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SUMMARY

Extensive changes in the legal, commercial and technical requirements in engi-
neering fields have necessitated automated real-time structural health moni-
toring (SHM) and instantaneous verification. An integrated systemwithmechano-
luminescence (ML) and dual artificial intelligence (AI) modules with subsidiary
finite element method (FEM) simulation is designed for in situ SHM and instanta-
neous verification. The ML module detects the exact position of a crack tip and
evaluates the significance of existing cracks with a plastic stress-intensity factor
(PSIF; KP ). ML fields and their corresponding KML

p values are referenced and veri-
fied using the FEM simulation and bidirectional generative adversarial network
(GAN). Well-trained forward and backward GANs create fake FEM and ML im-
ages that appear authentic to observers; a convolutional neural network is
used to postulate precise PSIFs from fake images. Finally, the reliability of the
proposed system to satisfy existing commercial requirements is validated in
terms of tension, compact tension, AI, and instrumentation.

INTRODUCTION

Since the enforcement of the ‘‘CorporateManslaughter and Corporate Homicide Act 2007’’ on April 6, 2008

in the UK,1 many countries such as New Zealand in 2016, India in 2020, and South Korea in 2021 imple-

mented similar but strengthened legislations. According to the monumental law, the chief executive offi-

cers (CEOs) and companies and organizations in these countries can be found guilty of corporate

manslaughter when serious management failures result in the gross breach of the duty of care.2

This significant change in the legal requirements of companies has inevitably created a new commercial

demand for structural safety diagnosis in various industrial fields related to materials, mechanical, aero-

space, architecture and civil engineering. Although several high cost, cumbersome methodologies such

as Moiré patterns, interferometry, holography, and infrared thermography and conventional nondestruc-

tive testing methods have been utilized for detecting and evaluating cracks; they are not real time, non-

contacting, multiscale, global full-field, or direct measurement for structural maintenance.3–6 Furthermore,

it is true that none of these techniques can be used for in situ inspection and verification under the chaotic

condition of construction. Therefore, the law further emphasizes the need for in situ structural health moni-

toring (SHM) during construction as well as the maintenance of large buildings and complex structures. For

example, the construction license of a major builder, the ‘‘Hyundai Development Company (HDC),’’ was

canceled immediately after the enforcement of the law in South Korea, and its CEO had to resign for further

legal punishment because of the deadly collapse of buildings under construction in February 2022. More-

over, HDC is expected to refine the construction plan, which costs an additional $150 million, because the

company has to rebuild all eight buildings and provide subsidies to the residents for the construction delay;

this emphasizes the industrial importance of in situ SHM during construction.7

Therefore, we suggest automated real-time and full-field SHM and its instantaneous verification based on

mechanoluminescence (ML) in SrAl2O4:Eu,Dy (SAO)8–18 and dual machine learning combining a generative

adversarial network (GAN)19,20 and convolutional neural network (CNN) to meet the legal, commercial, and

technical requirements in engineering fields.21,22 Algorithmic MATLAB coding on the ML phenomenon,

which is proportional light emission from any mechanical stimulus such as tension,10 shear,11
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compression,12 torque,13,14 vibration,15 friction,16 and fracture,17,18 was developed for automatically iden-

tifying and evaluating in situ cracks from the acquired ML images in elastoplastic structures. GAN is a

specialized technique for image generation and restoration, followed by CNN, and it was adopted for

the immediate verification of mechanoluminescent stress field images at the crack tip and their singularity

KML
p values. The finite element method (FEM) was used to create training and test sets comprising images of

the crack-tip stress field for the GAN and reference values of KFEM
p for the CNN.

Despite the ML phenomenon being discovered four centuries ago, the discovery of SAO by Xu and co-

workers 20 years ago has ignited theML research.12 For the last two decades, several organic and inorganic

ML materials have been reported in addition to a solid understanding on the ML mechanism23–26; only few

are commercially available.8,9 For example, SAO is easily available in the market and is also inexpensive.

Thus, many researchers have considered ML in SAO, and they reported the potential of ML technology

in crack-tip position identification, crack-tip stress field and strain field visualization in elastic and plastic

regions, crack path prediction based on the crack-tip effective stress field, hidden crack identification in

pressurized hydrogen fuel cells, life-time based performance, and so on.8,9 Moreover, there are important

properties such as reproducible ML, bright emission, ML spectra in human vision range (green), multi-me-

chanosensitivity, and linear response to applied mechanical stimuli that make SAO a potential candidate

for strain engineering.9 Thus, SAO has been selected in this work because of commercial availability, wide

application in strain engineering, and optimal mechano-optical properties.
RESULTS

In situ SHM based on ML module

Figure 1A shows the elastoplastic ML response of the SAO-acrylic composite from the tension specimen

under the crosshead speed of 0.05 mm/s using an experimental condition of continuous wave ultraviolet

(CW-UV) light illumination above the critical ML power density. The inset of the figure indicates sequential

real-time ML images of the gauged section in the tension sample recorded by the high-speed camera dur-

ing loading. The representative image of the compact tension (CT) specimen under the condition of quasi-

dynamic fracture under the same loading and UV exposure conditions is shown Figure 1B, where the white

dot represents themoving crack-tip position acquired from the coordinates of themaximum intensity pixel.

Figure 1C shows the visualization of the crack-tip stress field based onMLmechanics under the condition of

quasi-dynamic fracture. Figures 1A–1C shows that the CW-UV light excitation effectively provides the initial

condition for ML excitation and allows the acquisition of a set of calibrated ML images under normal ten-

sion and CT. As proven for uniaxial cyclic tension within an elastic region,27 normal tension up to the yield

stress shown in Figure 1A, which exhibits a well-defined linear relationship between the applied tensional

stress and instantaneous incremental ML intensity. Figures 1B–1C shows that the visualization of the two-

dimensional far field in front of the crack tip is almost impossible because the sensitivity corresponding to

the slope of the tensional ML graph below the yield point in Figure 1A is relatively poor. An expensive inten-

sified camera system is required to ensure that the elastic field is visible through ML; this can overcome the

commercial and empirical challenges in applying the ML technology to the elastic region.

However, the linearity can be extended to a plastic field with dramatically enhanced sensitivity using an

appropriate elastoplastic ML paint or skin,28 as shown in Figure 1A. This improvement in the ML material

parameters can help visualize the two-dimensional evolution of a plastic field near a crack tip via the use of a

commercial-grade, non-intensified camera, as demonstrated in Figure 1C. Furthermore, Figure 1C shows

the two sets of images of CT testing that indicate the typical evolution of the plastic field in front of a crack

tip and crack propagation through ML, which implies the uniform distribution of SAO phosphors in the

acrylic composite. The high-speed camera is selected not to achieve higher camera sensitivity but to in-

crease the amount of data collected for GAN and CNN. Considering the short exposure time when using

high-speed photography, conventional imaging devices can satisfy the technical requirements for ordinary

ML visualization. Therefore, an inexpensive drone equipped with a high-definition camera and UV lamp can

be deployed for conducting various standard ML inspections. The visualized images in Figures 1D and

S1A–S1D are obtained using a commercial smartphone such as the Galaxy S8; this proves that the perfor-

mance of a conventional camera is sufficient to capture the plastic ML response and analyze the structural

integrity under identical measurement conditions because of the enhanced sensitivity of theML in the plas-

tic deformation region.
2 iScience 26, 105758, January 20, 2023
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Figure 1. Measurement of plastic stress intensity factors (PSIFs) based on ML mechanics

(A) Calibrated relationship between ML intensity (arbitrary unit) and effective stress (MPa) determined from the uniaxial

tension test. The inset of the figure shows the sequential real-timeML images of the gauged section of the tension sample

recorded by the high-speed camera while loading.

(B) Crack tip indicated by a white dot; the crack tip is determined by considering that the maximum intensity point

coincides with the crack tip attributed to the maximum stress concentration in the region.

(C) Real-time sequential gray ML images of the compact tension (CT) specimen recorded by a high-speed camera; this

demonstrates crack propagation while loading (left column), isostress contours in the vicinity of the crack tip (middle

column), and their enlarged view in the right column. Isostress contours are obtained from their corresponding

isointensity contours with the aid of the calibrated curve shown in (A).

(D) Isostress contours in the vicinity of the crack tip of the CT specimen recorded by a mobile camera.

(E) Comparison of PSIFs obtained from a high-speed camera and a smartphone for different crack lengths. The unit of KP

is m1=5.
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Thus, ML software based on fracture mechanics for the automated evaluation of ML responses indicates a

substantial breakthrough in the field of in situ SHM. Figures 1B and 1C show that the newMATLAB software

described in Supplementary Code 1 successfully identifies the maximum ML intensity position of a plastic
iScience 26, 105758, January 20, 2023 3
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Figure 2. ML images and their corresponding FEM-simulated images

(A) Sequential ML images recorded by high-speed camera while loading, where the white dot represents the crack-tip

position on each image.

(B) FEM-simulated images corresponding to each ML image in (A).

(C) Comparison of PSIFs obtained through ML, FEM, and ASTM. The unit of KP is m1=5.
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crack tip and its isointensity contour patterns during CT. Then, the standard effective stresses in accor-

dance with the in situ isochromatic ML intensities in Figure 1C can be extracted from the results of the uni-

axial tension. The plastic SIF (KML
p ) shown in Figure 1E can be conveniently calculated using ML software

that generates automatic measurements of the length between the crack tip and the farthest points on

a given fringe loop in the instantaneous mechanoluminescent isointensity contours near the crack tip, as

well as the corresponding angles of inclination of this line to the crack axis. KML
p measured from the images

acquired using the high-speed camera and mobile camera showed similar results in terms of mean PSIF.

Considering the temporal sensitivity of ML technology, the local mismatch of KML
p between the calculated

values from high speed and the mobile phone cameras during crack propagation are very natural. Global

accordance between the KML
p vales of those two supports the reliability of ML technology even when the

normal HD camera is used. The magnitude and shape of the stress field of the crack tip predicted by

the ML software shown in Figure S2 indicate excellent agreement with the empirical ML isochromatic pat-

terns used to determine KML
p from the ML intensity. For a more specific understanding of the core logic of

numerical calculations obtained using the ML software, the constitutive equation and specific parameters

used for the quantification of plastic ML singularity within a near field under the mixed mode are presented

in the STAR Methods.
FEM for complementary and reference data

An FEM simulation was conducted for supporting the ML and artificial intelligence (AI) modules to create a

set of stress field images at the crack tip and to provide reference values of the plastic stress intensity factor

(PSIF; KFEM
p ) for training the GAN and CNN. The ML images and their corresponding FEM-simulated im-

ages are depicted in Figures 2A and 2B, respectively. The FEM produces a specific visualization of where

the structure is distorted, which helps demonstrate the distribution of stresses and strains, regardless of the

elastic or plastic deformation. Therefore, the use of this powerful simulation method helps significantly

improve the learning quality of the GAN and CNN because of the mutual comparison of the crack-tip stress

fields in addition to the plastic SIF values in ML and FEM. Furthermore, the FEM software provides exten-

sive options in the simulations to control the complexity of modeling and analysis. In other words, the desir-

able level of accuracy in the training dataset, which is associated with the learning cost of GAN or CNN, can

be achieved without restriction. The introduction of the FEM software substantially decreases the time
4 iScience 26, 105758, January 20, 2023
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required to obtain the formulaic data from the simulated results for accelerating the training process of AI.

These factors imply that the FEM software in conjunction with theML code shown in Supplementary Code 1

can permit the entire design of the datasets to be constructed, refined, and optimized for training a GAN

and CNN even before an object is retrieved or is in use. Thus, the advantages of the complementary FEM

include improved insight into the critical parameters of the learning and test data, enhanced learning ef-

ficiency, and increased accuracy of the GAN and CNN results.

The evolution of plastic SIF shown in Figure 2C should be discussed based on the comparative consider-

ation between the ML measurement and referenced FEM result for a quasi-dynamic fracture under CT.

General trends and mean values of KML
p and KFEM

p s show acceptable agreement; however, the fluctuation

is higher in KML
p because it is slightly more sensitive to crack propagation than KFEM

p . This phenomenon can

reflect the interference exerted by a propagating crack on the stress field in front of the crack tip. The

enhanced speed of crack propagation disturbs the crack-tip stress field, and its influence becomes more

significant with an increase in crack speed.29,30 Therefore, time resolution using the ML technology has al-

lowed the quantification of the local fluctuation in a plastic stress field under high-speed imaging condi-

tions. This suggests that the ML technology may be too sensitive to allow the effective monitoring of

quasi-dynamic structural health because the temporal resolution obtained by ML is dependent on the

trap-releasing process of electrons or holes in the SAO,8 which is equivalent to at least one microsecond.

The perfect match between KFEM
p and KASTM

p , which was calculated in accordance with an analytical method

using ASTME399 for mode I fracture, also supports the above supposition. Hence, the less sensitive KFEM
p in

Figure 2C can be expected to improve the stability of the AI verification module, which is attributed to a

more stable and reliable training dataset, faster and less expensive data design, and increased data pro-

ductivity of the FEM.
Real-time verification using dual AI module

GAN is an unsupervised machine learning algorithm wherein two neural networks compete in a zero-sum

game framework, where the generative network creates the candidates and the discriminative network

evaluates them (Figure 3A). When a known dataset is applied to the discriminator as the initial training

data, the training involves providing it with examples from the selected training dataset until it achieves

the desired accuracy. In contrast, the generator is seeded with randomized input from a predefined latent

space and trained based on whether it succeeds in fooling the discriminator. Thereafter, candidates

created by the generator are evaluated by the discriminator, which involves a deconvolutional and convolu-

tional neural network.31–33 The bidirectional and interactive structure of a GAN can provide the possibility

of simultaneous verification of the FEM simulation andMLmeasurement, as depicted in Figures 3B and 3C.

Two different GAN models are trained to generate fake images, where the GAN generating the fake FEM

image (Figure 3B) is referred to as the forward GAN, and that generating the fake ML image (Figure 3C) is

referred to as the backward GAN. The specific architectures of the GAN generator and discriminator are

presented in Figures S3 and S4, respectively; the code is presented in Supplementary Code 2.

Furthermore, the CNN is a deep learning technique that is mostly utilized for analyzing visual imagery. It is

frequently applied for the recognition, classification, and analysis of various images and videos.34–38 A CNN

requires relatively lesser preprocessing than that required by other image processing algorithms; this

means that the network deciphers the filters. Thus, performance verified via the analysis of various images

and independence from the need for prior knowledge and human effort in feature design are major advan-

tages for automating the proper assessment of PSIF values from fake FEM or fake ML images, as shown in

Figure 3D. The specific architecture of the CNN is presented in Figure S5, and the code is presented in Sup-

plementary Code 3. The CNN model trained for real FEM images and KFEM
p is referred to as forward CNN,

whereas the CNN model trained for real ML images and KML
p is referred to as backward CNN.

The evolution of the KAI
p values is shown in Figure 3E. The magnitudes of the KAI

p values predicted by the

CNNs agree well with those of the experimental and simulated results. However, the fluctuation is higher

in KAI:ML
p (backward) than that in KAI:FEM

p (forward) during cracking, which implies that the quality of the

generated fake ML photos is sufficient to resemble the local fluctuation in a real crack tip in an ML field un-

der in situ failure. Compared to the local deviation presented in Figures 1E, 2C, and 3E show improved local

and global accordance, which indicates the solid performances of the FEM and AI module. Moreover, the

variation in KAI:FEM
p almost perfectly matches that in KFEM

p when combined with the fake FEM images gener-

ated by the GAN; this helps ensure reliable accuracy and high perception in the evaluation of ML based on
iScience 26, 105758, January 20, 2023 5
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Figure 3. Prediction of PSIF from the dual AI module

(A) GAN network (forward).

(B) Generation of fake FEM images from the trained-forward GAN model.

(C) Generation of fake ML images from the trained-backward GAN model.

(D) CNN network (forward).

(E) Comparison of PSIFs obtained through ML, FEM, ASTM method, forward CNN model (AI.FEM), and backward CNN

model (AI.ML). The unit of KP is m1=5.
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forward AI routes. Compared with the plastic ML photos shown in Figure 3B, the elastoplastic FEM images

provide a greater amount of diverse information that includes far fields in addition to near fields in the vi-

cinity of a crack tip regardless of whether they are simulated using an expensive FEM or created with an

inexpensive GAN.

Table 1 summarizes the performance of the proposed system consisting of ML and AI modules for detect-

ing, evaluating, and verifying an artificially introduced mode I crack. Each ML and AI module successfully

demonstrates an acceptable performance in terms of detection of cracks, visualization of the crack-tip

stress field, and evaluation of the plastic SIF with over 97% accuracy within 2 s; these are key parameters

for in situ SHM and its instantaneous verification. The ML module makes it possible to visualize only the

plastic near-field in front of the crack, whereas the AI module allows the detection of the elastic far-field
6 iScience 26, 105758, January 20, 2023



Table 1. Performance summary of the detection of crack position, stress resolution in front of the crack tip,

accuracy of PSIFs of KML
p , KAI$FEM

p (forward), and KAI$ML
p (backward), and computational costs of ML and AI modules

and reference FEM simulation

Module

Detection of

crack tip

Visualization of

stress field Evaluation of KP (%) Computational cost (s)

ML Excellent Near-field 97 1.6

AI Excellent Far- and near-field 98.3 (Backward)

99.2 (Forward)

0.5 (Backward)

0.5 (Forward)

FEM Excellent Far- and near-field Ref. 300
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in addition to the plastic near-field. The average deviations of the PSIFs estimated by the forward and back-

ward AI modules from the reference FEM values are slightly reduced when compared with those of ML; this

implies that the sophisticated FEM data effectively help the learning processes of the GAN and CNN.

Nevertheless, FEM simulation appears to be inappropriate for prompt verification because of the large

computation time of over 500 s; this inevitably necessitates the involvement of dual machine learning mod-

ules for the immediate verification of the SHM results by ML. In conclusion, the forward AI route appears to

satisfactorily meet the commercial requirements for the verification of the ML technology in terms of the

stability, accuracy, cost, and perception, as summarized in Table 1.

DISCUSSION

We successfully implemented a novel integrated system involving dual AI composed of a GAN and a CNN

in addition to advanced ML mechanics for achieving in situ ML measurement and AI verification of struc-

tures under construction or operational multiscale structures. However, the reliability of the suggested

systemmust be comprehensively validated in various ways to satisfy the commercial requirements for stan-

dard ML hardware and machine learning software. The first method is to ensure plastic ML linearity, irre-

spective of the loading conditions, in conjunction with the mechanical and microstructural ML constraints.

The instantaneousML intensities with respect to variations in the tensional crosshead speeds are evaluated

usingmechanical andmicrostructural approaches. Themechanical analysis in Figure 4A shows that theme-

chano-optical linearity39–41 can be reproduced consistently for all loading conditions and extended to a

plastic field with a dramatically enhanced level of sensitivity because of the improved ML material, instru-

mentation, and measurement factors. Furthermore, it is evident in Figure 4A that all plastic stresses follow

one master curve regardless of the tensional cross speeds, even if the elastic stresses slightly deviate from

the mean value caused by poor sensitivity within the elastic region. Identical results are confirmed by mea-

surements using a photon multiplier tube (PMT), as shown in Figure S6.

Of interest, based on the microstructural analysis of the plastically deformed specimen in Figure 4B, the

increased rate of photon emission beyond the yield point is attributed to crazing within the acrylic matrix

of the ML paint, which rapidly develops a stress concentration on the SAO particles located near the

crazes.42 A craze that is not detectable on the surface must be discriminated from a crack because it can

carry internal or external stresses.43 Moreover, the evolution of the craze before crack initiation and prop-

agation efficiently absorbs the fracture energy and improves the fracture toughness of the polymer. The

initial absorption of energy in the craze region is increased by several hundred times when compared

with that of a noncrazed region, which can change the sensitivity of the ML response in an elastoplastic

ML composite. Considering that the typical development of crazes near the SAO particles in tension spec-

imens originates from plastic yielding and becomes severe with incremental variations in stress or strain

(Figure S7), the hypothesis based on crazing may be the only plausible mechanism for the enhanced sensi-

tivity of an ML composite in a plastic field.

The second method for ensuring reliability is achieving an intrinsic time-resolved resolution of ML and

extrinsic concerns about the adequateness of camera sensitivity to capture local fluctuations in photon

emissions during CT. Although downgrading the camera sensitivity ensures excellent time resolution of

the ML technology in facilitating the measurement of local stress fluctuations at the front of a crack tip, ex-

tracted KML
p values that require evaluation of the crack-tip stress fields can be better analyzed in terms of the

maximum intensity based on the variation in the crack length during crack propagation, as indicated in Fig-

ure 4C. The variations in KML
p and the corresponding maximum ML intensity at the crack tip show perfect

agreement during crack propagation regardless of the imaging system; e.g., a high-speed camera
iScience 26, 105758, January 20, 2023 7
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Figure 4. Reliability validation of the suggested system

(A) Identical ML responses despite different loading rates.

(B) Micrographs of the tension sample showing SAO particles and crazes before load application (left) and under stress of

32 MPa (right). The scale bar size is 100 mm.

(C) Variation patterns of KP and crack tip intensity depicting resemblances.

(D) Comparison of KFEM
p value obtained from FEM with KAI$FEM

p values obtained from four different cases of machine

learning. The unit of KP is m1=5.

(E) Schematic of three different methods—AI consisting of GAN and CNN, conventional ML, and FEM—to determine

fracture parameters such as PSIF for multiscale structures.
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(Figure 4C) or a conventional camera such as a smartphone (Figure S8), which proves the excellent time res-

olution of the ML evaluation in addition to ML measurement for fracture mechanics.

We also confirmed the performance of dual AI by processing values under various conditions of partial re-

striction of the training dataset. Four different cases of machine learning either alternatively or simulta-

neously confine the training of a GAN and a CNN to the forepart in 90% of the training datasets (Figure 4D);

these have been analyzed to compare them with the real FEM values. All KAI:FEM
p values predicted by the

dual AI agreed with one another and showed acceptable agreement with the FEM results, even in the
8 iScience 26, 105758, January 20, 2023
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tail region of the plastic SIF values where data were excluded; this suggests that an evaluation using dual AI

may guarantee reliable accuracy even if the measured ML response is not exactly well-trained. The perfor-

mances of GAN and CNN can be validated by considering that the accuracy of dual AI can be continuously

improved because of the inherent recursive and recurrent characteristics of GAN and CNN given that the

accumulation and training of data proceeds while the unified standard ML system is working.

Sequential ML photographs recorded while crack is moving in response to externally applied load can only

display the plastic field at the crack tip vicinity under continuous UV irradiation. The plastic field is a valuable

asset that can evaluate the significance of existing crack in terms of the plastic stress intensity factor (PSIF);

however, the elastic field distributed in a considerably larger area compared to the plastic field is missing

because of the poor ML emission in the elastic deformation. The elastic field is an important trait in SHM

because it allows the qualitative analysis of full-field stress distribution in the given structure. Thus, GAN

plays a crucial role in translating a visually less-informative ML image into visually high-informative fake

FEM image. In addition to achieving high-informative fake FEM image from a less-informative ML image,

it is important for quantifying the crack-tip stress field in terms of a single fracture parameter such as PSIF.

Although PSIF can be determined from the plastic crack-tip field solution, it is computationally expensive,

and therefore, it would not favor the in situ SHM. Thus, the introduction of CNN is necessary to predict the

PSIF for the given ML image to ensure in situ SHM.

There is a possibility of extending the present work by considering ML materials other than SAO that show

emission under elastic deformation. Both organic and inorganic ML materials with elastico-mechanolumi-

nescence can be used to obtain the ML images containing the information of crack-tip stress field distribu-

tion and follow the present framework to train GAN and CNN models. The models trained on one ML

material may not work on other ML material because the linearity, strain sensitivity, loading rate effect,

ML threshold emission, etc., could vary depending on the material. Thus, GAN and CNN models trained

on one ML material may not work on other ML materials.

In conclusion, the novel integrated system shown in Figure 4E satisfies the commercial requirements of reli-

ability and reproducibility for machine learning, as well as that for ML technology; this was validated suc-

cessfully and comprehensively in terms of tension, CT, AI, and instrumentation. The upper ML module

simultaneously detects the exact crack-tip position and crack-tip stress field when a crack exists; further,

this module evaluates the significance of the existing crack in terms of the PSIF by usingML images scanned

from the target structure. The FEM simulation offers reference results for comparison with a visualized ML

crack-tip stress field and the singularity of KML
p under an identical situation during in situ crack propagation.

The middle AI module for the verification of the ML data compares the observed ML or simulated FEM im-

ages to generate the translated FEM (forward) or ML (backward) images based on well-trained GANs.

Furthermore, it estimates the values of KAI:FEM
p (forward) or KAI:ML

p (backward) for the virtual images using

additional CNNs.
Limitations of the study

This study is limited to uniaxial loading condition although the mix-mode loading condition is involved in

crack initiation and propagation in the real world. A uniaxial loading was opted to make the crack-tip field

and crack profile simple because the current study demonstrates the possibility of the novel integrated sys-

tem for SHM; this allowed GAN and CNN to learn the problem with a small number of images.

In future work, a significantly more complex crack system such as one with a mix-mode loading condition at

various degree of loading will be considered, which can allow us to generate a large number of training

images for generalizing the complex problem.
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37. Schütt, K.T., Arbabzadah, F., Chmiela, S.,
Müller, K.R., and Tkatchenko, A. (2017).
Quantum-chemical insights from deep tensor
neural networks. Nat. Commun. 8, 13890–
13898. https://doi.org/10.1038/
ncomms13890.

38. Wang, C., Xiong, R., Tian, J., Lu, J., and
Zhang, C. (2022). Rapid ultracapacitor life
prediction with a convolutional neural
network. Appl. Energy 305, 117819. https://
doi.org/10.1016/j.apenergy.2021.117819.

39. Song, H., Timilsina, S., Jung, J., Kim, T.S., and
Ryu, S. (2022). Improving the sensitivity of the
mechanoluminescence composite through
functionalization for structural health
monitoring. ACS Appl. Mater. Interfaces 14,
30205–30215. https://doi.org/10.1021/
acsami.2c07286.

40. Kim, J.S., Kibble, K., Kwon, Y.N., and Sohn,
K.S. (2009). Rate-equation model for the
loading-rate-dependent
mechanoluminescence of SrAl 2 O 4: Eu 2+,
Dy 3+. Opt. Lett. 34, 1915–1917. https://doi.
org/10.1364/OL.34.001915.

41. Sohn, K.S., Park, W.B., Timilsina, S., and Kim,
J.S. (2014). Mechanoluminescence of SrAl 2 O
4: Eu 2+, Dy 3+ under cyclic loading. Opt.
Lett. 39, 1410–1413. https://doi.org/10.1364/
OL.39.001410.

42. Williams, M.L. (1952). Stress singularities
resulting from various boundary conditions in
angular corners of plates in extension.
J. Appl. Mech. 19, 526–528. https://doi.org/
10.1115/1.4010553.

43. Arzhakova, O.V., Dolgova, A.A., Yarysheva,
L.M., Volynskii, A.L., and Bakeev, N.F. (2015).
Specific features of the environmental crazing
of poly (ethylene terephthalate) fibers.
Polymer 56, 256–262. https://doi.org/10.
1016/j.polymer.2014.11.044.

44. Hutchinson, J. (1968). Singular behaviour at
the end of a tensile crack in a hardening
material. J. Mech. Phys. Solids 16, 13–31.
https://doi.org/10.1016/0022-5096(68)
90014-8.

45. Shih, C.F. (1973). Elastic-Plastic Analysis of
Combined Mode Crack Problems (Harvard
University).

46. Stepanova, L. (2018). Asymptotic methods
and their applications in nonlinear fracture
mechanics: a review. J. Phys, Conf. Ser. 1096,
012058. https://doi.org/10.1088/1742-6596/
1096/1/012058.

47. McClintock, F.A. (1971). Plasticity aspects of
fracture. In Engineering Fundamentals and
Environmental Effects (Elsevier), pp. 47–225.
iScience 26, 105758, January 20, 2023 11

https://doi.org/10.1016/j.ultsonch.2010.07.017
https://doi.org/10.1016/j.ultsonch.2010.07.017
https://doi.org/10.1103/PhysRevB.69.235109
https://doi.org/10.1103/PhysRevB.69.235109
https://doi.org/10.1111/j.1475-1305.2009.00713.x
https://doi.org/10.1111/j.1475-1305.2009.00713.x
https://doi.org/10.1016/j.jlumin.2012.03.001
https://doi.org/10.1016/j.jlumin.2012.03.001
https://doi.org/10.1145/3422622
https://doi.org/10.1109/CVPR.2017.632
https://doi.org/10.1109/CVPR.2017.632
https://doi.org/10.1145/3065386
https://doi.org/10.1145/3065386
https://doi.org/10.1109/72.554195
https://doi.org/10.1109/72.554195
https://doi.org/10.1039/d1cc04064b
https://doi.org/10.1039/d1cc04064b
https://doi.org/10.1039/c7cp01623a
https://doi.org/10.1039/c7cp01623a
https://doi.org/10.1039/c6cp07472c
https://doi.org/10.1039/c6cp04706h
https://doi.org/10.1039/c6cp04706h
https://doi.org/10.1364/OE.23.006073
https://doi.org/10.1002/advs.202105889
https://doi.org/10.1002/advs.202105889
https://doi.org/10.1038/s41598-018-22773-0
https://doi.org/10.1038/s41598-018-22773-0
https://doi.org/10.1023/A:1007387417517
https://doi.org/10.1023/A:1007387417517
https://doi.org/10.1016/j.compbiomed.2022.105382
https://doi.org/10.1016/j.compbiomed.2022.105382
https://doi.org/10.1016/j.energy.2022.124694
https://doi.org/10.1016/j.energy.2022.124694
https://doi.org/10.1016/j.ymssp.2021.108139
https://doi.org/10.1016/j.ymssp.2021.108139
https://doi.org/10.1109/TCBB.2014.2343960
https://doi.org/10.1109/TCBB.2014.2343960
https://doi.org/10.1021/acs.molpharmaceut.5b00982
https://doi.org/10.1021/acs.molpharmaceut.5b00982
https://doi.org/10.1038/nature16961
https://doi.org/10.1038/nature16961
https://doi.org/10.1038/ncomms13890
https://doi.org/10.1038/ncomms13890
https://doi.org/10.1016/j.apenergy.2021.117819
https://doi.org/10.1016/j.apenergy.2021.117819
https://doi.org/10.1021/acsami.2c07286
https://doi.org/10.1021/acsami.2c07286
https://doi.org/10.1364/OL.34.001915
https://doi.org/10.1364/OL.34.001915
https://doi.org/10.1364/OL.39.001410
https://doi.org/10.1364/OL.39.001410
https://doi.org/10.1115/1.4010553
https://doi.org/10.1115/1.4010553
https://doi.org/10.1016/j.polymer.2014.11.044
https://doi.org/10.1016/j.polymer.2014.11.044
https://doi.org/10.1016/0022-5096(68)90014-8
https://doi.org/10.1016/0022-5096(68)90014-8
http://refhub.elsevier.com/S2589-0042(22)02031-4/sref45
http://refhub.elsevier.com/S2589-0042(22)02031-4/sref45
http://refhub.elsevier.com/S2589-0042(22)02031-4/sref45
https://doi.org/10.1088/1742-6596/1096/1/012058
https://doi.org/10.1088/1742-6596/1096/1/012058
http://refhub.elsevier.com/S2589-0042(22)02031-4/sref47
http://refhub.elsevier.com/S2589-0042(22)02031-4/sref47
http://refhub.elsevier.com/S2589-0042(22)02031-4/sref47


ll
OPEN ACCESS

iScience
Article
STAR+METHODS

KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, peptides, and recombinant proteins

SrAl2O4:Eu,Dy (SAO) Nemoto & Co.,Japan

Acrylic resin powder Struers ApS (Denmark)

Deposited data

Codes This paper https://github.com/MechanoluminescenceAI/

SHM

Software and algorithms

Python python.org Version 3.6.6

Keras keras.io Version 2.2.2

Pandas pandas.pydata.org Version 0.23.4

Numpy numpy.org Version 1.14.5

Abaqus simuleon.com 2021

Matlab mathworks.com R2016b
RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to the lead contact, Ji Sik

Kim (jisikkim@knu.ac.kr).

Materials availability

This study did not generate new unique reagents.

Data and code availability

d All data reported in this paper will be shared by the lead contact on request.

d Supplementary code 1, Supplementary code 2, and Supplementary code 3 used in this work have been

deposited at GitHub (https://github.com/MechanoluminescenceAI/SHM) and are publicly available as

of the date of publication.

d Any additional information required to reanalyze the data reported in this paper is available from the

lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Our study does not use experimental models typical in the life sciences.

METHODS

Sample preparation and experimental setup

Green photon-emitting mechanoluminescent SrAl2O4:Eu,Dy (SAO) with excitation and emission peaks at

360 nm and 530 nm, respectively, were purchased from Nemoto & Co., Japan. Acrylic resin powder, which

is optically transparent after hot pressing, was purchased from Struers ApS (Denmark). A mixture of acrylic

resin and SAO powder in the ratio of 7:3 by weight percent was homogenously mixed using a milling ma-

chine (WiseMix ball mill, DAIHAN, Republic of Korea) to facilitate homogeneous distribution. ZrO2 balls

with diameters of 2–10 mm were used. The homogenous mixture was then hot pressed at 180 �C under

20 MPa using a hot press machine (QM900M, QMESYS, Republic of Korea); this resulted in a rectangular

bar with dimensions 45 3 45 3 3 mm (length 3 breadth 3 thickness). Finally, a CT specimen was cut

from the plate into a defined shape and size based on ASTM E�399 using a laser-cutting technique.

A sub-sized tension sample based on ASTM E�8 was similarly fabricated using a rectangular bar with
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dimensions 1453 253 3 mm (length3 breadth3 thickness). The entire sample fabrication process is illus-

trated in Figure S9. A schematic of the CT specimen with dimensions (left) and the photograph of a real

sample (right) are presented in Figure S10A, whereas the schematic of a tension specimen with dimensions

(left) and the photograph of a real sample (right) are presented in Figure S10B. A fine pre-crack with a

length of approximately 1 mm was introduced at the notched end of the CT specimen using low-stress fa-

tigue cycles.

The CT specimen was installed in the special CT-type loading stage of an Instron-E3000 equipment, and

the sample was exposed to UV light (INNOCURE2000, LICHTZEN, Republic of Korea) for charging. The

sample was exposed to UV for 2 min, which is sufficient time to attain the saturation point, and a fracture

test was performed under a crosshead speed of 0.05 mm/s. The UV light continuously illuminated the sam-

ples throughout the fracture process. The entire fracture process was recorded using a high-speed camera

(SA-X, LEASPI, Japan) at a frame speed of 125 fps; amulti-channel data link (MCDL) was used to synchronize

the load and displacement data from the Instron-E3000 equipment with images from the camera. The

experimental setup is illustrated in Figure S11. A tension test was performed using the Instron-E3000 de-

vice equipped with a conventional tension grip under identical experimental conditions of UV lighting,

crosshead speed, and high-speed imaging to complement the ML response in the CT specimen.

Evaluation of ML using the MATLAB code

MATLAB was used to automatically extract the facial brightness profile of the ML intensity, which included

information on the coordinates of each pixel, using high-speedML images. Further, the MATLAB code cal-

culates KML
P in addition to identifying plastic crack tips from the processed ML profiles based on ML me-

chanics. The code contains a set of sections for executing important subjobs to instantaneously obtain

KML
P . First, the maximum intensity point was determined for each frame, and it was considered as a crack

tip in each frame. Then, contours were generated, after which the distances between the crack tip and

several points on a given contour near the crack tip were measured. The corresponding angles of inclina-

tion of these lines to the crack axis were also measured. ML intensity contours were converted into their

corresponding stresses using the ML–stress relationship. Using Equation 11, KML
P was determined using

the least squares method, as mentioned in STAR Methods. The codes are available in Supplementary

Code 1.

FEM simulation

Abaqus 2021 was used to simulate the elastoplastic crack tip and its KFEM
P under quasi-dynamic fracture

using FEM. The 3D CT specimens shown in Figure S12A are modeled with mechanical properties

E = 2800 MPa, w = 0:33, and so = 22:8MPa, obtained through uniaxial tension testing illustrated in Fig-

ure S13. The true stress and true strain in the uniaxial tension test were used in the model to ensure elastic–

plastic fracture. Reference points R1 and R2 are created at the centers of the respective holes and coupled

with the surfaces, as depicted in Figure S12B. The boundary conditions were applied at R1 and R2 such that

R1 was constrained in all directions except for the movement along the y axis and rotation along the z axis,

whereas R2 was constrained in all directions except rotation along the z axis. Figure S12C shows a 3D view

of a crack and the direction of virtual crack extension, as indicated by the q-vector. A hex-dominated swept

meshing technique was applied to the inner circular partitioned cell. The structure wasmodeled based on a

20-node quadratic-brick finite element (C3D20) for ensuring a singular stress field at the crack tip; a value of

0.25 was used for the mid-side node parameter. The results of the FEM simulations are presented in Fig-

ure S12D, where the effective stress field is illustrated. Finally, the J-integral obtained from the FEMmodel

was subsequently converted to KFEM
P based on Equation 12, as shown in the STAR Methods.

Learning for dual AI

The GAN (Pix2Pix), based on the open-source code and available at https://github.com/phillipi/pix2pix20,

was reconstructed in Python (Version 3.6.6). The training and test sets for this GANwere prepared usingML

images obtained from a high-speed camera; the corresponding FEM images were simulated using Aba-

qus. For a more dynamic training for cracking under CT, 300 paired images of ML and FEM immediately

after crack initiation were carefully selected and resized to 256 3 256 3 3. In the case of the ML images,

an additional mark used to notify the maximum intensity position was introduced using MATLAB 2018b

for increasing both the learning efficiency and the accuracy. Then, the preprocessed dataset was trained

for 300 epochs with a learning rate of 0.0002 and a momentum parameter of 0.5. Comparative learning

was considered by restricting the dataset to 270 paired images to verify the performance of the trained
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GAN; the testing was maintained for all 300 paired images for supplying fake images to testing the CNN

models. The translation of image from one domain to another domain in the current work is less compli-

cated for the powerful pix2pix GAN algorithm although the number of data is lower compared to that

of a range of the conventional training dataset sizes, e.g., around 500–1,000 images for Pix2Pix-driven

photo-to-street-map transition.20 Indeed, the monotonous feature for our crack tip field images does

not seem to require as many training images as other pix2pix-drive style alteration cases wherein more

complicated features are considered. The training and testing datasets originated from completely sepa-

rate photographs, and therefore, the possibilities of information leakage and overfitting during training are

minimized.

The CNN model built to predict the PSIF from the GAN-generated images was also constructed in Python

(Version 3.6.6) and built on Keras (Version 2.2.2), Pandas (Version 0.23.4), and Numpy (Version 1.14.5). The

CNNmodel comprised five convolution and eight dense layers based on the mean squared error loss func-

tion and Adam optimizer. However, two identical models—forward and backward—were introduced sepa-

rately to independently postulate the PSIFs from the fake ML and fake FEM images. The former was trained

using real FEM images and KFEM
P s, whereas the latter was optimized using empirical ML images and KML

P s.

The learning procedures for both the forward and backward CNN models were continued for up to 300

epochs for minimizing the loss to the well below 0.00002. The forward and backward CNN models were

tested with GAN generated fake FEM and fake ML images to predict the PSIFs.
Solution to determine PSIF from ML isointensity contours

Hutchinson44 proposed a general working law in 1968 based onWilliams’s (1952) research42 to address the

mechanism of near-field stress distribution in the immediate vicinity of the crack tip of a nonlinear

Ramberg–Osgood material that follows a general phenomenological power law model for uniaxial tensile

behavior. Following Williams, Hutchinson proposed an asymptotic expansion of the solution for nonlinear

materials in the form of a series of radii, given by

4 = rsb41ðqÞ+ rs� 1b42ðqÞ+.; (Equation 1)

where b4i ði = 1; 2.:Þ represents the angular variations of the stress tensor components; r and q represent

the polar coordinates; and s = 2n+ 1
n+ 1 , where n represents the strain-hardening component of the material.

When considering only the first term of the series and using the compatibility equation and Ramberg–

Osgood relationship, the governing equations of various stress fields take the form

se = s0KPr
�

�
1

n+1

�
~seðq; nÞ (Equation 2)
srr = s0KPr
�

�
1

n+1

�
~srrðq;nÞ (Equation 3)
sqq = s0KPr
�

�
1

n+1

�
~sqqðq;nÞ (Equation 4)
srq = s0KPr
�

�
1

n+1

�
~srqðq;nÞ (Equation 5)

In the above equations, so represents the yield stress; bseðq;nÞ and se denote the dimensionless effective

stress and effective stress, respectively; and bs ijðq;nÞ and sij represent the dimensionless stress tensor

component and stress tensor component of the polar coordinate, respectively. Furthermore, KP denotes

the PSIF.

Shih (1973)45 modified Equations 2–5 to address the nature of the loading conditions because mixed-mode

loading conditions prevail in a real environment; thus, a new parameter, called the mixed-mode parameter

ðMp) is incorporated such that Mp = 0 for mode I, Mp = 1 for mode II, and Mp lies between 0 and 1 for the

mixed mode. Thus, the dimensionless effective stress depends on the value of Mp in addition to the polar

coordinate and strain-hardening components. The modified expressions are given by
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se = s0KPr
�

�
1

n+ 1

�
~se

�
q; n;Mp

�
(Equation 6)
srr = s0KPr
�

�
1

n+ 1

�
~srr

�
q;n;Mp

�
(Equation 7)
sqq = s0KPr
�

�
1

n+ 1

�
~sqq

�
q;n;Mp

�
(Equation 8)
srq = s0KPr
�

�
1

n+ 1

�
~srq

�
q;n;Mp

�
(Equation 9)

The ML intensity contours observed in the plastic zone were considered to be triggered by the effective

stress, which can be easily obtained from the calibrated ML–stress relationship curve. However, the

fourth-order differential equation in Equation 10 must be solved to determine ~seðq; n;Mp Þ. This can be

solved numerically (finite difference method) using the transformation to a system of first-order differential

equations, as indicated in46"
nðs � 2Þ � d2

dq2

#"
~sn� 1
e

 
sðs � 3Þ~4 � 2

d2~4

dq2

!#
+ nðs � 2Þ½nðs � 2Þ + 1�~sn� 1

e

"
sð2s � 3Þ~4 � d2~4

dq2

#

+ 6ðs � 1Þ½nðs � 2Þ + 1� d
dq

�
~sn� 1
e

d~4

dq

�
= 0

(Equation 10)

Finally, se in Equation 6 can be replaced by sT to indicate that it can be obtained from the ML–stress rela-

tionship under the uniaxial tensional test; hence, Equation 6 can be reformulated using

sT = s0KPr
�

�
1

n+ 1

�
~se

�
q;n;Mp

�
(Equation 11)

Equation 11 is the governing equation for the isochromatic fringes formed byML emission inside the plastic

zone in front of a crack in a homogeneous, isotropic, and elastic–plastic solid under the general mixed-

mode plane stress condition. After the hardening exponent n is specified from the Ramberg–Osgood rela-

tionship, KP and Mp can be used to characterize the plastic zone stress field completely.

Furthermore, as reported in the study by McClintock,47 KP can be related to the J-integral as

KP =

�
J

as0ε0In

� 1
n+ 1

; (Equation 12)

where ε0, a, and In represent the yield strain corresponding to the yield stress (ε0 = so=E), Ramberg–

Osgood constant, and numerical constant, respectively.
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