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Abstract 

Traditional automated in silico functional annotation uses tools like Pfam that rely on sequence similarities for domain annotation. Ho w e v er, 
str uct ural conservation often exceeds sequence conservation, suggesting an untapped potential for improved annotation through str uct ural 
similarity. This approach was previously overlooked before the AlphaFold2 introduction due to the need for more high-quality protein str uct ures. 
L e v eraging str uct ural information especially holds significant promise to enhance accurate annotation in diverse proteins across phylogenetic 
distances. In our study, we evaluated the feasibility of annotating Pfam domains based on str uct ural similarity. To this end, we created a database 
from segmented full-length protein str uct ures at their domain boundaries, representing the str uct ure of Pfam seeds. We used Trypanosoma 
brucei, a phylogenetically distant protozoan parasite as our model organism. Its structome was aligned with our database using Foldseek, the 
ultra-fast str uct ural alignment tool, and the top non-o v erlapping hits w ere annotated as domains. Our method identified o v er 400 ne w domains 
in the T. brucei proteome, surpassing the benchmark set by sequence-based tools, Pfam and Pfam-N, with some predictions validated manually. 
We ha v e also addressed limitations and suggested a v enues f or further enhancing str uct ure-based domain annotation. 
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unctional annotation is a critical process that seeks to de-
ineate the identity of a protein in three distinct dimensions:
ts final location, its function, and the biological processes
n which it participates. Experimental functional annotation
an be time-consuming and expensive, underscoring the sig-
ificant importance of automated in-silico functional annota-
ions. These tools offer the convenience of high-throughput
nalyses without the need for manual inspection. Currently,
ost automated in silico annotation tools rely on sequence

imilarity to manually annotated proteins. Among them, an-
otations based on 1:1 orthology and InterPro2GO are par-
icularly prevalent (Gene Ontology Consortium website). In
:1 orthology-based annotation, sequence search tools like
LASTP are primarily used to infer orthology relationships.

nterPro2GO, the most widely adopted automated annotation
ool (Gene Ontology Consortium website), identifies different
equence signatures in the query protein using InterProScan
 1 ). The identified sequence signatures will be translated into
O terms using the InterPro2GO table, a curated table show-

ng the associations between sequence signatures and the func-
ional annotation of the proteins. 

On the other hand, protein structure is shown to be three to
en times more conserved than its sequence ( 2 ). Consequently,
t is anticipated that a larger number of proteins could poten-
ially be annotated by integrating protein structure into the an-
otation process. Some studies have indeed succeeded in using
rotein structures to annotate domains of proteins that could
ot be annotated by sequence alone ( 3–5 ). However, these
tructure-based approaches have not been broadly adopted.
ne reason is the experimental resolution of protein struc-

ures has predominantly focused on well-studied proteins. Ad-
itionally, previous structure prediction tools were not suffi-
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ciently accurate, which made the prediction of unannotated
protein structures challenging. Despite these limitations, these
prediction tools have demonstrated potential for contributing
to functional annotation ( 6 ,7 ). 

Until recently, the structure-based functional annotation
has not been the focal point for large-scale annotations
mainly since only a limited number of protein structures
had been resolved experimentally, and computational predic-
tions were not sufficiently accurate. The introduction of Al-
phaFold2 sparked a revolution in predicting protein structure.
AlphaFold2 is capable of predicting protein structures with an
accuracy similar to experimental methods ( 8 ,9 ), thus opening
new avenues in the field of functional annotation. 

With protein structures predicted, the next step is to iden-
tify proteins with similar structures. Although advanced tools
like DALI ( 10 ) and TM-align ( 11 ) are available for this pur-
pose, they can be computationally intensive when used to
search comprehensive structure databases. RUPEE ( 12 ) is a
faster tool, but it only looks for structural similarity and not
sequence similarity. Foldseek, a newly developed structure
search tool, can find structurally similar proteins significantly
faster than other tools ( 13 ). 

The combination of AlphaFold2 and Foldseek may facil-
itate the annotation of a greater number of proteins. A re-
cent study demonstrated that in the proteomic comparisons of
species that are evolutionarily distant, there can be instances
where the reciprocal best matches cannot be identified using
sequence similarity methods. However, these matches can be
detected when reciprocal top structural correspondences are
considered ( 14 ). In a separate study, Ruperti et al. employed
Foldseek to identify the closest structural match in model or-
ganisms to the query proteins and transferred the annotations
from the top hits ( 15 ). Their findings were remarkable, as the
nuary 12, 2024. Accepted: January 15, 2024 
enomics and Bioinformatics. 
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use of Foldseek instead of sequence alignment tools could lead
to the annotation of up to 50% more genes. Bordin et. al also
used Foldseek and SSAP to annotate the CATHe domains of
21 model organisms and identify new structural domains in
them ( 16 ). 

As previously mentioned, InterPro2GO uses sequence-
based domain annotation by utilizing multiple member
databases within InterPro. Each database holds a distinct type
of sequence signature. For example, Pfam, one of the most
widely used members, holds the sequence signature of protein
functional domains ( 17 ). These sequence signatures are ex-
tracted from multiple sequence alignments of well-recognized
domain instances known as Pfam seeds. Pfam employs Hid-
den Markov Models (HMM) to model these signatures, which
can then be searched against proteins of interest using the
hmmscan module of HMMER ( 18 ). It is worth mentioning
that Pfam also post-processes the hits and its post-processing
might change the importance order of the hits reported by
HMMER. 

There are also tools for improving the sensitivity of Pfam
annotation. For instance, by creating a profile of query pro-
teins and aligning it with Pfam profiles, more hits can be iden-
tified, although the order of these hits might not necessarily
reflect their relevance ( 19 ). A recent study found that by em-
ploying Convolutional Neural Networks (CNNs) to store se-
quence signatures, over 9.5% more new domains could be an-
notated ( 20 ). These new annotations are referred to as Pfam-N
annotations. 

In this study, we aim to explore a novel approach for
Pfam domain annotation relying on Protein structure. As
Pfam seeds represent a portion of a protein sequence, we cre-
ated a database of Pfam seeds by dividing the correspond-
ing full-length structures at their domain boundaries. From
now on, we will refer to the source protein as the Full-Length
Pfam Seed Source (FLPSS). Next, we evaluated the reliabil-
ity of the structural alignment by aligning the FLPSS with the
constructed domain structure database to determine the fre-
quency of structural alignment between different Pfam seeds.

We focused on Trypanosoma brucei , an early-diverged eu-
karyotic parasite, and aligned its structome with our domain
database as a case organism. We benchmarked the predicted
domains by comparing them to the Pfam v35.0 and Pfam-N
predictions as the gold standard. Additionally, we conducted
a manual review of some of the domains that were predicted
for the proteins involved in T. brucei’s mitochondrial RNA
editing and served as a case study. 

Materials and methods 

Construction of a Pfam domains structure database
(PfamSDB) 

The FLPSSs of Pfam v35.0 were retrieved from the Al-
phaFold2 database (AlphaFold2 DB, version 4). AlphaFold2
and Pfam use different versions of UniProt. As a result, for
fewer than 0.2% of Pfam seeds, the sequence obtained by
trimming the FLPSS based on the Pfam seed coordinates did
not match the Pfam seed sequence. However, by applying
the Needleman-Wunsch alignment method, we successfully
mapped the domain locations from the Pfam sequence ver-
sion to the corresponding sequences in the AlphaFold2 version
for approximately two-thirds of these affected seeds. These in-
stances were subsequently removed from the database. In the
end, 6.3% of Pfam seeds were not present in the database,
either because AlphaFold2 had not predicted their structure 
(6.2% of instances) or due to version discrepancies in the 
source sequence between Pfam and AlphaFold2 DB (0.1% of 
instances). 

To develop the PfamSDB, we utilized two approaches. The 
first, which we will refer to as ‘PDB_cut’, involved dividing 
the Protein Data Bank (PDB) files corresponding to the Full- 
Length Pfam Seed Source (FLPSSs) at the domain borders. The 
second approach, henceforth known as ‘FS_cut’, entailed seg- 
menting the Foldseek database files of the FLPSSs at the do- 
main boundaries. 

For the process of truncating PDB files, the source codes of 
the PDB-tools package ( 21 ) were modified to do cutting and 

format conversion to PDB simultaneously. GNU parallel was 
extensively used for parallelizing the computations. PfamSDB 

contained over 1.1 million structures. 

Alignment and labeling the alignments 

The FLPSSs were aligned with the PfamSDB using Foldseek 

v8-ef4e960. The number of sequences passing the pre-filtering 
step was set to a high number by the ‘–max-seqs 1e9 ’ op- 
tion to get all possible alignments. A match with the same 
Pfam domain as the target seed instance was deemed a True 
Positive (TP), while a match with a different Pfam domain 

was considered a False Positive (FP). In our scoring system,
for a result to be reported as a TP, the seed region on the 
query must be covered by more than 25% in alignment with 

an instance of the same Pfam domain. Conversely, if an in- 
stance of a different Pfam domain covers more than 25% of 
the seed region on the query in the alignment, it is considered 

an FP. 

Annotating T. brucei structome and benchmarking 

against Pfam and Pfam-N 

The structome of T. brucei , taxonomy id: 185431, UniProt 
proteome ID: UP000008524, was downloaded from the Al- 
phaFold2 website and it was aligned with PfamSDB using the 
same parameters as the former step and highest-scoring, non- 
overlapping hits were selected. By default, Foldseek hits are 
sorted based on the bitscore, which will henceforth be referred 

to as ‘bits’. To select the hits with the highest ‘bits / alnlen’ 
(bitscore / alignment length), the hits of each query were sorted 

by bits / alnlen, and non-overlapping highest-scoring hits were 
selected. Our labeling approach was similar to the one em- 
ployed previously, with one key difference: in this phase, we 
used regions annotated with either Pfam or Pfam-N as our 
gold standard for comparison, instead of using the seed re- 
gions that served as the gold standard in the previous step. If 
the domain predicted by the gold standard was not retrieved,
it was labeled as False Negative (FN). We used Seaborn ( 22 ) 
and matplotlib ( 23 ) for visualization. 

Pfam domain annotation by MMseqs2 

To investigate the added value of structural similarity for do- 
main annotation, the same procedure as explained above was 
done by searching the sequences of T. brucei proteome against 
sequences of PfamSDB by MMseqs2 v14-7e284 ( 24 ), the same 
program used by Foldseek under the hood. The ‘ -s 8.5 ’ pa- 
rameter was specified to run it with high sensitivity as Fold- 
seek uses MMseqs2 in high sensitivity mode. 
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fam domain annotation by HMMER 

s mentioned earlier, Pfam annotation relies on the post-
rocessing of HMMER hits. Post-processing relies on some
urated data such as the score threshold for each Pfam do-
ain. As we did not have such data for Foldseek alignment

cores, we also evaluated Pfam domain annotation by simply
electing the best-ranking domains reported by HMMER. In
his regard the ‘ hmmscan ’ was used for aligning the T. brucei
roteome with the Pfam database without gathering threshold
ption. Hits with e-values up to 0.001 were considered for the
est of the analysis. 

esults and discussions 

famSDB contains high-confidence short structures

lphaFold2 reports the estimated confidence level for each
esidue as the predicted Local Distance Difference Test
pLDD T). The pLDD T value ranges between 0 and 100, and
igher values indicate more confident predictions. Early ob-
ervations have shown that there is a high overlap between
esidues with low pLDDT and regions known as Intrinsically
isordered Regions (IDRs) that do not fold into specific struc-

ures ( 8 ). According to the AlphaFold2 website, residues with
 pLDDT above 90 are expected to be highly accurate, while
egions with a pLDDT between 70 and 90 are considered to
ave good backbone prediction. If low pLDDT regions corre-
pond to IDRs, we do not expect accurate structural matches
or those regions. Furthermore, the significance level of struc-
ural alignment hits has been shown to depend on protein
ength. Monzon et al. have demonstrated that Foldseek has
ifficulty establishing relationships for some short proteins
those with fewer than 200 amino acids) when identifying the
eciprocal best hits ( 14 ). In contrast, sequence-based aligners
o not exhibit this problem. 
As mentioned, pLDDT is reported per residue, however, for

he purposes of this discussion, we will refer to the average
LDDT of a region as avg_pLDDT. Figure 1 A depicts the av-
rage of the avg_pLDDT values of instances of each Pfam do-
ain, while Figure 1 B illustrates the distribution of the av-

rage size of instances of each Pfam domain. Overall, the in-
tances exhibit a high avg_pLDDT, and the average length of
nstances across different Pfam domains typically falls below
00. To be more specific, the third quartile (75 

th percentile)
or the average size of instances for each Pfam is 209. 

Ps and FPs can be separated based on bits 

e aimed to assess the frequency with which instances of
ne Pfam domain align to instances of a different Pfam do-
ain, identified as FPs. We then sought to determine if Fold-

eek probability could distinguish these FPs from TPs. Using
fam seeds as our gold standard, we aligned the FLPSSs to
famSDB. 
Our data indicates that 75% of the hits were true posi-

ives (TPs) in both databases, regardless of whether they origi-
ated from alignment with PDB_cut or FS_cut databases. The
recision-recall curve of Foldseek probability showed that the
ecall (or sensitivity) changes less than 0.001 as we adjust the
robability thresholds, while the precision changes from 0.75
o 0.80 when we change the Foldseek probability cutoff from
ts minimum (0.024) to its maximum ( 1 ). F -measure, the har-
onic mean of Precision and Recall, provides a balanced as-

essment of a classification model’s performance. The Fold-
seek probability set at 1 yielded the highest F -measure, which
was 0.89 for PDB_cut and 0.88 for FS_cut, respectively. 

Foldseek probability is a mapping between the alignment
bits and the probability that the query and target belong to
the same SCOPe superfamily (Personal communication with
Milot Mirdita). We noticed that a Foldseek probability of 1
has been attributed to any alignment with a bits above 100. As
the highest F -measure for Foldseek probability’s performance
was achieved when Foldseek probability of 1 was considered,
there is a chance that selecting a higher bits as the threshold
would lead to a higher F -measure. We plotted the precision-
recall curve by considering different bits thresholds rather
than Foldseek probabilities, shown in Figure 2 . The highest F -
measure achieved was 0.94 for alignments using the PDB_cut
database and 0.93 for those utilizing the FS_cut database. No-
tably, both of these top scores were attained by setting the bits
cutoff threshold at 152. 

It is worth mentioning that here, we evaluated the precision
and recall for all hits and found the optimum bits threshold
based on FLPSS-against-PfamSDB alignment. There is also a
single mapping between bits and Foldseek probability. How-
ever, the Pfam database considers different bits thresholds
known as gathering thresholds for different Pfam domains,
and the thresholds are manually curated. Although manual
curation of the Foldseek bits threshold for each Pfam domain
could enhance annotation performance, pursuing such an ap-
proach is beyond the purview of our current work. 

To address the potential over-restrictiveness of a 152 bits
threshold for shorter domains, we evaluated the impact of
using a ratio of bits to alignment length on the F -measure.
As illustrated in Figure 2 , employing this ratio resulted in
a significantly higher F -measure. In all the FLPSS against
PfamSDB benchmark tests presented in this manuscript, the
performance for classifying TPs from FPs have been compa-
rable for alignments with either PDB_cut or FS_cut database.
Our analysis revealed that the optimal F -measure for align-
ments with the FS_cut database was obtained at a bits / alnlen
of 0.84, whereas for the PDB_cut database, the optimal ra-
tio was 0.88. Based on these findings, we adopted an average
threshold of 0.86, calculated from the optimal ratios for both
the PDB_cut and FS_cut databases, as the cutoff for catego-
rizing a hit as positive in subsequent analyses. 

As mentioned earlier, we also used MMseqs2, a sequence
alignment tool, to see the added value of structural alignment.
MMseqs2 does not report a probability score. Our bench-
mark showed that 98.9% of the labeled alignments were TPs.
The precision-recall curve showed the maximum F -measure
(0.994) is achieved when the minimum bits (36) is used. So,
we did not select any threshold on MMseqs2 hits. 

Short or low-confidence instances less likely to 

identify same Pfam domain matches 

For each instance, the maximum number of TPs is equal to
the number of instances in the same Pfam domain, a value
we denote as N . Therefore, the maximum number of TPs for
all instances of a particular Pfam domain amounts to N 

2 . We
then define the ‘proportion of retrieved instances’ as the ra-
tio of the ‘total number of times instances of each Pfam do-
main were labeled as TP’ to N 

2 . Figure 3 elucidates the re-
lationship between this proportion of retrieved instances and
two key parameters: the Average Length and the Average of
‘avg_pLDDT of instances’, per Pfam domain. These figures
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Figure 1. The kernel density estimation of the average of avg_pLDDT ( A ) and average of size of instances ( B ) of each Pfam domain. 

Figure 2. Precision–recall curves for different alignment criteria. The graph shows the performance of alignment with PDB_cut or FS_cut databases 
using either bits or bits / alnlen as the scoring condition. F -measure has been indicated for each. 

 

 

 

 

 

 

were produced using the FS_cut database, and it is noteworthy
that alignments with the PDB_cut database exhibited a similar
trend. According to Figure 3 , Pfam domains with longer aver-
age lengths and higher avg_pLDDT generally display a higher
propensity to retrieve all instances of the same Pfam domain
from the query. This observation is in line with the findings
of ( 14 ), where short proteins and proteins rich in residues 
with low pLDDTs exhibited a reduced likelihood of identi- 
fying their reciprocal best hits when examining the reciprocal 
best structural hits across two organisms’ proteomes. 

In certain Pfam domains, instances, despite having a sub- 
stantial length ( > 100) and a high avg_pLDDT ( > 80), failed to 
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Figure 3. ( A ) Relationship between the proportion of retrieved instances and the average length of instances for each Pfam domain. ( B ) Relationship 
between the proportion of retrieved instances and the average avg_pLDDT of instances for each Pfam domain. The Spearman correlation coefficient, 
depicted in the upper left corner of each subfigure, provides a measure of the strength and direction of the relationship between the axes of each plot. 
These plots were created from the output of alignment with the FS_cut database. 
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etrieve any matches within the same Pfam domain - not even
hemselves. These particular instances predominantly exhib-
ted low-complexity structures characterized by a profusion of
elices. Further analysis revealed that the 3Di transformations
f these structures also manifested this low complexity; most
ere sequences representing a single 3Di state. The 3Di struc-

ural alphabet, utilized by Foldseek, provides a representation
f tertiary interactions between residues in a protein’s spatial
onfiguration. This offers enhanced information density and
ewer false positives than traditional backbone structural al-
habets ( 13 ). During prefiltering, Foldseek identifies matches
ith 3Di sequences similar to the query protein using sequence

lignment. Notably, Foldseek’s logs indicate that it automati-
ally masks low-complexity regions during the 3Di state pre-
ltering. This likely explains the inability of low-complexity
egions to align with related matches. 

omain prediction: comparable in count to Pfam 

35 

e aligned the T. brucei proteins with the Pfam instances
atabase, selecting non-overlapping hits as domain annota-
ions. Figure 4 illustrates the number of domains annotated
sing various approaches according to which the number
f domains predicted by Foldseek with the FS_cut database,
electing the highest passing bits threshold, is comparable
o that of Pfam v35 and exceeds MMseqs2 predictions by
1%. In all cases, the number of domains predicted by using
S_cut database was higher than those predicted by using the
DB_cut database. Also, the use of bits as the ranking criteria
nded up with more domain annotations. 

Table 1 presents precision and recall at both Pfam and Clan
evels, using either Pfam or Pfam-N as the gold standard. The
fam database groups different Pfam domains with similar se-
uence signatures into the same Clan and Clan-level statistics
re also depicted in Table 1 . In all cases, the use of FS_cut
atabase instead of PDB_cut database improves both preci-
ion and recall. Use of bits / alnlen as the ranking criteria im-
proves the precision but will end up with a lower recall. In
all scenarios, Clan level precision exceeds 90%. This suggests
that even when a Pfam domain identical to the gold standard
may not be predicted based on structure, a quite similar Pfam
domain is often attributed to the same region. 

Table 1 shows that when using Foldseek for domain anno-
tation, recall is comparable to MMseqs2. Yet, previous studies
have shown that Foldseek substantially outperforms BLASTP,
a comparable sequence-based tool. For instance, Monzon
et al. employed both Foldseek and BLASTP to determine the
reciprocal best relationships among multiple model organisms
( 14 ). Notably, since Foldseek utilizes MMseqs2 in its high sen-
sitivity mode, it is crucial for a balanced comparison of se-
quence and structure-based alignment to also run MMseqs2
in this mode. Endeavoring to provide such a comparison, we
examined the reciprocal best relationships among the organ-
isms featured in Monzon et al.’s study. Our results indicate
that by using MMseqs2 in its high sensitivity setting (-s 8.5),
the reciprocal best relationships for an additional 200 proteins
can be identified, specifically when analyzing the proteomes
of Drosophila melanogaster and Homo Sapiens . Despite this,
the majority of statistics from the Monzon et al.’s study re-
mained consistent with our experiment. Furthermore, while
running MMseqs2 in high-sensitivity mode did yield more ‘re-
ciprocal best matches’, Foldseek still significantly outstripped
MMseqs2 in terms of established relationships. This implies
that the modest edge Foldseek has over MMseqs2 in domain
annotation might be influenced by the distinct biological ques-
tions under investigation. 

To assess the impact of choosing a threshold on either bits
or bits / alnlen on the domain annotation, we also evaluated
the precision and recall without imposing any threshold. As
detailed in Supplementary Table S1 , the observed increase in
precision when thresholds are applied is at least twice the mag-
nitude of the decrease in recall. These findings suggest that
employing the optimum thresholds, as calculated from FLPSS-
against-PfamSDB alignments, can enhance T. brucei domain
annotation. 

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae005#supplementary-data
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Figure 4. The number of domains annotated in different approaches. For the Foldseek method, both the database utilized and the ranking criteria are 
detailed. 

Table 1. Precision and recall of domain annotations by MMseqs2 and Foldseek, using either Pfam or Pfam-N as the gold standard 

Gold standard: Pfam Gold standard: Pfam-N 

Alignment 
method 

Ranking 
criteria 

Precision 
Pfam-level 

Recall 
Pfam-level 

Precision 
Clan-level 

Recall 
Clan-level 

Precision 
Pfam-level 

Recall 
Pfam-level 

Precision 
Clan-level 

Recall 
Clan-level 

Foldseek, 
FS_cut 

bits 0.879 0.697 0.987 0.783 0.776 0.49 0.955 0.603 

Foldseek, 
PDB_cut 

bits 0.857 0.655 0.982 0.75 0.752 0.455 0.953 0.576 

Foldseek, 
FS_cut 

bits / alnlen 0.907 0.679 0.989 0.741 0.823 0.458 0.977 0.543 

Foldseek, 
PDB_cut 

bits / alnlen 0.896 0.637 0.987 0.702 0.815 0.423 0.976 0.507 

MMseqs2 bits 0.953 0.68 0.992 0.708 0.897 0.407 0.988 0.448 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Domain length impacts the recall significantly 

Figure 5 illustrates the analysis of Pfam domains using Fold-
seek, MMseqs2 and HMMER. This figure particularly high-
lights the results from Foldseek alignment with FS_cut, plot-
ting alignments under two distinct ranking criteria: bits and
bits / alnlen. The observed trends align with those seen in the
PDB_cut database (data not shown). Comparing Figure 5 B
and 5 D directly, it becomes evident that for domains with
lengths in the range of 40–50 amino acids, the false positive
rate is reduced when ranking hits based on the bits / alnlen
criterion. 

In Figure 5 A and 5 C, domains located in areas with low
pLDDT scores show reduced detection by Foldseek, indicated
by a lower recall rate. Notably, MMseqs2 (Figure 5 C) also dis-
plays low recall but high precision for domains in low pLDDT
regions. This can be attributed to the fact that IDR regions ex-
hibit low sequence similarity (resulting in low recall), but se-
quences resembling an IDR are indeed IDRs (resulting in high
precision). 

Figure 5 B further demonstrates that the same observation
holds true for the ‘domain size,’ with small domains hav-
ing a notably low recall rate. A direct comparison between
Figure 5 B with Figure 5 F and also Figure 5 D with Figure
5 F reveals that Foldseek does not enhance recall when re-
trieving small-sized domains, relative to MMseqs2; in fact,
precision is even lower with Foldseek. This phenomenon
can be attributed to the tendency of short domains not to 

fold into unique structures. Consequently, their structural re- 
semblance to instances of different Pfam domains may in- 
crease the chance of alignment with a non-corresponding 
Pfam domain instance, thereby reducing precision. The same 
description can explain why the comparison of Foldseek 

and BLASTP for finding the reciprocal best hits between 

two organisms shows that many reciprocal best hits that 
are exclusively found by BLASTP, are < 200 amino acids 
long ( 14 ). 

Alignment bits depends on the length of the alignment and 

we expect that short domains would align with a lower bits 
even by HMMER, the program used by Pfam for domain 

annotations. However, since Pfam uses domain-specific bits 
thresholds, this can aid in annotating short domains. Indeed,
Figure 5 H shows that the HMMER top hit selection without 
considering the gathering threshold results in lower Precision 

for shorter domains. However, the reduction is less significant 
than Foldseek and MMseqs2. 

Supplementary Figure S1 supports these observations,
showing that similar patterns persist when Pfam-N is consid- 
ered the gold standard. Additionally, Supplementary Figure S1 

indicates that when Pfam-N is the gold standard, the pre- 
cision of predictions for domains located in regions with 

low avg_pLDDT is lower than that of domains in high 

avg_pLDDT regions. The same figure also shows that the 

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae005#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae005#supplementary-data
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Figure 5. Analysis of Pfam domains: Foldseek (using FS_cut database), MMseqs2 and HMMER annotations. ( A ) avg_pLDDT distribution for Foldseek 
domains (hits ranked by bits / alnlen). ( B ) Size distribution of Foldseek domains (hits ranked by bits / alnlen). ( C ) avg_pLDDT distribution for Foldseek 
domains (hits ranked by bits). ( D ) Size distribution of Foldseek domains (hits ranked by bits). ( E ) avg_pLDDT distribution for MMseqs2 domains. ( F ) Size 
distribution for MMseqs2 domains. ( G ) avg_pLDDT distribution for HMMER domains. ( H ) Size distribution for HMMER domains. Distributions are 
colored according to their relationship with the gold standard (true positive (TP), false positive (FP), false negative (FN)). Precision and recall are 
calculated using a rolling method for every 200 consecutive hits. 
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Figure 6. Analysis of Foldseek domains by Pfam. ( A ) The distribution of length of Foldseek domains (hits ranked by bits) categorized by their 
relationships to the Pfam annotations (true positives (TP), false positive (FP)). ( B ) The difference between the size of the false positive Foldseek domains 
(hits ranked by bits) and the Pfam domains predicted for the same region. ( C ) The distribution of length of Foldseek domains (hits ranked by bits / alnlen) 
categoriz ed b y their relationships to the Pf am annotations. ( D ) T he difference betw een the siz e of the f alse positiv e Foldseek domains (hits rank ed b y 
bits / alnlen) and the Pfam domains predicted for the same region. Foldseek domains longer than 100 amino acids have been used for parts B and D. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

HMMER top hit selection has low precision and recall for
retrieving short Pfam-N domains. 

The Spearman correlation coefficient between avg_pLDDT
and domain size for Pfam and Pfam-N domains is -0.07 and
0.07 respectively, showing that there is no meaningful rela-
tionship between them. 

While Figure 5 D shows that when hits are ranked by bits,
the precision and recall for annotating long domains is rel-
atively high compared to short domains, Figure 6 A shows
that long domains attributed by Foldseek have a slightly
lower precision than shorter ones. This discrepancy may arise
because long Foldseek domains, labeled as FP, often cor-
respond to regions where shorter Pfam domains are typi-
cally predicted, a relationship further illustrated by Figure 6 B.
Supplementary Figure S2 shows similar patterns by consider-
ing Pfam-N as the gold standard. For example, Pfam-N pre-
dicts PF01909, Nucleotidyltransferase domain, and PF03828,
Cid1 family poly A polymerase, for the N- and C-terminal
of Q38CM2, respectively. On the other hand, Foldseek pre-
dicts PF04928, Poly(A) polymerase central domain, for a re-
gion encompassing both regions. Moreover, Figure 6 C demon-
strates that using bits / alnlen as a ranking criterion can bal-
ance the precision across domains of varying lengths, a con-
cept further exemplified by comparison of Figure 6 D with
Figure 6 B. 
By increasing the e-value threshold, the majority of 
domains align with at least one related Pfam 

domain instance 

As the next step, we explored if by using less stringent e- 
value thresholds, more domains could be annotated. Figure 
7 illustrates how adopting less stringent e-value cutoffs in 

Foldseek leads to more domains aligning with at least one 
related seed. While this trend is also observed in MMseqs2 

hits, the rate of increase relative to the e-value threshold is 
less pronounced than in Foldseek. However, using less strin- 
gent e-values may result in random structures aligning with 

query proteins, thereby raising the likelihood of inaccurate 
matches. Consistently, our FLPSS against PfamSDB bench- 
marking revealed that relying on hits with higher e-values 
leads to low-precision domain annotations, as anticipated 

(data not shown). 
Our findings underscore a complex challenge in structure- 

based domain annotation. Specifically, while using more le- 
nient e-values often results in the query structure aligning with 

instances of the same Pfam domain, the aligned seed does not 
necessarily rank higher than those of other structurally similar 
domains. 

In another attempt to improve the ranking of the hits, af- 
ter aligning the FLPSSs with the domain database domain, we 
tried training an Artificial Neural Network (ANN) to predict 

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae005#supplementary-data
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Figure 7. Comparison of the proportion of domains aligning with at least one related Pfam domain instance, using either Pfam or Pfam-N as the gold 
standard. The first part in the legend indicates the alignment tool used for domain annotation, while the second part specifies the gold standard. 

Table 2. Comparison of various Foldseek alignment settings and their respective counts of predicted domains surpassing gold standard benchmarks 

Settings (databases, 
ranking criterion) 

New predictions 
above Pfam 

New predictions 
above Pfam-N 

New predictions 
above Pfam and 

Pfam-N Mean length 
# Hypothetical 

proteins 

FS_cut, bits 1251 600 470 232.6 230 
PDB_cut, bits 1108 514 408 254.3 197 
FS_cut, bits / alnlen 998 526 390 127.3 185 
PDB_cut, bits / alnlen 774 401 290 136.3 148 
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f the query and target have the same Pfam domain using align-
ent characteristics such as sequence identity, LDDT, and bits

s input features. However, rescoring using the probability of
rained ANN did not improve the precision significantly (data
ot shown). We speculate that re-ranking based on the conser-
ation of critical residues could potentially enhance precision
n future attempts. 

ew domains predicted above domains predicted 

y Pfam and Pfam-N 

n regions that lacked Pfam predictions, MMseqs2 pinpointed
36 domains. Similarly, it found 341 domains where Pfam-N
ad not identified any. Furthermore, in areas untouched by
oth Pfam and Pfam-N, MMseqs2 unveiled 156 new domains
ith an average length of 68. An examination of the MM-

eqs2 annotations reveals that the average sequence identity
or the domains it annotated is 72.5%. In 51 of these cases,
he query and target are 100% identical. This means that, in
ome instances, even when part of the query sequence has been
tilized as a Pfam seed, the corresponding domain remains
ndetectable in the query protein by both Pfam and Pfam-N.
or example, position 469–497 of the protein Q9N937 has
een used as a Pfam seed for the domain PF00560 (Leucine
Rich Repeat). However, Pfam has not annotated the same re-
gion probably because they had not satisfied the gathering
thresholds. 

Table 2 presents the number of domains identified by Fold-
seek under various settings, along with the average length of
these predicted domains. Additionally, the table includes the
count of hypothetical proteins in T riT rypDB ( 25 ) that were
annotated with a domain. The mean length of the predicted
domains is significantly larger than MMseqs2 predictions. Ta-
ble 2 shows that using FS_cut database and bits as the ranking
criteria, the highest number of domains are predicted. Anal-
ysis of Figures 4 , 5 , Tables 1 , 2 , indicates that while utilizing
‘bits / alnlen’ as the ranking criterion enhances performance in
short domain annotation, overall, setting a threshold based on
‘bits / alnlen’ results in a lower recall compared to the use of
‘bits’ as the ranking criterion. 

Significantly, PF13458 was attributed 35 times using align-
ments with FS_cut, where ‘bits’ served as the ranking criterion,
and 31 times with PDB_cut, which also employed ‘bits’ for
ranking purposes. According to the T riT rypDB website, this
particular Pfam domain is primarily associated with genes de-
scribed as ‘Adenylate cyclase’. Interestingly, in our workflow,
the majority genes that were annotated with PF13458 also in-
cluded ‘Adenylate cyclase’ in their description. 
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Case study: domains predicted for proteins 

involved in T. brucei mtRNA editing 

Trypanosomes possess a unique mitochondrial DNA structure
composed of multi-kilobase-size fragments. These fragments
are referred to as maxicircles, which are interconnected with
numerous smaller minicircles ( 26 ). Within the maxicircles, 12
of the encoded genes are classified as cryptogenes, signifying
that they cannot be directly translated after transcription. Dur-
ing the editing process, multiple uracil (U) bases must be either
added or deleted to render these genes ready for translation
( 26 ). This intricate editing process is guided by guide-RNAs
(gRNAs), which are primarily encoded by the minicircles. The
gRNAs operate by marking the editing sites on the substrate
RNA. They anneal to the substrate, creating bulges that sig-
nal the specific locations for catalytic enzymes to modify. For
a comprehensive review of the editing process please refer to
( 26 ). As a case study, we look deeper into the domains pre-
dicted for some of the proteins involved in mtRNA editing.
The predictions stem from alignments with either the FS_cut
or PDB_cut databases, both utilizing bits as the ranking
criterion. 

Predictions with all settings suggest that KREPA4 (UniProt
ID: Q38B91) may contain the PF00436 domain, known as
‘Single-strand binding domains (SSB).’ Pfam has also pre-
dicted PF00436 for KREPA6 (UniProt ID: Q38B90), with this
prediction being consistent with that of Pfam-N. KREPA4
and KREPA6 are adjacent in the genome, and they ap-
pear as the closest non-self structural hits to each other
when searched against the structure of all organism pro-
teins. This suggests the possibility that they might be par-
alogs. The expectation that paralogous proteins contain sim-
ilar domains supports this case. Analysis of the sequence
signature of PF00436 reveals that positions 8, 69 and
76 are conserved and contain the amino acid Glycine.
Correspondingly, these positions in KREPA4 also contain
Glycine. The consistency in this specific amino acid place-
ment between KREPA4 and the conserved signature of
PF00436 provides evidence to support the prediction of this
domain. 

Both KREX1 (UniProt ID: Q57WU3) and KREX2 (UniProt
ID: Q38BP2) are predicted to contain PF03159, which cor-
responds to the XRN 5 

′ -3 

′ exonuclease N-terminus domain.
This prediction is consistent with that made by Pfam-N for
these proteins. An early study had hypothesized a similar func-
tion for these proteins (referred to as MP100 and MP99 in
the publication), and this hypothesis was based on the conser-
vation of certain amino acids. However, the confidence in at-
tributing this domain to KREX1 and KREX2 had been limited
at the time due to the low overall homology with the known
XRN domains ( 27 ). 

We predicted the presence of PF02940, identified as the
‘mRNA capping enzyme, beta chain,’ in RESC1 (UniProt ID:
Q57XL7) and RESC2 (UniProt ID: Q586X1). The beta chain
of the mRNA capping enzyme is known for its triphosphatase
activity. A recent study by Dolce et al. elucidated the struc-
ture of the RESC1-2 complex using cryo-electron microscopy
( 28 ). The researchers reported a structural similarity between
RESC1-2 and RNA capping enzymes, which typically have
cationic cofactors and are involved in reactions that release
phosphate. The study further examined the charged residues
within the tunnels of the RNA capping enzyme, noting that
one-half of the pattern interacts with the cationic cofactors,
and the other half with the released phosphate. However, this
pattern was not observed in RESC1-2, leading to the assess-
ment that RESC1 and RESC2 are unlikely to be active en- 
zymes ( 28 ). 

For RESC5 (UniProt ID: Q389F5), the prediction includes 
PF19420, identified as ‘ N ,N -dimethylarginine dimethylhydro- 
lase (DDAH) within eukaryotes’, a domain related to arginine 
metabolism. This prediction was bolstered by a recent study 
that succeeded in crystallizing the structure of RESC5, reveal- 
ing its structural similarity to the DDAH fold ( 29 ). However,
this same study also uncovered key differences. Most notably,
RESC5 was found to lack residue conservation in critical posi- 
tions that are otherwise characteristic of the DDAH fold. Fur- 
ther investigation into RESC5’s interaction with the DDAH 

substrate and product provided additional insights. The re- 
searchers conducted a Thermal shift assay, a technique used to 

assess protein-ligand interactions. The addition of the DDAH 

substrate and product to RESC5 had no discernible effect on 

the assay’s results. This lack of effect serves as an indicator that 
there is no interaction between RESC5 and the DDAH sub- 
strate or product ( 29 ). The findings from this detailed analysis 
demonstrate that despite superficial similarities, RESC5 likely 
does not function in the same manner as DDAH. 

Conclusion and future work 

In this study, we developed a database of domain struc- 
tures by segmenting the structures predicted by AlphaFold2 

at their domain boundaries. To annotate domains, we struc- 
turally aligned query proteins with this domain database using 
Foldseek. Subsequently, we selected the highest-scoring, non- 
overlapping hits. We either used the default ranking of Fold- 
seek that is based on bits, or reranked the hits of each query 
based on the bits / alnlen. We then benchmarked these predic- 
tions against Pfam v35.0 and Pfam-N predictions. 

Our data indicates that for short domains (those < 100 

amino acids in length), structure-based domain annotation 

is imprecise. Although ranking hits based on ‘bits / alnlen’ 
marginally enhanced precision for short domains, it generally 
resulted in a lower recall rate compared to the default ‘bits’- 
based ranking. The lack of precision for short domains can 

be attributed to the fact that short sequences often lack dis- 
tinctive folds. Consequently, there is a heightened likelihood 

of random structural similarities between different domains,
resulting in reduced precision. Given that a significant fraction 

of domains are short, our results suggest that while structure- 
based Pfam annotation cannot supplant sequence-based do- 
main annotation, it can complement it, particularly when an- 
notating longer domains. We are keen to explore the synergy 
between sequence-based and structure-based domain annota- 
tions in future studies. 

From an organism-specific standpoint, our study offers in- 
sights into the potential functions of genes in T. brucei . These 
insights are ripe for experimental validation. One standout 
prediction is the anticipated 5 

′ -3 

′ exonuclease activity for 
KREX1 and KREX2; we are eager to corroborate this find- 
ing through wet lab experiments. 

Data availability 

The scripts for creating the PfamSDB are avail- 
able at https:// github.com/ Pooryamb/ MakingPfamSDB .
Scripts for benchmarking can be found at 
https:// github.com/ Pooryamb/ BenchmarkingFS/ . The 
PfamSDB and the FS_cut database can be accessed at 
https:// zenodo.org/ records/ 10246381 . 

https://github.com/Pooryamb/MakingPfamSDB
https://github.com/Pooryamb/BenchmarkingFS/
https://zenodo.org/records/10246381
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