809-3.730] 8.301E-08 2.259 [1.522-3.354] 5.250E-05

Death (Dead/Alive) 130/237 – – – –

Overall survival time  
(months, mean ± sd)

27.37 ± 24.42 – – – –
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Figure 4. Construction and assessment of nomogram model for 2 independent clinical factors, pathologic stage, and prognostic model status. (A) 

Nomogram model estimating the 3- and 5-year survival probability of independent prognostic factors. (B) The calibration curve for comparison of the 

nomogram-predicted probability of overall survival time (OS) and actual OS. The horizontal axis represents the predicted OS survival rate and the vertical 

axis referred to the actual OS survival rate. Red and black represent the 3- and 5-year predicted line charts, respectively. (C) Receiver operating 

characteristic (ROC) curve for the accuracy assessment of the differential prognostic models. Black, red and blue, respectively, represent the mRNA 

model, Stage model, and the mRNA-stage model.

Figure 5. Stratified analysis results of liver cancer patients in different pathologic stage, including Stage I-IV patients. (A) Kaplan Meier curve shows the 

overall survival time of TCGA samples in different pathology stages. Black, red, blue, and purple color represent Stage I-IV group samples, respectively. 

(B) Kaplan Meier curve shows the overall survival time of differential pathologic stage patients sorted by prognostic score model. Blue and red color 

indicate low- and high-risk samples.
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value of 3- and 5-year survival time was 0.6869 and 0.7075, 
respectively (Figure 4B). ROC curve showed the predictive 
performance for liver cancer by using 2 models, stage model 
and mRNA model (Figure 4C). The AUC value of ROC curve 
was 0.837, indicating high accuracy of the prognostic model.

Protein expression of crucial target genes associated 
with liver cancer

We investigated the protein expression data of target genes in 
different cancer tissues and cell types from the HPA analysis. 
The expression status of 7 proteins was frequently altered in 
normal compared with tumor tissues, such as liver cancer and 
stomach cancer samples (Figure 6A and C). Three genes 
(CYP4A11, CYP7A1, and TAT) were not identified in the 
HPA database. Subcellular location data from the HPA analy-
sis is also shown (Figure 6B) to visualize the expression status 
of these target genes.

Discussion
We have screened numerous DEGs between tumor tissue sam-
ples and normal specimens from TCGA dataset. After integra-
tion with metabolism-related genes from GSEA, we finally 
identified 305 overlapped genes associated with liver cancer 
metabolism. Functional analysis showed that these genes were 
enriched in several biological processes and signaling pathways, 
such as “steroid hormone biosynthesis,” “arachidonic acid 
metabolism,” and “linoleic acid metabolism.” Based on the PS 

model, we obtained ten optimal signature DEGs with prog-
nostic value, including CYP2C9, CYP3A4, and TKT.

Among these genes, CYP2C9, CYP3A4, CYP4A11, and 
CYP7A1 belong to the Cytochrome P450 (CYPs) superfamily. 
CYPs enzymes metabolize nearly 60% of prescribed drugs; 
CYP3A4 is responsible for half of these drug interactions.32 
Although CYP3A4 is mainly expressed in the liver (adult 
hepatocytes) and small intestine, it also could be transcription-
ally induced by multiple xenochemicals.33-35 Regulation of 
CYP3A4 is complex since numerous transcription factors 
could interact with the promoter region, and contribute to 
hepatic-specific expression of this gene, such as C/EBPα-β, 
CAR and PXR.35,36 Recently, estrogen receptor alpha (ESR1) 
was also identified as a major transcription factor of CYP3A4, 
and involved in the regulation of xenobiotics metabolism in 
human liver.37 By using immunohistochemistry methods, 
Fanni et al revealed that CYP3A4 serves as a major metabolic 
factor of sorafenib, and was present in surrounding hepatocytes 
in most cases of clinical samples, indicating the potential prog-
nostic predictor roles for HCC management.38 Furthermore, 
CYP3A4 was reported as a novel tumor suppressor gene pre-
dicted poor prognosis of HCC.39 Similarly, in this study, our 
results found CYP3A4 expressed at mostly medium to high 
level in liver hepatocytes. Based on the PS model, we also iden-
tified it as a crucial gene with prognostic prediction value for 
HCC patients, which is consistent with previous studies. In 
addition to liver cancer, the dysregulation of CYP3A4 was also 
found in gastric cancer samples compared with chronic atrophic 

Figure 6. Data mining to explore the protein expression of target genes in various cancer types and cell types.
(A) Heatmap of protein expression levels in differential tissues and cells. (B) Subcellular location data from HPA analysis showing protein expression of ten target genes. 
(C) Protein expression data of genes in liver cancer and stomach cancer based on HPA data analysis.
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gastritis cases, which indicates a correlation between CYP3A4 
expression and carcinogenic transformation of gastric cancer.40 
Moreover, a similar trend was explored in the influence of 
CYP2C9 expression. The hepatic CYP2C9 proteins account 
for nearly 20% of CYP content, and CYP2C9 functions as a 
major enzyme that participates in the metabolism of various 
drugs,41 including warfarin, non-steroidal anti-inflammatory 
drugs, phenytoin, etc.. This protein was also associated with the 
bioactivation of carcinogens.41 A recent study elucidated the 
mechanism of CYP2C9 regulation; suppression of CYP2C9 
by hsa-miR-128-3p was significantly correlated with HCC 
pathogenesis.42 By using bioinformatics analysis, another study 
revealed that CYP2C9 promoted the development of HCC 
and might serve as a potential prognostic marker for liver 
cancer.43 Taken together, these findings suggested CYP3A4 
and CYP2C9 protein might be useful and reliable biomarkers 
for prognosis prediction of HCC.

In addition, metabolism-related genes of TKT were also 
identified as candidate genes associated with HCC prognosis. 
The molecular mechanism of TKT remains unclear in liver 
cancer. It is well known that cancer cells experience increasing 
oxidative stress and metabolic reprogramming; a previous study 
reported that TKT-encoded transketolase protein counter-
acted oxidative stress to drive cancer development by regulating 
NAPDH production.44 Qin et al. revealed that TKT can pro-
mote HCC progression both in metabolic and a non-metabolic 
manner through nuclear localization and EGFR signaling 
pathway.45 Moreover, in HBV-related HCC, the virus induced 
higher levels of SH2D5 that are capable of binding to TKT 
and leading to the promotion of cancer cell proliferation.46

Univariate and multivariate analysis showed that 2 clinical 
characteristics (pathologic stage and PS model status) were asso-
ciated with the prognosis of HCC. To assess the predictive ability 
of clinical factors, a nomogram model was constructed with 4 
variables: pathologic stage, PS model status, and 3- and 5-year 
survival probability. A previous study reported that a multiple 
factor-based nomogram combined with prognostic score could 
predict the survival of gastric cancer patients with adjuvant 
chemotherapy.47 The factors included inflammatory, nutritional, 
and preoperative prognostic markers. Recently, Huang et al. 
designed a nomogram model consistent with factors of molecular 
markers and TNM staging, and this model could predict the 
overall survival of HCC patients.48 However, the present nomo-
gram in our study showed the AUC value of 2 factor-based ROC 
was 0.837, which is high specificity and sensitivity. Therefore, the 
development of a nomogram with 2 clinical factors may facilitate 
the prediction of overall survival for HCC patients.

There are some limitations in this study. For example, the 
number of individuals was small, and more patients derived 
from multiple clinical centers should be used to validate the 
performance of the prediction model. Second, the molecular 
mechanisms of optimum DEGs also need to be further 
explored and experimentally validated.

In summary, this study developed a novel useful prognostic 
model for the identification of biomarkers and independent 
clinical factors with prognostic values in HCC. CYP2C9, 
CYP3A4, and TKT were correlated to the prognosis of liver 
cancer patients; these genes might be reliable tumor biomark-
ers for HCC prognosis prediction.
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