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Abstract

Motivation: Selecting a subset of k-mers in a string in a local manner is a common task in bioinformatics tools for
speeding up computation. Arguably the most well-known and common method is the minimizer technique, which
selects the ‘lowest-ordered’ k-mer in a sliding window. Recently, it has been shown that minimizers may be a sub-
optimal method for selecting subsets of k-mers when mutations are present. There is, however, a lack of under-
standing behind the theory of why certain methods perform well.

Results: We first theoretically investigate the conservation metric for k-mer selection methods. We derive an exact
expression for calculating the conservation of a k-mer selection method. This turns out to be tractable enough for us
to prove closed-form expressions for a variety of methods, including (open and closed) syncmers, (a, b, n)-words,
and an upper bound for minimizers. As a demonstration of our results, we modified the minimap2 read aligner to
use a more conserved k-mer selection method and demonstrate that there is up to an 8.2% relative increase in num-
ber of mapped reads. However, we found that the k-mers selected by more conserved methods are also more repeti-
tive, leading to a runtime increase during alignment. We give new insight into how one might use new k-mer selec-
tion methods as a reparameterization to optimize for speed and alignment quality.

Availability and implementation: Simulations and supplementary methods are available at https://github.com/blue
note-1577/local-kmer-selection-results. os-minimap2 is a modified version of minimap2 and available at https://
github.com/bluenote-1577/os-minimap2.

Contact: jshaw@math.toronto.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

In recent decades, there has been an exponential increase in the
amount and throughput of available sequencing data (Goodwin
et al., 2016), necessitating more efficient modern methods for proc-
essing sequencing data (Berger et al., 2016). Many methods employ
k-mer- (length-k substrings of a sequence) based analysis, because k-
mer methods tend to be fast and memory efficient. k-mer methods
appear in metagenomics (Wood and Salzberg, 2014), genome as-
sembly (Nagarajan and Pop, 2013), read alignment (Li, 2018), vari-
ant detection (Peterlongo et al., 2017; Shajii et al., 2016) and many
more.

Because k-mers overlap, selecting a subset of k-mers in a se-
quence can for many applications lead to a dramatic increase in effi-
ciency while only losing a small amount of information. In this
article, we will focus on local k-mer selection methods, which means
that the criteria for selecting a specific k-mer should depend on the
local information near the k-mer.

A popular class of local selection methods use minimizers
(Roberts et al., 2004; Schleimer et al., 2003), and a lot of recent lit-
erature focuses on both practically optimizing minimizer efficiency
and theoretical intrinsic properties of minimizers (Marçais et al.,
2018; Zheng et al., 2021, 2020a,b). Recently, new non-minimizer
local selection methods for k-mer selection have been proposed,
including syncmers (Edgar, 2021) and minimally overlapping words
(Frith et al., 2020).

Improvements for minimizer techniques have historically focused on
optimizing for density, the fraction of selected k-mers. However, it often
makes more sense for density to be an application dependent tunable
parameter. Thus, Edgar (2021) instead propose the new metric of con-
servation, which measures the fraction of bases in a sequence which can
be ‘recovered’ by k-mer matching after the sequence undergoes a ran-
dom mutation process; a similar metric is also used in Frith et al. (2020)
and Sahlin (2021a). While newer techniques have demonstrated effect-
iveness through empirical studies, it is not clear why certain methods
perform well beyond heuristic notions.
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Contributions. We make both theoretical and practical contribu-
tions in this manuscript. The first part of our article is theoretical. In
Sections 2, 3 and 4, we develop a novel, more general, mathematical

framework for analyzing local k-mer selection methods. We show
how our framework rigorously discerns the relationship between the

notion of ‘clumping’ of k-mers alluded to in Frith et al. (2020) and
conservation (Theorem 3). We then mathematically analyze existing
local k-mer selection methods, resulting in new closed-form expres-

sions of conservation for various k-mer selection methods and a
novel result on optimal parameter choice for open syncmers

(Theorem 8). A summary of the concepts discussed in the theoretical
portion of our article can be found in Table 1.

The second part of our contributions is practical. In Section 5,
we empirically calculate conservation for a wide range of methods
for which we have no closed-form expression. We then modified the

existing software minimap2 (Li, 2018) to use open syncmers, which
show better conservation than the default minimap2 choice of mini-
mizers. Our results show (i) conservation and alignment sensitivity

are correlated and (ii) alignment sensitivity is increased after modify-
ing minimap2. However, we also show that the k-mers selected by

more conserved methods are also more repetitive, as predicted in
Section 3.4, leading to higher runtime. We investigate how different
parameterizations lead to runtime and alignment quality trade-offs

for ONT cDNA mapping.

2 Preliminaries

We formally define local k-mer selection in this section. We give an

original general formalism that extends the existing formalisms in
Marçais et al. (2018). We also review existing local k-mer selection
methods.

2.1 k-mer selection methods
Let R be our alphabet. We will be implicitly dealing with nucleotides

(R ¼ fA;C;G;Tg) for the rest of the article, although our results
generalize without issues. For a string S 2 R�, we use the notation
S½i;k� to mean the substring of length k starting at index i. We will

assume our strings are 1-indexed.

Definition 1.A k-mer selection method is a function f from the set of

finite strings R� such that for S 2 R�, f(S) contains tuples (x, i) where

x 2 Rk is a k-mer in S, and i is the starting position where x occurs.

We will sometimes refer to a k-mer selection method as a selection

method or just a method when the value of k is implied. We now define

a local k-mer selection method.

Definition 2.A method f is a q-local method if

f ðSÞ ¼ [
jSj�ðkþq�1Þþ1

i¼1
f ðS½i; kþ q� 1�Þ

for every S 2 R� of length � kþ q� 1 after an appropriate shift in the

position of the k-mers.

In other words, a q-local method is just defined on ðkþ q� 1Þ-mers and

then extended to arbitrary strings. The special case of q¼ 1 implies that

the method can be defined by examining all k-mers and deciding if each

k-mer is selected or not. We will always assume that jSj � qþ k� 1, and

will focus only on local methods in this article. The main reason for

doing so is that q-local methods have the following desirable property

that is an easy result of the definition.

Theorem 1. Let f be a q-local method. If two strings S; S0 share a region

of length kþ q� 1, i.e. S½i; kþ q� 1� ¼ S0½j; kþ q� 1�, then every k-

mer in f ðS½i; kþ q� 1�Þ ¼ f ðS0½j; kþ q� 1�Þ is also in f ðS0Þ and f(S) (if

ignoring the index of the starting position).

Proof. Follows easily from the definition of q-locality. h

To see not all k-mer selection methods are local, it is not hard to see
that the MinHash (Broder, 1998; Ondov et al., 2016) sketch, which
is computed by selecting a fixed number of k-mers hashing to the
smallest values over the entire genome, is not local. Another method
that is not local is selecting every nth k-mer occurring in a string be-
cause it depends on the global property of starting position. In the
next section, we will give examples of local methods.

Our notion of a local k-mer selection method is more general
than the notion of local schemes defined in Marçais et al. (2018).
Local schemes are defined to be functions of the forM

f : Rwþk�1 ! ½0 : w� 1�

where ½0 : w� 1� ¼ f0; . . . ;w� 1g. Local schemes essentially select
exactly one k-mer from a wþ k� 1-mer by specifying the starting
location for a specific k-mer. While local schemes give rise to w-
local k-mer selection methods, not all local k-mer selection methods

Table 1. Simplified definitions of concepts discussed in Sections 2 and 3

Term Simplified definition

q-local k-mer selection method Function which selects k-mers from a string based on windows of q consecutive k-mers

r-window guarantee A k-mer selection method has this property if for every r consecutive k-mers, one is always

selected

Minimizer w-local k-mer selection method that selects the smallest k-mer (subject to some ordering) in

windows of w consecutive k-mers

Word-based methods 1-local k-mer selection methods that select a k-mer if its prefix is in a specified set W

Open syncmer 1-local k-mer selection method that selects a k-mer if the smallest s-mer inside the k-mer is

at the tth position (1-indexed)

Closed syncmer/charged context 1-local k-mer selection method that selects a k-mer if the smallest s-mer inside the k-mer is

at the first or last position

Conservation Percentage of bases in a long string S and a mutated version S0 that are covered by matching

k-mers from S and S0

Spread A k-mer selection method has this property if with high likelihood, the k-mers chosen are

not too close together

Prðf Þ Probability vector of f, a vector of length k which is a precise measure of spread for a k-mer

selection method

Prðaðh; kÞÞ Vector of length k which measures the probability of runs of length � k in a sequence of

2k� 1 Bernoulli trials

UB(d) Vector which is an upper bound on Prðf Þ computed using a union bound
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are local schemes because local selection methods may select 0 or
more than 1 k-mer in a window. Local schemes are defined in such a
way to satisfy a property called the window guarantee.

Definition 3.A local k-mer selection method has the r-window guarantee

property for r if f ðsÞ 6¼1 for all s 2 Rkþr�1.

The window guarantee says that for every r consecutive k-mers, the local

method will select at least one k-mer, guaranteeing that there will be no

large gaps on the string for which no k-mer is selected. While the win-

dow guarantee is useful for many applications (Marçais et al., 2019), in

some applications such as alignment it is not necessary. A closely related

notion to the window guarantee are universal hitting sets (UHS) (Ekim

et al., 2020; Orenstein et al., 2017), which give rise to local methods

with a window guarantee. To the best of our knowledge, current UHS

implementations work within a relatively limited range of parameters.

For example, PASHA (Ekim et al., 2020) is not practical for k> 16, and

in the paper for removal (DeBlasio et al., 2019), only a window guaran-

tee of length 6 is tested. Therefore, we will not explore UHS in this art-

icle, however, research in UHS is active and we expect these limitations

to be improved upon in the future.
Another important property of a selection method is the density.

Definition 4.The density of a k-mer selection method f is the expected

number of selected k-mers divided by the number of total k-mers in a

uniformly random string with i.i.d characters S as jSj ! 1.

Given a long uniform random string S, by taking indicator random vari-

ables Yi for the event that the k-mer starting at i is in f(S), one can easily

see density is equal to PrðYi ¼ 1Þ as long as i is not near the edges (the

start/end) of S. The issue near the edges is that in Definition 2, a k-mer

near the start of S appears in less of the S½i; kþ q� 1� ‘windows’ than a

k-mer in the middle of the string. This is known as the edge bias problem

in minimizers (Edgar, 2021).

2.2 Overview of specific selection methods
2.2.1 Minimizers

The most well-known class of local k-mer selection methods are
minimizer methods, originally appearing in Roberts et al. (2004);
Schleimer et al. (2003).

Definition 5.Given a triple ðw; k;OÞ where w, k are integers and O is an

ordering on the set of all k-mers, a minimizer outputs the smallest k-mer

appearing in a ðwþ k� 1Þ-mer, or equivalently a window of w consecu-

tive k-mers.

From now on, when we specify the smallest value in a window, ties are

broken by letting the leftmost k-mer be the smallest. A minimizer gives

rise to a w-local method with a w-window guarantee by examining all

windows of w k-mers and selecting k-mers inside this window. k and w

are application-dependent parameters that control for density and k-mer

size, so there is one free parameter which is the ordering O.

Somewhat surprisingly, the ordering, which can be string-dependent,

plays a very important part of minimizer performance. We define a ran-

dom minimizer to be a minimizer with the ordering defined by a random

permutation. Schleimer et al. (2003) show that the density of random

minimizers is approximately 2
wþ1. This proof is quite elegant and insight-

ful, so we will reproduce the proof. First, we need the definition of a

charged context.
Definition 6(Charged contexts). Given parameters ðw; k;OÞ, a win-

dow of consecutive wþ 1 k-mers (i.e. a ðwþ kÞ-mer) is a charged con-

text if the smallest k-mer is the first or last k-mer in the window.

A very similar definition of charging appears in Schleimer et al. (2003),

although they do not actually define the charged context.

Theorem 2 (From Schleimer et al., 2003). Assuming that no window of

wþ 1 k-mers contains duplicate k-mers, the density of a random minim-

izer is 2
wþ1.

Proof. The key in the proof is to note that counting the number of

selected k-mers is the same as counting the number of times a new k-mer

is selected as we check each ðwþ k� 1Þ-mer in a long random string S.
Mathematically, let Xi be the (random) position of the k-mer selected

at the window of w k-mers starting at i. By the above paragraph, the

expected number of k-mers is then just 1þ
PjSj�w�k

i¼1

PrðXi 6¼ Xiþ1Þ, where

the 1 is because the first window always selects a ‘new’ k-mer. Letting

jSj ! 1 and dividing by jSj, the density is then just PrðXi 6¼ Xiþ1Þ.
The next key step is to notice that Xi 6¼ Xiþ1 if and only if the smallest

k-mer in the window of wþ 1 consecutive k-mers starting at i is first or

last k-mer, or equivalently, if this window is a charged context. If the

smallest k-mer is the first k-mer, then Xi ¼ i, but Xiþ1 � iþ 1, and if the

smallest k-mer is the last, then Xiþ1 ¼ iþw but Xi � iþw� 1. If the

smallest k-mer is at position i < j < iþw, then Xi ¼ Xiþ1 ¼ j necessar-

ily. Assuming no duplicate k-mers in a window of length wþ 1, the

probability that the smallest k-mer is the first or last is simply 2
wþ1, com-

pleting the proof. h

Of course, the assumption in the above theorem is not valid.
Marçais et al. (2018) give a true bound on the density for a random
minimizer as 2

wþ1þ oð1=wÞ under some reasonable assumptions for
w and k. However, with a specific ordering, one can achieve prov-
ably better densities for the same parameters. For example, the mini-
ception (Zheng et al., 2020a) algorithm finds an ordering which
gives a density upper bounded by 1:67

w þ oð1=wÞ.

2.2.2 Syncmers

Syncmers were first defined in Edgar (2021) to be a class of 1-local
k-mer selection methods. These methods break k-mers into a win-
dow of k� sþ 1 consecutive s-mers, for some parameter s<k, and
select the k-mer based on some criteria involving the smallest s-
mers in the window. From now on, we will assume the ordering on
the s-mers is random.

We have already seen such a construction; Edgar (2021) showed
that charged contexts (Definition 6) are also called closed syncmers
in the terminology of Edgar (2021), where k¼ s and w ¼ k� s.
Closed syncmers can be shown to have a k—s window guarantee, so
this is our first (and only) example of a method that is 1-local and
has a window guarantee. We also analyze the open syncmer defined

Fig. 1. Visual example of the minimizer and open syncmer selection methods with

k¼5, w¼ 4 and s¼3 over some arbitrary ordering on s-mers and k-mers.

Minimizers are w-local methods, so they operate over all kþw� 1-mers and select

k-mers from kþw� 1-mers whereas open syncmers are 1-local methods, so they

select k-mers from a single k-mer, i.e. decide whether or not a k-mer is selected. The

k-mer TCGTG is selected by the minimizer because it is the smallest k-mer in the

window. The k-mer ATCGT is selected by the open syncmer method if and only if

t¼3, since the smallest s-mer is at the third position
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in Edgar (2021) as it was suggested to perform well with respect to
conservation.

Definition 7(Open syncmer). Let (k, s, t) be parameters with s< k and

1 � t � k� sþ 1. Considering a k-mer as a window of k� sþ 1 con-

secutive s-mers, a k-mer is selected if the smallest s-mer appears at pos-

ition t in the window.

Importantly, open syncmers may not have a window guarantee.

Consider the string AAAAA. . . with t¼ 2 for any k, s. Remembering the

leftmost s-mer is the smallest by convention, the smallest s-mer always

occurs at the first position so no k-mers are selected. For t ¼ 1, (Edgar,

2021) showed that a window guarantee exists, but may be very large.
The density of open syncmers and closed syncmers are, respectively,

1
k�sþ1 and 2

k�sþ1 up to a small o ðk�sþ1Þ2
jRjs

� �
error term, following the exact

same argument as Edgar (2021) and Section 2.3.1 of Zheng et al.

(2020a) for the error term.

2.2.3 Word-based methods

Another class of 1-local selection methods considers a set of words
W � R� and selects a k-mer if a prefix of the k-mer lies in W. Frith
et al. (2020) consider possible Ws and find ‘good’ possible choices
for W. The intuition is that they want the words in W to not overlap
with each other; this way selected k-mers overlap less.

They offer a simple form for W by letting W ¼ fx 2 Rnþ1 : x ¼
abbb . . .g where a ¼ A and b can be any of fC, T, Gg for the nucleo-
tide alphabet. We will refer to this as the (a, b, n)-words method.
The density of this method is 1

4 � 3
4

n
. More sophisticated choices for

W can be constructed, but we will not analyze such methods theor-
etically since these W are found by an optimization algorithm and
thus hard to analyze. We will instead test against more sophisticated
W empirically.

3 Analytical framework

While we have discussed intrinsic features of selection methods such
as locality, density and window guarantee, we have not yet dis-
cussed the ‘performance’ of selection methods. It turns out that eval-
uating the performance of a method is subtle and depends on the
task at hand. In certain contexts, methods cannot be compared
because some tasks such as constructing de Bruijn graphs from mini-
mizers (Rautiainen and Marschall, 2020) or counting and binning k-
mers (Marçais et al., 2019) require a window guarantee while other
tasks such as alignment do not; it is shown in (Edgar, 2021) that
when mutations are present between two genomes, the window
guarantee does not necessarily ensure better k-mer matching (see
Table 6 of Edgar, 2021).

To compare methods, we will fix the density across methods and
evaluate a precise notion of performance which we will define
below. In previous studies on minimizers (Marçais et al., 2017;
2018; Zheng et al., 2020a), the focus was only on optimizing the
density for a fixed window size w, the assumption being that a meth-
od’s performance is only reliant on the size of the window guaran-
tee. This is not an unreasonable assumption for certain tasks, but it
is not applicable to methods without a window guarantee.

When selecting a subset of k-mers, a good method should select
k-mers that are spread apart on S—k-mers should not overlap or
clump together (Frith et al., 2020). Intuitively, close together k-mers
give similar information due to more base overlaps. To formalize
this, in Section 3.1, we give a new, precise notion of spread. In
Section 3.3, we prove an original result detailing how this formalism
relates to conservation.

3.1 Formalizing k-mer spread
Let S ¼ x1x2 . . . be a long random string of fixed length with inde-
pendent and uniformly random characters over R. We now define a
key quantity associated to f which we will call the probability vector
of f.

Definition 8(Probability vector of f). Let i be a position in S which is

away from the edges. Define the event Ej ¼ fðS½j; k�; jÞ 2 f ðSÞg represent-

ing whether or not a k-mer at position j is selected by f, and

Prðf ; aÞ ¼ Prð [
iþa�1

j¼i
EjÞ

the probability that some k-mer is selected from S½i; kþ a� 1�. We call

Prðf Þ ¼ ½Prðf ; 1Þ; Prðf ; 2Þ; . . . ; Prðf ; kÞ� the probability vector of f.

This notion is well-defined because our string consists of i.i.d letters, and

f is translation invariant along the string due to locality. As long as i is

not near the end or beginning of S, the choice of i does not matter. Note

Prðf ; 1Þ ¼ PrðEiÞ ¼ PrðEjÞ for any j is the probability that a random k-

mer is selected by f, which is the density of f.
Prðf ; aÞ is a measure of how positionally spread out the events

Ei; . . . ;Eiþa�1 are, where Prðf ; aÞ is maximized when all events are dis-

joint. The interpretation follows because if all events are disjoint, then

when a k-mer is selected at position i, no k-mer is selected at positions

iþ 1; . . . iþ a� 1 so the selected k-mers are spread out along the string.

On the other hand, if all events only occur simultaneously, then Prðf ; aÞ
is small and the selected k-mers are clumped together.

We can get a natural upper bound for Prðf Þ because Prðf ; aÞ ¼
Prð[iþa�1

j¼1 EjÞ so the union bound giveS

Prðf Þ � ½minð1; dÞ;minð1;2dÞ; . . .� ¼ UBðdÞ

where � means over all components, remembering that PrðEjÞ ¼ d is

the density. The asymptotically optimal minimizer constructed in

Marçais et al. (2018) with density 1=w actually achieves this upper

bound since Prðf ; 1Þ ¼ 1=w and Prðf ;wÞ ¼ 1.

On a technical note, one can actually see that for 1-local methods,

Prðf ; aÞ is equivalent to Prðf ðS½i; kþ a� 1�Þ 6¼1Þ. The issue is that for

w-local methods, f ðS½i;kþ a� 1�Þ is not defined if a < w. For example,

one cannot deduce if a k-mer is selected by a minimizer method just

based on the k-mer itself; a window of k-mers is needed.

3.2 Mutated k-mer model
Let S0 ¼ x01x02 . . . be a mutated version of S such that Prðx0i ¼ xiÞ ¼
1� h and Prðx0i 6¼ xiÞ ¼ h, where the mutated character is uniform
over the rest of the alphabet and h 2 ½0; 1� is some mutation param-

eter. A similar model for k-mer mutations is used in Blanca et al.
(2021). We give a mathematical definition of the conservation met-
ric from Edgar (2021).

Definition 9 (Conservation). Given a k-mer selection method f and par-

ameter h, let the set of conserved bases be

Bðf ; h; kÞ ¼ fi : ðx; jÞ 2 f ðSÞ \ f ðS0Þ for some
j 2 fi� kþ 1; i� kþ 2; . . . ; igg

Define the conservation to be Consðf ; h; kÞ ¼ E
jBðf ;h;kÞj
jSj

h i
:

The set Bðf ; h; kÞ is the set of bases for which (i) a k-mer is selected by f

overlapping the base and (ii) this k-mer is unmutated from S to S0. In our

definition, the position of matching/conserved k-mers has to be the same

in S and S0, so we disregard spurious matches across the genome.

3.3 Relating conservation and spread
We now show that Consðf ; h;kÞ and Prðf Þ, which captures k-mer
spread, are related. To calculate Consðf ; h; kÞ, we let Xi be indicator
random variables where Xi ¼ 1 if i 2 Bðf ; h; kÞ. By linearity of
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expectation Consðf ; h; kÞ ¼
PjSj
i¼1

EXi=jSj: The Xi are not independent;

if i 2 Bðf ; h; kÞ, then it is likely that iþ 1 2 Bðf ; h; kÞ as well. If i 6¼ j
and both lie away from the ends of S, we get that

PrðXi ¼ 1Þ ¼ PrðXj ¼ 1Þ. If k	 jSj, the contribution from positions

near at the edges of the string is small. Therefore, we will make the

assumption Consðf ; h; kÞ ¼ EXi ¼ PrðXi ¼ 1Þ for some i in S away
from the edges.

3.3.1 Understanding mutation configurations

Given the base i, the k-mers covering i on S0 are S0½i� kþ
1; k�; . . . ; S0½i; k� so the substring of all covered bases is

S0½i� kþ 1;2k� 1�. We examine how mutations change the k-mers
for these bases. We can consider these 2k� 1 bases on S0 as 2k� 1
Bernoulli trials with success probability 1� h corresponding to an

unchanged base. We call possible sequences of Bernoulli trials con-
figurations of the mutations. A similar notion of configurations is
used in Chaisson and Tesler (2012).

Given some configuration, we will get aðh;kÞ unmutated k-mers
overlapping i, an unmutated k-mer being one for which all bases are

unmutated. These unmutated k-mers are candidates for being in
f ðSÞ \ f ðS0Þ. In Figure 2, we show graphically how different configu-

rations lead to a different value of aðh;kÞ.
From Figure 2, clearly aðh;kÞ is a random variable corresponding

to the number of successful runs of length exactly k in 2k� 1 trials,
or equivalently aðh;kÞ ¼ maxf0;Lðh; kÞ � kþ 1g where Lðh;kÞ is
the longest run in a sequence of 2k� 1 Bernoulli trials with failure

probability h. This problem is well-studied; see Chapter 5.3 in
Uspensky (1965) for a closed-form solution of general run length

probabilities.

3.3.2 Calculating EXi by conditioning

Conditioning on a, we get

EXi ¼
Xk

a¼1

Prði 2 Bðf ; h; kÞjaðh;kÞ ¼ aÞPrðaðh;kÞ ¼ aÞ:

Prði 2 Bðf ; h;kÞjaðh; kÞ ¼ aÞ is the probability that some k-mer is

selected from the a consecutive unmutated k-mers in S and S0. In the
language of Definition 8, letting E0l be the same event as El but over

S0,

Prði 2 Bðf ; h; kÞjaðh;kÞ ¼ aÞ ¼ Prð [
a�1

j¼0
ðEjþx \ E0jþxÞÞ (1)

where x is arbitrary and can be thought of as the starting position of

the first unmutated k-mer (the probability does not depend on x).
Locality comes into play now; if f is a 1-local method, then the event
Ejþx is true if and only if E0jþx is true. This follows because S0½jþ
x; k� ¼ S½jþ x; k� by the assumption, and by 1-locality, this k-mer is
in f ðSÞ \ f ðS0Þ after reindexing if and only if this k-mer is selected by
f. Hence Ejþx \ E0jþx ¼ Ejþx for 1-local methods. Now we see that

the right-hand side of Equation 1 is exactly Prðf ; aÞ from Definition
8, giving us Theorem 3.

Theorem 3. Let Prðaðh; kÞÞ ¼ ½Prðaðh; kÞ ¼ 1Þ; Prðaðh; kÞ ¼ 2Þ; . . . Pr

ðaðh; kÞ ¼ kÞ� and f be a 1-local method. Then

Consðf ; h; kÞ ¼ EXi ¼ Prðf Þ � Prðaðh;kÞÞ: (2)

If f is not 1-local, then

Consðf ; h;kÞ ¼ EXi � Prðf Þ � Prðaðh; kÞÞ

follows from the trivial upper bound PrðEjþxÞ � PrðEjþx \ E0jþxÞ:

If f is not 1-local, then Ejþx \ E0jþx 6¼ Ejþx. For minimizers, this is the

context dependency problem; if a k-mer is selected in S and the same k-

mer is also in S0, it may not be selected due to mutations in the window.

Thus, 1-local methods are inherently superior for tasks that require k-

mer matching for mutated strings (e.g. alignment), and the importance

of this property has been recognized in other contexts as well (Ekim

et al., 2021).

3.3.3 Calculating Prðaðh; kÞÞ
Even though the successful runs problem is solved for general
parameters, the probability formula is derived by manipulating gen-
erating functions and is a bit unruly. For 2k� 1 trials and � k runs,
we provide a more straight-forward derivation in Supplementary
Section S1, where we also show plots for Prðaðh;kÞÞ over varying
parameters.

Theorem 4. For 2k� 1 i.i.d Bernoulli trials with success probability

1� h and 0 � b < k� 1,

Prðaðh; kÞ ¼ bþ 1Þ ¼ PrðLongest run of successes is kþ bÞ

¼
�

2 þ hðk � b � 2Þð1� hÞkþbh

�
:

For the case b ¼ k� 1, the probability of 2k� 1 successes is just

ð1� hÞ2k�1.

3.4 Repetitive k-mers and locality
Given that 1-local methods are superior for conservation, which is a
measure of sensitivity, it is natural to ask if such methods have an in-
herent precision trade-off. In the context of alignment, k-mer match-
ing precision is related to spurious k-mer matchings caused by
repeat k-mers, as such matches would force an aligner to evaluate
several candidate alignments. In general, unique k-mer matches are
easier to handle computationally than repeat k-mer matches. It may
therefore be more advantageous for a local selection method to se-
lect non-repetitive k-mers. We show that indeed, locality is related
to repetitive k-mer selection.

Theorem 5. Let f1 be a 1-local method and fn be an n�local method

with n> 1 such that the densities of both methods are equal. That is, for

a long uniformly random string S, jfnðSÞj 
 jf1ðSÞj. Then

E½#unique k-mers in fnðSÞ� > E½#unique k-mers in f1ðSÞ�:

Proof. Given any local method f, by linearity of expectation, we have

E½#unique k-mers in f ðSÞ� ¼
X

x2f ðSÞ
Prðx is unique in f ðSÞÞ:

Writing x 2 U½f ðSÞ� to mean x is unique in f(S) and doing the same for

U½S�, where we abuse notation to mean unique over all k-mers of S, we

can condition on x 2 U½S� to get

Prðx 2 U½f ðSÞ�Þ ¼ Prðx 2 U½f ðSÞ� j x 2 U½S�Þ Prðx 2 U½S�Þ
þPrðx 2 U½f ðSÞ� j x 62 U½S�Þ Prðx 62 U½S�Þ:

Fig. 2. Three examples of mutation configurations. Circles represent bases of S0

around i, while black and white indicate mutated or unmutated bases, respectively.

Boxes indicate an unmutated k-mer overlapping position i
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Now notice that if x 2 U½S�, then x 2 U½f ðSÞ� follows. Furthermore, since

S is uniformly random, Prðx 2 U½S�Þ is the same regardless of x.

Therefore, the first term is independent of the method.

However, for 1-local methods, x 2 U½f1ðSÞ� can never be true if x is

not unique in S by the definition of 1-locality. However, for an n-local

method, it is certainly possible for x 2 U½fnðSÞ� even if x is not unique in S.

Hence, Prðx 2 U½f1ðSÞ�Þ < Prðx 2 U½fnðSÞ�Þ. Assuming that jf1ðSÞj ¼
jfnðSÞj up to a small relative error when S is large, the theorem follows. h

The above result show that 1-local methods may cause more repetitive

matches than other methods such as minimizers. In fact, the above proof

shows that all 1-local methods have the same expected number of unique

k-mers if S is uniformly random. The same idea in the proof can be re-

applied to show that the average expected multiplicity over all k-mers

(i.e. how many times it repeats in the f(S)) is also higher when using a 1-

local method. We explore the consequences of this in Section 5.2.3.

4 Mathematical analysis of specific methods

4.1 Syncmers
Let k, s, t be given and f be either a closed or open syncmer method.
To calculate Prðf ; aÞ, we need to analyze the a consecutive k-mers.
Breaking these k-mers into s-mers, we get a window of k� sþ a s-
mers. Assume that all s-mers in the window are distinct. For uniform
random strings, as shown in the proof of Lemma 9 in Zheng et al.
(2020a), the probability of two identical s-mers appearing in a win-
dow is upper bounded by ðk�sþaÞ2

jRjs . For minimap2 (Li, 2018), the de-
fault parameters are k¼15 and w¼10. To achieve approximately
the same density using an open syncmer, we need s¼10, and it is
easy to show that this probability is very small. Since all s-mers are
distinct and we assume a random ordering on all s-mers, the relative
ordering of s-mers in this window is a uniformly random permuta-
tion in r 2 Sk�sþa where rðiÞ is the relative ordering of position i in
the window. Determining whether or not a k-mer is selected then
amounts to analyzing a random permutation’s smallest elements
(see Supplementary Fig. S2).

Now given a permutation r 2 Sk�sþa, we consider all windows
½rðiÞ;rðiþ 1Þ; . . . ; rðiþ k� sÞ� of size k� sþ 1 corresponding to
the s-mers inside a k-mer starting at position i. The permutation is
‘successful’ if one of these k-mers is chosen by f. We now count the
number of successful permutation for open syncmers and closed
syncmers.

Theorem 6 (Successful permutations for closed syncmers). Let CSða; k; sÞ
be the number of permutations in Sk�sþa such that for some window

½rðiÞ; . . . ; rðiþ k� sÞ�, either rðiÞ or rðiþ k� sÞ is the smallest element

in the window. If a � k� s,

CSða; k; sÞ ¼ 2aðk� sþ a� 1Þ!: (3)

If a > k� s, then CSða;k; sÞ ¼ ðk� sþ aÞ!.

Corollary 1. If f is a closed syncmer method, then

Prðf Þ ¼
"

2

k� sþ 1
;

4

k� sþ 2
; . . . ;

2ðk� s� 1Þ
2k� 2s� 1

; 1; . . . ;1

#
:

We prove this theorem in Supplementary Section S2. The corollary fol-

lows by seeing that Prðf ; aÞ ¼ CSða; k; sÞ=ðk� sþ aÞ!, which comes from

our discussion about how random consecutive k-mers give rise to uni-

formly random permutations under our assumptions. Notice that

Prðf ; 1Þ ¼ 2=ðk� sþ 1Þ and Prðf ; k� sÞ ¼ 1 which is in line with the

density and window guarantee discussed in Table 2.
We can also count open syncmers. Unfortunately, the number of per-

mutations is only determined as a recurrence relation and the formula is

not as nice. Theorem 7 is proved in Supplementary Section S2.

Theorem 7 (Successful permutations for open syncmers). Using

parameters k, s, t as defined in Definition 7, let s ¼ t � 1 and

OSða; k; s; tÞ be the number of permutations in Sk�sþa such that for some

window ½rðiÞ; . . . ; rðiþ k� sÞ� the smallest element is rðiþ sÞ. Define

‘1 ¼ s; ‘2 ¼ k� s� s. Then

OSða; k; s; tÞ ¼ aðk� sþ a� 1Þ!þ Rða; k; s; t; ‘1Þ þ Rða;k; s; t; ‘2Þ:

We define Rða; k; s; t; ‘Þ AS

Rða; k; s; t; ‘Þ ¼
X‘
b¼1

ðk� sþ a� 1Þb�1OSða� b;k; s; tÞ

where the subscript indicates falling factorial, and OSða� b; k; s; tÞ ¼ 0

if b � a.

One can divide OSða; k; s; tÞ by ðk� sþ aÞ! to get Prðf ; aÞ as previously

discussed. Although lacking a nice closed-form, it still allows us to deter-

mine the optimal choice of parameter t. In Edgar (2021), the impact of

parameter t was investigated on the performance of open syncmers, but

no explicit conclusion was made about how to choose t. Below we prove

a theorem that says that the parameter t should be chosen to be the mid-

dle position of a window of k� sþ 1 s-mers.

Theorem 8. Let t̂ ¼ dk�sþ1
2 e. Then OSða; k; s; t̂Þ � OSða; k; s; tÞ for any

valid choice of t.

We prove Theorem 8 in Supplementary Section S2. Note that, t 7!k�
sþ 2� t gives the same Prðf Þ by Theorem 7. Notice that if k� sþ 1 is

even, then the preceding remark shows that there are two optimal values

for t. By Theorems 3 and 8, we can rigorously justify the optimal value

for t to maximize conservation. Thus, t is not actually a free parameter

when optimizing for conservation.

4.2 Random minimizer
Let w, k be parameters for a random minimizer method f. To calcu-
late Prðf ; aÞ, as opposed to the analysis in the syncmer section where

Table 2. Properties of discussed methods

Method (parameters) (q)-locality Density (r)-window guarantee

Random minimizer (w, k) w 
2=ðwþ 1Þ w

Miniception ðw; k; k0Þ w � 1:67=wþ oð1=wÞ w

Open syncmer (k, s, t) 1 
1=ðk� sþ 1Þ 1�
Closed syncmer (k, s) 1 
2=ðk� sþ 1Þ k - s

Words-based method (W) 1 depends on W 1�
(a, b, n)-words method 1 ¼ 1

4 � 34
n 1

Note: The 
 sign denotes up to a small error term.1 means that there is no window guarantee. Words-based methods and open syncmers may have a window

guarantee for some parameters, i.e. if t ¼1 for open syncmers, but usually do not.
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we look only at a consecutive k-mers, we now have to look all k-
mers in all windows containing any of these a consecutive k-mers.
As in the syncmer case, we will assume all k-mers are distinct.

Given a consecutive k-mers, we need to also know the ordering
of the w–1 k-mers to the left and to the right of these a k-mers be-
cause they are included in some window containing one of these
consecutive k-mers. This gives us aþ 2ðw� 1Þ k-mers in total, with
their relative orders corresponding to a permutation in Saþ2ðw�1Þ (see
Supplementary Fig. S4 for visual).

We proceed by counting permutations corresponding to some k-
mer being chosen by a random minimizer method. We first define a
function Mðn;w; a;pÞ to count permutations in Sn satisfying a gen-
eral condition.

Theorem 9 (Successful permutations for random minimizers). Given

parameters ðn;w; a; pÞ with pþ a� 1 � n, let Mðn;w; a; pÞ be the num-

ber of permutations in Sn such that for some window

½rðiÞ; . . . ; rðiþw� 1Þ�, the smallest element is one of

rðpÞ; rðpþ 1Þ; . . . ; rðpþ a� 1Þ. Then

Mðn;w; a;pÞ¼
( ðaÞðn� 1Þ!þ ~Rðn;w; a; ~‘1 Þ for w � n

þ ~Rðn;w; a; ~‘2 Þ
0 for w > n

)

where ~‘1 ¼ p� 1; ~‘2 ¼ n� ðpþ a� 1Þ and using ðxÞn to mean the fall-

ing factorial,

~Rðn;w; a; ‘Þ ¼
X~‘

b¼1

Mðn� b;w; a;~‘ � bþ 1Þ � ðn� 1Þb�1:

The specific choice of parameters ðn;w; a; pÞ ¼ ð2ðw� 1Þ þ a;w; a;wÞ
corresponds to the number of successful permutations for the minimizer

given a consecutive k-mers since the p parameter describes the leftmost

position of the first unmutated k-mer covering position i. Therefore, as

before, Prðf ; aÞ ¼Mð2ðw� 1Þ þ a;w; a;wÞ=ð2ðw� 1Þ þ aÞ!. This the-

orem is proved in Supplementary Section S3.
It was shown to us recently (Spouge, 2022) that for the choice of

parameters corresponding to the minimizer situation, this formula has a

greatly simplified form of

1� Prðf ; aÞ ¼ ðw� aþ 1Þ � ðw� aÞ
ðwþ 1Þw :

When a¼ 1, we get the desired result that the density is Prðf ; 1Þ ¼ 2
wþ1

which agrees with Theorem 2. Note that, the exact equality for Theorem

3 holds only when f is a 1-local method, which minimizers are not. We

give an example that shows how context dependency leads to lower con-

servation in Supplementary Section S3.1.

4.3 (a, b, n)-words method
We can also derive the probability vector for the previously (a, b, n)-
words method which selects k-mers based on their prefix. We prove
this result in Supplementary Section S4.

Theorem 10. Prðf ; aÞ under the (a, b, n)-words method is

Xa

i¼1

ð�1Þiþ1 3ni

4iðnþ1Þ
a� nði� 1Þ

i

� �

where
x
y

� �
¼ 0 if x< 0.

5 Empirical results

We perform two sets of experiments. In Section 5.1, we compare
Consðf ; h; kÞ analytically and through simulations for a wider range

of methods compared with previous studies (Edgar, 2021; Frith
et al., 2020) which focused only on simple minimizer methods and
variations on their own methods. In Section 5.2, we modify the min-
imap2 (Li, 2018) software to use open syncmers and demonstrate
that alignment sensitivity is increased, which is in agreement with
our previous theory on conservation. However, despite the sensitiv-
ity increase given by open syncmers, the additional computational
time as a result of increased repetitive k-mer indexing (see Section
3.4) due to 1-locality implies that optimizing for speed and time is
not as simple as optimizing for conservation.

5.1 Comparing Consðf ; h; kÞ across different methods
In Section 4, we derived Prðf Þ for four methods: closed and open
syncmers, minimizers and ða;b;nÞ�words. Since all but minimizers
are 1-local methods, we can calculate Consðf ; h;kÞ in closed-form
for these three methods using Theorem 3. In this section, we empir-
ically calculate Consðf ; h; kÞ for three more methods mentioned in
Section 2.2. Fixing some density d, we compare Consðf ; h; kÞ to
UBðdÞ � Prðaðh; kÞÞ, where UB(d) is defined in Section 3.1 as the
upper bound on probability vectors. For the miniception method, it
is not obvious how parameters affect d so we let k0 ¼ k�w for d ¼
2=ðwþ 1Þ as suggested in Zheng et al. (2020a), and then modify k0

and w slightly until we get the density close to d. For the words
method, we use two choices of W as W4 and W8 (Supplementary
Section S6), where the corresponding methods for W4 has density 1/
4 and W8 has density 1/8. These sets are empirically found to per-
form well in Frith et al. (2020).

For methods with a closed-form for Consðf ; h;kÞ, we plot the
exact value. For methods without a closed-form, we ran 100 simula-
tions with jSj ¼ 50 000. We report mean and 95% confidence inter-
vals (assuming normality) of Consðf ; h; kÞ for these methods. Code
can be found at https://github.com/bluenote-1577/local-kmer-selec
tion-results.

We first fix d ¼ 1=4; k ¼ 17 and plot the fraction of upper

bound achieved, Consðf ;h;kÞ
Prðaðh;kÞÞ�UBðdÞ, for all methods over a range of h. We

then fix d ¼ 1=8; k ¼ 25 and do a similar plot. For the (a, b, n)-
words method, the closest choice of parameters leading to the most
similar density is n¼2, 3 which gives density ¼ 9=64 
 1=7:11 and
27=256 
 9:48; we plot both of these for reference. Both results are
shown in Figure 3.

The results in Figure 3 show that the words method based on the
set W4, W8 and the open syncmer methods perform well compared
with the other methods. The large drop in conservation between the
empirical random minimizer and the upper bound for the random
minimizer indicates that context dependency plays a highly non-
trivial role in conservation. We note that for d¼1/4, the (a, b, n)-
words method performs poorly as it does not take advantage of
selecting k-mers with non-overlapping prefixes n¼0.

These results also suggest that the best methods already achieve
� 0:96 fraction of the possible upper bound UBðdÞ � Prðaðh; kÞÞ for
reasonable parameters and error rates, so there is not room for dras-
tic improvement.

5.2 Using open syncmers in minimap2
We now investigate applications to read mapping. We modified
minimap2 (Li, 2018), a state-of-the-art read aligner, so that open
syncmers are used instead of minimizers. We decided on using open
syncmers because although its conservation is slightly less compared
with word-based methods, it allows the user to choose a range of
densities without constructing a new words set W for each density.
We note that since minimap2 was designed with minimizers in
mind, we expect the benefits of switching k-mer selection methods
to be dampened compared with designing an aligner with open syn-
cmers in mind.

Minimap2 aligns reads using a seed-chain-extend procedure.
Roughly speaking, this works by first applying a k-mer selection
method to all reads and reference genomes. Selected k-mers on the
reads are then used as seeds to be matched onto the selected k-mers
of the reference. Colinear sets of k-mer matches are collected into
chains, and then dynamic programming-based alignment is
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performed to fill gaps between chains. Our modification was to
swap out the k-mer selection method, originally random minimizers,
to an open syncmer method instead. Our version of minimap2 can
be found at https://github.com/bluenote-1577/os-minimap2.

We operate on four sets of real and simulated publicly available
long-read datasets:

1. Real microbial PacBio Sequel long-reads from PacBio, available at

https://tinyurl.com/uhuwvxb8 and their corresponding assemblies.

2. Real human ONT nanopore reads from Miga et al. (2020) avail-

able at https://github.com/marbl/CHM13 (id: rel3; down-

sampled and only including reads > 1 kb in length) and the

corresponding assembly CHM13.

3. Simulated RNA (cDNA) ONT long-read data from Trans-

NanoSim (Hafezqorani et al., 2020).

4. Simulated PacBio long-reads on human reference GRCh38 using

PBSIM (Ono et al., 2013).

We discuss the first three listed datasets in the following sections,
and discuss the simulated PacBio experiment in Supplementary
Section 7.1.

5.2.1 Chaining score improvement

For each alignment of a read, minimap2 computes a chaining score
(Section 2.1 in Li, 2018). This chaining score measures the good-
ness of the best possible chain for that alignment. Roughly speak-
ing, if k-mers in a chain overlap and do not have gaps, the
chaining score is high. We took the long-read sequences and as-
sembly for E.coli W (bc1087) in the dataset and compared the
mappings for open syncmers versus minimizers. This is shown in
Figure 4.

For t¼3, the optimal parameter of t with k ¼ 15; s ¼ 11, open
syncmers leads to better chaining scores. The theoretical value of
Consðf ; h; kÞ increases as t increases for open syncmer methods be-
cause the vectors Prðf Þ are increasing component-wise as t increases;
see Supplementary Figure S3. Therefore, the increase in mean chain-
ing score as t increases is suggestive that goodness of chaining is in-
deed correlated with conservation, even for PacBio reads which
have higher rates of indels than substitutions (Dohm et al., 2020).
This suggests that the results from the conservation framework is
still valid under realistic mutation models.

Naturally, empirical densities may deviate from theoretical den-
sities for minimizers (Marçais et al., 2017). To verify that the in-
crease in chaining was not because of open syncmers having higher
density than minimizers, we calculated the empirical density for
minimizers/open syncmers on the reference genome in this

experiment and found that it was 1=4:867 and 1=5:059, respective-
ly. This shows that even though the density for open syncmers was
lower than for minimizers, the chaining score was higher.

5.2.2 Improvement in number of mapped reads and quality for

real datasets

We now examine how alignment sensitivity increases when using a
more conserved k-mer selection method on real datasets. We fix
t¼3 with the same parameters for k, w, s as in the previous section.
For the real datasets, we analyze mapping quality and number of
mapped reads. The difference between conservation of k-mer selec-
tion methods is more pronounced when the rate of mutation is
higher, so we test how alignment changes as the reference genomes
diverge from the reads. We test this effect by aligning the reads to
varying reference genomes as well. The results are summarized in
Table 3.

These results show that the number of reads that were uniquely
mapped using open syncmers is consistently greater than with mini-
mizers. In the case of human ONT reads mapping to the mouse gen-
ome, the relative increase in number of mapped reads is around
8.2%. This effect increases as the reads and reference genomes di-
verge more and mapping becomes more challenging.

Since longer reads are more likely to be aligned than shorter
reads, the effect of open syncmers on our metric for sensitivity, the
percentage increase of mapped reads, is dependent on read length.
We investigated the relationship between sensitivity increase and
read lengths in Table 4. We mapped rel3 human nanopore reads

(a) (b)

Fig. 3. Fraction of upper bound achieved for conservation. 95% confidence intervals are built from 100 simulations for methods with empirically deduced values. Note that,

some methods have different densities due to parameter constraints; this is mentioned in the labels
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Chaining scores for long-reads from E. coli W (bc1087) mapping to assembly E. coli W (bc1087)

Open syncmer, (k,s,t) = (15,11,1). Mean score = 3576.

Open syncmer, (k,s,t) = (15,11,2). Mean score = 3763.

Open syncmer, (k,s,t) = (15,11,3). Mean score = 4069.

Random minimizer, (k,w) = (15,9). Mean score = 3745.

Fig. 4. Histogram of chaining scores corresponding to alignments of reads for E.coli

W (bc1087) in against its assembly. Minimap2 with open syncmers and minimizers

were compared against each other with parameters chosen so that density is fixed at

1/5. Mean chaining scores are given in the legend. t¼ 3 is the optimal value of t by

Theorem 8
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onto CHM13 and stratified by read length. As expected, open syn-
cmers increase mapping sensitivity for shorter nanopore reads dis-
proportionately compared to very long reads.

5.2.3 Simulated transcriptome analysis over varying parameters

We now analyze simulated RNA (cDNA) ONT data, where we can
analyze mapping precision due to having a ground truth. We chose
to analyze such data because read lengths are shorter, and in

Table 4, we found that the difference in mapping sensitivity was
more drastic when read lengths are shorter. We used Trans-

NanoSim (Hafezqorani et al., 2020) a software package for simulate
cDNA ONT reads. We used the provided pre-trained
‘human_NA12878_cDNA_Bham1_guppy’ model for generating

reads.
After generating a set of reads from a transcriptome, we mapped

the reads back to the genome (GRCh38) using the minimap2-x
splice option. For every mapping, we take the primary alignment if
the mapQ > 0. We designate a mapping successful if the transcript

corresponding to the read overlaps the true gene, otherwise we des-
ignate it as an error. We only analyze genes found on the primary

chromosomes of GRCh38 and ignore genes found on alternate loci.
Based on the experiments in the previous section, it is not clear

how increasing sensitivity using syncmers differs from just lowering
the value of k to create more seed matches; this was also not investi-
gated in (Edgar, 2021; Frith et al., 2020). To investigate how each

method depends on parameters k, s, w, we repeat the experiment
over each value of k and over a set of fixed densities. For every par-

ameterization, we generated 18 104 reads. The 18 104 reads are a
result of simulating 20 000 reads using the Trans-NanoSim soft-
ware; the software simulates garbage reads with error rates > 90%,

thus we only took the 18 104 reads which should be alignable. The
results are shown in Figure 5. We list some of the important take-

aways from this experiment below.

1. Increasing k-mer matching sensitivity by lowering k or switching

to open syncmers increased the quality of overall mapping (less

errors and more successfully mapped reads).

2. Open syncmers and minimizers have similar error/success curves

as seen in the top-right of Figure 5. This shows that lowering k

and choosing more conserved methods effectively do the same

thing by increasing the number of seed hits. Larger versions of

this subplot are shown in Supplementary Figures S8 and S9.

3. While the quality of the mapping seems independent of lowering

k versus using open syncmers, open syncmers allow for new

parameterizations. Figure 6 shows that when considering the

most optimal parameterizations (toward the bottom-left of the

figure), both open syncmers and minimizers have parameters

that perform well. The results suggest that 13 � k � 15 per-

form the best across methods, and that switching from minimiz-

ers to syncmers in this regime still gives quite optimal

parameters while increasing both mapping quality and time.

4. For the case of fixed density d ¼ 1/7, we noticed that syncmers

may offer a sizeable error-runtime improvement for small k, see

Supplementary Figure S10. Thus, syncmers may provide more

benefit for small d; this can also be seen in the top-left of

Figure 5. Smaller values of d may be necessary in cases where a

large number of genomes must be indexed by k-mers and mem-

ory is an issue.

5. Syncmers take longer when k is fixed. For large k, this is primar-

ily due to indexing speed, which we did not attempt to optimize.

For smaller k, this seems to be due to a larger number of repeti-

tive k-mers and spurious matches as mentioned in Section 3.4.

Supplementary Figure S7 shows that the indexed set of k-mers

for open syncmers contains less unique k-mers and higher k-mer

multiplicity on average than minimizers.

Table 3. Open syncmer versus minimizer mappings for two versions of minimap2 on long-reads. We fix parameters ðk ; s; t ;wÞ ¼
ð15; 11; 3; 9Þ so the density is 1/5 for both seeding methods

Long-read dataset Reference jOS \Mj (mapQ) jM \OSj (mapQ) jOSj jMj Total no. of reads % increase in mapped reads

E.coli W (bc1087) E.coli W

(bc1087)

312 (21.56) 102 (11.57) 194 455 194 245 196 901 0.108

E.coli K12 (bc1106) E.coli W

(bc1087)

548 (20.30) 187 (11.33) 220 459 220 098 226 906 0.164

K.pneumoniae

(bc1074)

E.coli W

(bc1087)

11 434 (19.80) 3679 (12.10) 143 724 135 969 251 838 5.70

Downsampled human

ONT (rel3)

Human—

CHM13

370 (3.53) 103 (2.52) 37 819 37 552 51 210 0.711

Downsampled human

ONT (rel3)

Mouse—

GRCm38

2467 (2.32) 1005 (1.90) 19 214 17 752 51 210 8.23

Note: OS is the subset of reads successfully mapped using open syncmers, and M similarly for minimizers. OS \M is the set of reads which are uniquely

mapped by open syncmers, and M \OS are reads uniquely mapped by minimizers. The average mapQ outputted by minimap2 within the set is presented as well

(Section 5.2).

Table 4. Open syncmer versus minimizer mapping statistics as a function of read length for the rel3 ONT read set mapping onto CHM13

Human ONT

(rel3) read lengths

jOS \Mj (mapQ) jM \OSj (mapQ) jOSj jMj Total no. of reads % change in mapped reads

100-1000 bp 546 (4.25) 146 (2.96) 6068 5668 44 397 7.05%

1000-2000 bp 165 (3.72) 38 (1.71) 3277 3150 10 097 4.03%

2000-3000 bp 53 (3.70) 14 (5.71) 1840 1801 4151 2.16%

>3000 bp 152 (3.27) 51 (2.25) 32 706 32 605 36 968 0.31%

Note: OS is the set of mapped reads with open syncmers, M is the set of mapped reads with minimizers. Values in parenthesis indicate average mapping qual-

ities calculated by minimap2.
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Interestingly, we found that for even values of 1=d, the sensitivity
increase for choosing open syncmers over minimizers was greatly
diminished (Supplementary Fig. S6). This is perhaps related to the
fact that the optimal t value is unique when 1=d is odd, whereas
when it is even there are two equally good choices.

6 Conclusion

In summary, we first described a new mathematical framework for
understanding k-mer selection methods in the context of conserva-
tion, which allowed us to prove results pertaining to upper bounds,
optimal parameter choices and closed-form expressions for conser-
vation. We then investigated conservation empirically and then
found that augmenting minimap2 with a more conserved method
increases alignment sensitivity as predicted. However, such methods

may give rise to more repetitive seed matches, increasing the compu-
tational time of alignment. To optimize for quality of mapping ver-
sus speed, one should maximize sensitivity, which is related to
quality, and minimize the number of repetitive k-mers in the indexed
set, which is related to speed. Further research should investigate if
this trade-off can be improved using new local-selection methods
and how to engineer aligners that take advantage of the trade-off.

A notable result of ours is that the best methods can already
achieve > 0.96 of the upper bound for conservation for certain
parameters, implying that major improvements in conservation are
not possible. However, real genomes do not consist of i.i.d uniform
letters. There is a mix of high-complexity and low-complexity
regions in genomes, so techniques for better distributed selection of
k-mers should be investigated (Jain et al., 2020) for example.
Sequence-specific k-mer selection methods, where the selection
method is specifically tuned for a certain string is another area of
practical importance (Zheng et al., 2021). Theoretical problems in-
clude understanding how tight the bound given in Section 3.1 is
when parameters are not in the asymptotic regime, and deeper ana-
lysis on the context dependency problem for random minimizers as
well as on how locality relates to repetitiveness of selected k-mers.

An orthogonally related recent idea are strobemers (Sahlin,
2021a), which have been proposed as a k-mer alternative for se-
quence mapping. It has been shown that strobemers allow for much
higher conservation (called match-coverage in Sahlin, 2021a) than
k-mers. StrobeAlign (Sahlin, 2021b) is a new short-read aligner that
combines syncmers and strobemers for extremely efficient align-
ment. Another example is the LCP (locally consistent parsing) tech-
nique (Hach et al., 2012; Sahinalp and Vishkin, 1996), which selects
varying length substrings instead of k-mers in a locally consistent
manner (i.e. a version of Theorem 1 holds). Understanding selection
techniques for k-mer replacements is an area of unexplored research
where we believe that some of our techniques may be useful.
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