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Introduction

γδ T cells recognize pathogens and transformed cells in a 
HLA-unrestricted manner. These lymphocytes respond to mark-
ers of cellular stress including phosphoantigens, which are released 
by transformed cells as by-products of the mevalonate biosyn-
thetic pathway.1 Furthermore, γδ T cells share characteristics of 

both the innate and adaptive immune system, displaying both 
innate cytotoxic functions and antigen-presenting capability,2,3 
particularly in the presence of antibody-opsonized target cells.4 
This dual capacity makes them an exciting candidate for cancer 
immunotherapy.

The most abundant subset of circulating γδ T cells, Vγ9Vδ2 
cells, can be activated and expanded in vitro following a single 
treatment with the phosphoantigen isopentenyl pyrophosphate 
(IPP), with an EC

50
 of 3 μM.5 Naturally occurring or synthetic 

non-peptide prenyl pyrophosphate analogs of IPP can serve as 
ligands of the Vγ9Vδ2 T-cell receptor (TCR), including the syn-
thetic analog bromohydrin pyrophosphate (BrHPP, EC

50
 0.15 

μM, from Innate Pharma, France),5 which has been evaluated in 
Phase I and II clinical trials.6,7 Inhibitors of farnesyl pyrophos-
phate synthase (FPPS) such as the 3rd generation aminobisphos-
phonates zoledronate and pamidronate lead to IPP accumulation. 
Originally intended as inhibitors of osteoclast-mediated bone 
resorption for the treatment of osteoporosis and hypercalcemia, 
aminobisphosphonates potentially provide secondary benefit as 
part of γδ T cell-based immunotherapy and have been shown 
to be very well tolerated in combination with chemotherapy by 
cancer patients of all age ranges.

Similar to natural killer (NK) cells, the activation of γδ 
T cells is regulated by a balance between stimulatory and inhibi-
tory signals. They can be activated by γδ TCR ligands such as 
phosphoantigens, or by MHC-associated ligands of the activa-
tory receptor killer cell lectin-like receptor subfamily K, mem-
ber 1 (KLRK1, best known as NKG2D, such as MHC class I 
polypeptide-related sequence A (MICA), MICB, and various 
members of the UL16-binding protein (ULBP) family. γδ T cells 
also express killer-cell immunoglobulin-like receptors (KIRs), 
which can be either activatory or inhibitory, including killer cell 
immunoglobulin-like receptor, 2 domains, long cytoplasmic tail, 
1 (KIR2DL1)8 and killer cell immunoglobulin-like receptor, 3 
domains, long cytoplasmic tail, 1 (KIR3DL1).9 Tumors possess 
the ability to manipulate this balance to stimulate tolerance by 
inhibitory signals, including soluble NKG2D ligands, transform-
ing growth factor β1 (TGFβ1), galectin 3 and prostaglandin E

2
 

(PGE
2
)10,11,12,13 Elevated circulating levels of sMICA, sMICB, and 

sULBP1 might be particularly active against effector γδ T cells, 
as the latter express high amounts of NKG2D. Of interest, the 
NKG2D ligand ULBP4 may bind to the TCR of some γδ T-cell 
subsets, and this may exacerbate their inhibition by neuroblas-
toma cells.14
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γδ T cells contribute to the front line of lymphoid antitumor 
surveillance and bridge the gap between innate and adaptive 
immunity. They can be readily expanded to high numbers in 
vivo and in vitro, starting from the blood of cancer patients, 
and a number of Phase I trials have demonstrated that these 
cells can be employed in cancer immunotherapy. Sufficient 
patients have received γδ T cell-based immunotherapies in the 
context of clinical trials to evaluate their utility, and to inform 
the direction of new trials. a systematic approach was used 
to identify Phase I, Phase II, and feasibility studies testing γδ 
T cell-based immunotherapy in cancer patients. Studies were 
excluded from further analysis if they did not provide patient-
specific data. Data were compiled to evaluate efficacy, with 
stratification by treatment approach. when possible, compari-
sons were made with the efficacy of second-line conventional 
therapeutic approaches for the same malignancy. Twelve eli-
gible studies were identified, providing information on 157 
patients who had received γδ T cell-based immunotherapy. 
The comparison of objective response data suggests that γδ 
T cell-based immunotherapy is superior to current second-line 
therapies for advanced renal cell carcinoma and prostate can-
cer, but not for non-small cell lung carcinoma. an evaluation 
of pooled data from 132 published in vitro experiments shows 
a consistent improvement in the cytotoxicity of γδ T cells in 
the presence of antitumor antibodies. Immunotherapy using 
γδ T cells alone shows promising clinical activity, but there 
is a strong preclinical rationale for combining this treatment 
modality with cancer-targeting antibodies to augment its 
efficacy.
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The balance between inhibitory and activatory signals can be 
tilted toward tumor control by boosting tumor-specific cytotoxic 
functions. With γδ T cells, this is achieved upon activation by 
phosphoantigens such as IPP, an effect that is exacerbated if tar-
get cells are opsonized by an appropriate antibody,3,4,15-18 making 
the combination of antitumor antibodies with γδ T cell-based 
immunotherapy an attractive therapeutic prospect.

Treatment Approaches— 
In Vivo Expansion Vs. Adoptive Transfer

Following the recognition that γδ T cells can be expanded 
to form potent antitumor effectors in vitro and in vivo, numer-
ous clinical trials have attempted to capitalize on these properties 
for cancer immunotherapy. Adoptive transfer—a process that 
requires the expansion (and activation) of autologous T cells ex 
vivo and their reinfusion into patients, is becoming a popular 
paradigm of cellular immunotherapy. The potential to expand 
γδ T cells in vivo using combinations of aminobisphosphonates 
and cytokine offers a comparatively cheaper and more straight-
forward delivery alternative.

The expansion of γδ T cells ex vivo allows for the optimiza-
tion and control of the effector cell population. Strategies that 
are currently under investigation in this sense include the use 
of naturally occurring and genetically-modified tumor-specific 
effectors. The benefits of controlling the effector cell popula-
tion for adoptive transfer are significant, but must be balanced 
against the cost of preparing and administering the treatment. 
γδT cells from cancer patients can be reproducibly expanded ex 
vivo to large numbers using phosphoantigens,19 aminobisphos-
phonates,20 or immobilized anti-γδ TCR antibodies.21

Treating patients with aminobisphosphonates or synthetic 
phosphoantigens leads to an increase in circulating Vγ9Vδ2 
T cells that are able to kill autologous tumor cells in vitro.22 The 
3rd generation aminobisphosphonate zoledronate has been the 
most commonly used agent for the activation/expansion of γδ 
T cells in clinical trials, as it has been administered to 61/80 
(72%) of patients. The EC

50
 of zoledronate for human γδ T-cell 

activation is favorable (0.003 μM)5 and is well within the con-
centrations achievable with a standard dose of 4 mg. Zoledronate 
has been shown to improve the survival of multiple myeloma 
patients and to reduce the progression of skeletal-related events.23 
Zoledronate inhibits FPPS, resulting in the compensatory upreg-
ulation of non-prenylated small GTPases such as RAP1A24 and 
the accumulation of IPP. These effects not only activate Vγ9Vδ2 
T cells, they also inhibit the growth of cancer cells by suppressing 
protein prenylation.24,25 Zoledronate is rapidly cleared from the 
plasma following intravenous infusion, most likely due to seques-
tration into the bone. Following the administration of 4 mg 
zoledronate in cancer patients with normal renal function, mean 
peak plasma concentration was 1.13 μM.26 A pharmacokinetic 
study of zoledronate infusions in patients with renal impairment 
showed that plasma concentrations 24 h upon infusion were < 1% 
of peak concentrations, but were still sufficient to elicit consistent 
γδ T-cell activation in vitro. The pharmacokinetics of zoledro-
nate in children aged 3–17 are similar to those in adults when a 

comparable dose (mg/kg) is used (source: European Medicines 
Agency data, EMEA/H/C/000336 -A20/0026). Hence, at well-
tolerated doses, zoledronate achieves plasma levels that are capa-
ble of activating Vγ9Vδ2 T cells.

Interleukin (IL)-2 is required to expand γδ T cells in vitro, 
has modest clinical activity as a standalone therapeutic agent in 
renal cell carcinoma (RCC) and melanoma patients,27-29 and has 
been shown to reduce the incidence of relapse among patients with 
hematological malignancies who underwent bone marrow trans-
plantation.30 The antineoplastic effects of IL-2 are indirect, follow-
ing the activation and expansion of immune effectors. The toxicity 
of IL-2 at high doses is problematic, leading to hyperpyrexia, capil-
lary leak, and hypotension. Low doses of IL-2 are well tolerated 
but might have undesirable effects for cancer immunotherapy. For 
example, while low-dose IL-2 drives T cells toward the effector 
memory (T

EM
) phenotype upon TCR stimulation, it also increases 

the number of circulating regulatory T cells (T
reg

), resulting in a 
robust immunosuppressive effect.31 For this reason, the precise 
dose and schedule for IL-2 administration appears to be critical for 
the elicitation of optimal antitumor responses.

Search Methods

The NCBI PubMed database was queried using the MeSH 
terms outlined in Table S1. In addition, the bibliographies of 
review articles listing γδ T lymphocytes in the title and published 
in the last year32-36 were searched for references to clinical studies.

Articles were included if the study pertained to cancer 
immunotherapy in humans, measured clinical outcomes and 
contained a clear treatment protocol that could be linked to 
each patient included in the study. Clinical outcome data either 
in the form of Response Evaluation Criteria In Solid Tumors 
(RECIST) assessment, progression-free survival or overall sur-
vival for each patient were also required. Full texts that only 
provided summarized statistics of patient data or no patient-
specific information regarding cancer type or response were 
excluded. In these cases, the corresponding authors were con-
tacted and asked if unpublished data were available on the 
patient characteristics, treatment received and clinical outcome.

Results

Patient demographics and diagnoses
Fifty-five studies were identified from the initial literature review, 

of which 15 were found to be suitable for screening. Three stud-
ies of 15 were excluded because of insufficient clinical data. Data 
were therefore available for 12 clinical studies, involving a total of 
157 patients. Seventy-seven of these 157 patients had received infu-
sions of γδ T cell-enriched populations, and 80 had received drugs 
to expand and activate endogenous γδ T cells. Of these, 68/77 
patients subjected to adoptive γδ T cell transfer and 62/80 patients 
receiving γδ T cell-expanding drugs had RECIST data available. A 
PRISMA flow sheet of the screening process is shown in Figure S1. 
Patients with solid tumors were most often treated with adoptive 
T-cell transfer (71) as compared with γδ T cell-expanding drugs 
(47), whereas patients affected by hematological malignancies were 
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more often treated with drugs (33) than with γδ T cells expanded 
ex vivo (6) (Fig. 1). The mean age of patients enrolled in adoptive 
T-cell transfer trials was 60 y (range 18–85 y, n = 67, 10 missing 
values), as opposed to 63 y (range 29–83 y, n = 58, 22 missing 
values) for trials testing γδ T cell-expanding drugs. There was no 
significant difference in the age of patients in each group.

Prior therapies
As the studies reviewed were either Phase I, Phase II, or fea-

sibility studies, participants had already received extensive treat-
ment for their primary disease. 83.8% of patients enrolled into 
trials testing in vivo γδ T-cell expansion had previously received 
myelosuppressive chemotherapy, as compared with only 41.6% 
of patients allocated to γδ T-cell transfer. Conversely, 41.6% of 
the participants in adoptive γδ T-cell transfer trial had previously 
received some form of immunotherapy, as compared with only 

16.3% of patients receiving γδ T cell-expanding drugs (Fig. 1). 
Prior treatments reflect the predominant diseases in each trial 
type. For example, a high proportion of patients previously 
treated with immunotherapy had melanoma or RCC.

Trials testing γδ T cell-stimulatory drugs
These trials used aminobisphosphonates +/− IL-2 to stimu-

late γδ T cells in vivo.37-41 Two studies involved standard Phase 
I dose-escalation protocols and 3 studies were Phase II clini-
cal trials. In all but one case, the dose of IL-2 administered to 
participants within each trial was kept consistent, though there 
were variations between studies, as shown in Table 1.

In an intra-patient dose-escalation study by Wilhelm and 
coworkers,38 gradually increasing doses of IL-2 were administered 
to 19 patients with hematological malignancies to determine 
the effects of IL-2 dose and administration route. Following 

Figure 1. Diagnosis and previous treatments of patients enrolled in clinical trials testing γδ T cell-based immunotherapy. aML, acute myeloid leukemia; 
Ca, carcinoma; CLL, chronic lymphocytic leukemia; NSCLC, non-small cell lung carcinoma; PBMC, peripheral blood mononuclear cell; PBSCT, peripheral 
blood stem cell transplantation; rCC, renal cell carcinoma. 
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disappointing results in patients receiving continuous subcutane-
ous infusions on day (D)3–8 of each treatment cycle, the proto-
col was altered to 6 h intravenous bolus infusions on D1–6. It is 
not possible to compare the overall efficacy of these IL-2 delivery 
techniques from this study as patients were enrolled in the cohort 
treated under the altered protocol only if they had a significant 
expansion of γδ T cells in vitro (> 20% proliferation at D8 of 
culture with pamidronate and IL-2) (Table S1).

Adoptive transfer of enriched γδ T-cell populations
Clinical trials testing the adoptive transfer of γδ T cells were 

more homogenous in their protocol design than those investi-
gating γδ T cell- stimulatory drugs. Indeed, the former mainly 
varied relative to the stimulus used to expand γδ T cells ex vivo, 
and the number and timing of the γδ T-cell infusions. Adoptive 
transfer protocols involve obtaining lymphocytes from the 
patient and then culturing them in conditions that selectively 
promote γδ T-cell proliferation. After a period of proliferation 
(usually 14 d), γδ T cells are re-infused into the patient, along 
with further immunostimulatory agents in some cases. Ex vivo 
expansion requires specialized laboratories and expertise in han-
dling cellular therapy products.

The majority (78%) of patients enrolled in adoptive transfer 
studies had solid tumors. The major variable across protocols lies 
in ex vivo expansion methods. Additional variables include the cell 
source (leukopheresis, n = 2, or the peripheral blood, n = 5), and 
the length of time between subsequent γδ T-cell infusions. In addi-
tion, 2 studies administered IL-2, 1 zoledronate and 1 both agents 
alongside adoptively transferred cells6,42-44 (Table 2). Expansion 
protocols varied substantially, and in some studies they involved a 
very high concentration of IL-2 (1000 U/mL).45-47 The expansion 
of γδ T cells from the peripheral blood is clearly feasible, while 
studies involving leukopheresis did not achieve significantly higher 
numbers of γδ T cells than those based on γδ T-cell expansion 
from the whole blood (leukopheresis, mean 11.3 x 109 cells, 95% 
CI 5.8–16.9 x 109 cells: whole blood, mean 16.2 × 109 cells; 95% 

CI 12.5–19.9 × 109 cells). This suggests that leukopheresis is not 
required to generate satisfactory γδ T-cell products.

Clinical responses to γδ T-cell immunotherapy as compared 
with conventional second-line treatments

To compare the clinical response to γδ T-cell immunother-
apy with standard-of-care second-line treatment approaches, we 
selected 3 cancer types for which national guidelines for second-
line treatment exist in the UK (from the National Institute 
for Clinical Excellence, NICE) or US (from the National 
Comprehensive Cancer Network, NCCN), namely, renal cell 
carcinoma (RCC), non-small cell lung carcinoma (NSCLC), 
and prostate cancer. Outcomes in terms of clinical responses were 
compared. These 3 cancers also represented the commonest types 
of tumor in patients enrolled in γδ T-cell immunotherapy trials.

The only second-line regimen currently recommended by the 
NICE for the treatment of refractory/relapsed advanced prostate 
cancer is the combination of docetaxel and prednisolone.48 Disease 
outcome data regarding this combination is available from numer-
ous sources.49-51 There is currently no NICE recommended sec-
ond-line treatment for advanced/metastatic RCC, but the NCCN 
recommends everolimus, much of the evidence in support of this 
option coming from the RECORD-1 trial.52 Docetaxel or erlotinib 
are recommended for second-line chemotherapy in patients with 
Stage III-IV NSCLC.53 A recent comparator study54 demonstrated 
a slight superiority for erlotinib over docetaxel for the second-line 
treatment of advanced NSCLC. Both these therapeutic options are 
permissible under current NICE guidelines.

Data on disease outcome from large studies that were used in 
the formulation of the treatment guidelines for these 3 tumor types 
are shown in Table 3, alongside comparisons with disease outcome 
from corresponding γδ T-cell immunotherapy trials. A more exten-
sive breakdown of the results from γδ T-cell immunotherapy trials 
is shown in Table S2. Although direct statistical comparisons are 
not possible, the proportion of objective responses among patients 
enrolled in clinical trials testing γδ T cell-based immunotherapy 

Table 1. Treatment protocols aimed at expanding γδ T cells in vivo using zoledronate and IL-2

Paper n Disease (n)

Patients 
screened 

for γδ T cell 
expansion?

Sub 
groups 
within 
trial (n)

ZOL 
dose 
(mg)

IL-2 
dose/m2 

(MU)

IL2 dose 
if not by 

BSA (MU)

Days of 
IL-2 per 

cycle

Cycle 
length 

(d)

Mean 
cycles

Lower 
95% CI

Upper 
95% CI

Kunzmann 
201237 21

advanced renal cell 
carcinoma (7)

Multiple myeloma (6)
aML (8)

yes (21) 21 4 - 2 6 28 2.8 2.0 3.5

Lang 
201139 12

advanced renal cell 
carcinoma (12)

No (12)

6 4 7 - 15 28 3.7 0.6 6.8

2 4 1 - 15 28 17.0 - -

1 4 1–2 - 15 28 3.0 - -

2 3 1 - 15 28 11.5 - -

1 1.5 1 - 15 28 4.0 - -

Dieli 
200740 18

advanced prostate 
cancer (18)

No (18)
9 4 0 0 0 21 9.2 5.3 13.1

9 4 - 0.6 1 21 14.4 12.3 16.5

Meraviglia 
201041 10

advanced breast 
cancer (10)

No (10) 10 4 - 1 1 21 Not specified

Abbreviations: CI, confidence interval; IL-2, interleukin-2; MU, mega unit; ZOL, zoledronate.
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is superior to that achieved with established second-line therapy in 
patients with advanced prostate cancer (33.3% with γδ T cells vs. 
25.2% with prednisolone + docetaxel) and advanced RCC (4.8% 
with γδ T cells vs. 1.8% with everolimus), but not advanced 
NSCLC patients (7.6% with erlotinib, 12.2% with docetaxel, 0% 
with γδ T cells). While this could be explained through patient 
selection, all individuals analyzed had relapsed or recurrent disease 
and so are broadly comparable in terms of prognosis.

Variation in γδ T-cell expansion capacity between patients
Tumor immune evasion can be facilitated by host cells. 

Regulatory T cells (Tregs) are an important immunosuppressive 
cell population that prevent autoimmune responses and exces-
sive reactions against self entities. Tumors that recruit high levels 
of CD4+CD25+FOXP3+ T

regs
 among tumor-infiltrating lympho-

cytes (TILs) are associated with invasive disease.55-57 γδ T cells 
from healthy individuals and cancer patients can be expanded to 
clinically useful numbers, even if patients have previously received 
chemotherapy,19,58 but there is a high degree of inter-individual 
variation in expansion capacity. In one study, γδ T cells from 
88% (14/16) healthy donors expanded in vitro in response to 
IL-2 + pamidronate, whereas γδ T cells from only 49% (20/41) 
cancer patients (including multiple myeloma, MM, non-Hodg-
kin’s lymphoma, NHL and, B-cell chronic lymphocytic leuke-
mia (B-CLL) expanded following the same stimuli.38 There is 
an inverse correlation between the frequency of circulating T

regs
 

and the ability of γδ T cells from cancer patients to proliferate 
upon phosphoantigen stimulation in vitro. However, T

regs
 do not 

directly suppress the cytotoxic activity of γδ T cells or their abil-
ity to produce cytokines,59 a factor that is in favor of the adoptive 
transfer of γδ T cells over the use of γδ T cell-stimulatory agents, 
as the cells can be expanded in optimized conditions.

The variability in γδ T-cell proliferation was documented in 
a number of trials in which patients were screened before enrol-
ment to determine whether their γδ T cells would expand in 
vitro. Thirty-five out of 77 patients treated with adoptively trans-
ferred γδ T cells and 31/80 patients treated with γδ T cell-stimu-
lating drugs were stratified based on in vitro γδ T-cell expansion 
rate in response to the same stimulus used in the trial. While 
the overall response of these “positive responders” is better than 
that of unscreened patients receiving γδ T cell-stimulating drugs 
(overall response rate 16.2% vs. 8.1%) these populations are too 
small and heterogeneous for firm conclusions (Table S3).

Antibody-dependent γδ T cell-mediated cytotoxicity
The initial evaluation of γδ T cell-based immunotherapy shows 

some promise but there is large room for improvement. Overall, 
conventional response rates are poor, with only 14/130 (10.8%) 
objective responses documented across all of the trials assessed. 
However, 51 (39.2%) patients achieved disease stabilization, a suc-
cessful outcome of immunotherapy, indicating that clinical ben-
efits can be achieved by a high proportion of patients subjected 

Table 2. Comparison of clinical trials using adoptively transferred γδ T cells

Paper n
Disease 

(n)
Cell 

source

Expansion 
conditions

Cycles
Cumulative cell 

dose (x109)
Additional 
treatments

IL-2 
(U/mL)

[aBP or 
PAg]

Cycle 
length 

(d)

Mean 
no. of 
cycles

Lower 
95% 

CI

Upper 
95% 

CI
Mean

Lower 
95% CI

Upper 
95% 

CI

ZOL 
(mg)

IL-2 
(MU/m2)
[d/cycle]

Bennouna et 
al. 20036 10 rCC (10) L 600

BrHPP
(3 μM)

21 3 3 3 26.7 17.0 36.4 - 2 [7d]

Kobayashi et 
al. 200743 7 rCC (7) PB 100

3M3B1-PP 
(100 μM)

7 
(n = 4), 
14 (n = 3)

9.6 7.5 11.7 14.2 4.4 24.0 - 0.7 [1d]

Nakajima et 
al. 201045 10

NSCLC 
(10)

PB 1000 ZOL (5 μM) 14 6.5 4.7 8.3 14.5 8.6 20.3 - -

abe et al. 
200946 6 MM (6) PB 1000 ZOL (5 μM) 14 6.8 5.7 8.0 9.3 4.9 13.7 - -

Kobayashi et 
al. 201142 11 rCC (11) PB 100

3M3B1-PP 
(100 μM)

28 4.2 3.0 5.4 20.5 9.5 31.5 4 1.4 [5d]

Sakamoto et 
al. 201147 15

NSCLC 
(15)

PB 1000 ZOL (5 μM) 14 6.5 5.2 7.7 18.4 12.2 24.7 - -

Nicol et al. 
201144 18

MML (7)
OC (2)

CaC (3)
BC (2)
CC (1)

CvC (1)
DC (1)
aC (1)

L 700 ZOL (1 μM) NS 7.6 7.3 7.93 2.8 1.9 3.6 2 -

Abbreviations: aBP, aminobisphosphonate; aC, adenocarcinoma; BC, breast carcinoma; aC, colonic adenocarcinoma; CC, cholangiocarcinoma; CI, 
confidence interval; CvC, cervical carcinoma; DC, duodenal carcinoma; IL-2, interleukin-2; L, leukopheresis; MM, multiple myeloma; MML, metastatic 
melanoma; MU, mega unit; NSCLC, non-small cell lung carcinoma; OC, ovarian carcinoma; Pag, phoshhoantigen; PB, peripheral blood; rCC, renal cell 
carcinoma; U, unit; ZOL, zoledronate. 
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to γδ T cell-based immunotherapy. The capacity of Vγ9Vδ2 γδ 
T cells to kill malignant cells in vitro is well documented, and 
means of augmenting the cytotoxic activity of γδ T cells should be 
investigated. A number of studies have demonstrated the potential 
benefit of combining γδ T cells with therapeutic tumor-targeting 
antibodies.32,34 To evaluate the evidence in support of this notion 
we reviewed papers that reported the cytotoxicity of γδ T cells in 
vitro and in vivo, in the presence or in the absence of tumor-tar-
geting antibodies. The addition of an appropriate tumor-targeting 
antibody improved the cytotoxic activity of γδ T cells in 132 sepa-
rate experiments, reported in 6 different publications, based on 12 
different cell lines or 5 primary tumor tissues, providing a statisti-
cally significant improvement in 94/132 (71.2%) experimental set-
tings.3,4,15-18 These effect was observed in both hematological and 
solid tumor models, including CD20+ hematological malignancies, 
CD52+ lymphomas and v-erb-b2 avian erythroblastic leukemia 
viral oncogene homolog 2 (ERBB2)+ breast cancers. The addition 
of the anti-CD20 antibody rituximab significantly prolonged the 
clearance of malignant B cells from the circulation of cynomolgus 
macaques when combined with the γδ T cell-stimulator BrHPP.3 
In a mouse model of ERBB2+ breast carcinoma, the addition of 
the anti-ERBB2 antibody trastuzumab (Herceptin®) significantly 
increased tumor infiltration by Vγ9+ γδ T cells. In this study, mice 
treated with adoptively transferred γδ T cells and trastuzumab 
achieved a superior control of tumor growth, as compared with 
animals receiving γδ T cells alone, trastuzumab alone or vehicle.17

Discussion

γδ T cells are a potential alternative to αβ T cells for cellular 
immunotherapy. They have a number of advantages that could 

be exploited, not least the fact that they can be easily expanded 
in vivo upon the administration drugs with well established 
safety records in adults and children. The sequential nature of 
the lymphoid immune response is governed by the time required 
to expand sufficient effector numbers to generate antimicrobial 
or antitumor reactivity.60 The activation of γδ T cells in response 
to a range of stress signals such as NKG2D ligands, endogenous 
phosphoantigens, or TLR agonists is independent of HLA mol-
ecules. The kinetics of the γδ T-cell response in vivo is faster 
than that of the αβ T-cell response, as the former requires neither 
priming by dendritic cells in lymph nodes, nor clonal expansion. 
In an immunodeficient mouse model, adoptively transferred 
human Vγ9Vδ2 cells mounted almost immediate anti-bacterial 
responses following administration.61 γδ T cells also acquire pro-
fessional antigen-presenting function upon activation, implying 
that they may have a value as cellular vaccines that goes beyond 
their ability to exert cytotoxic functions.2,4,62

Adoptive transfer of T cells
The possibility to enhance antitumor immune responses using 

tumor-specific αβ T cells expanded ex vivo was first demonstrated 
in melanoma63 and RCC patients,64 from whom tumor-infiltrating 
lymphocytes (TILs) can be readily obtained. The isolation of TILs 
has indeed proved problematic in patients affected by most other 
tumor types, and no data are available on tumor-infiltrating γδ T 
cells. Without prior lymphodepletion, adoptively transferred TILs 
are short-lived and clinical benefits are transient. Lymphodepletion 
significantly improves the clinical benefit of this immunothera-
peutic regimen. In a cohort of melanoma patients, lymphodeple-
tion followed by adoptive T-cell transfer resulted in a response rate 
of 56% and many patients still remain disease-free at follow up 
(4–10 y).65 Interestingly, autologous γδ T cells expanded ex vivo 

Table 3. Clinical outcomes of commonly used second-line anticancer agents as compared with γδ T-cell immunotherapy.*

Disease Second-line treatments
CR PR SD PD

% 95% CI % 95% CI % 95% CI % 95% CI

advanced prostate 
cancer48

Prednisolone + docetaxel (n = 101, 3 
randomized controlled trials)

0 0 25.2 8.4–41.8 44.43 32–56.8 30.40 14.5–46.2

In-vivo expansion of γδT cells (n = 12, 
6 missing)

0 33.3 41.6 25.0

advanced renal cell 
carcinoma52

everolimus (n = 277, 1 randomized 
phase 3 study)

0 0 1.8 - 66.5 - 31.7 -

adoptive transfer of γδT cells (n = 21, 
7 missing)

4.8 0 0 42.9 52.4

In-vivo expansion of γδT cells (n = 15, 
4 missing)

0 0 0 0 66.7 33.3

advanced NSCLC53,54

erlotinib (n = 3324, 2 randomized 
controlled trials)

0.4 0.17–0.73 7.2
1.88–
10.89

33.9 4.9–43.4 58.5 6.9–72.1

Docetaxel (n = 385, 2 randomized 
controlled trials)

2.6 0.3–4.9 9.6 8.9–10.2 37.7 30.0–45.3 50.2 45.5–55.0

adoptive transfer of γδT cells (n = 24, 
1 missing)

0 0 54.2 45.8

*Data are pooled from clinical trials and standard of care treatments were selected based upon current UK or US guidelines for treatment of the tumors in 
question. a more detailed breakdown of γδT cell immunotherapy results is included in Table S2. CI, confidence interval; Cr, complete response; NSCLC, 
non-small cell lung carcinoma; PD, progressive disease; Pr, partial response; SD, stable disease.
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have been shown to persist in the circulation of cancer patients 
receiving IL-2 but no prior lymphodepletion for over 12 wk.45,66

TILs are unavailable for a majority of patients affected tumors 
other than melanoma and RCC, implying that T cells must be 
expanded or engineered ex vivo to generate a bulk population of 
tumor-reactive cells for adoptive transfer. The efficacy of adop-
tively transferred tumor-reactive αβ T cells can decrease upon the 
loss of antigen expression by malignant cells, which occurs fre-
quently in response to the selective pressure of therapy itself. γδ 
T cells, which recognize a broad range of stress signals emitted by 
malignant cells, are not subjected to this limitation. Moreover, as 
the cytotoxic potential of γδ T cells is independent of HLA mol-
ecules, limits the need for engineering in this sense. Nonetheless, 
the adoptive transfer of γδ T cells could be combined with T-cell 
engineering to enhance functions other than cytotoxicity.

γδ T cells as vaccines
A further advantage of γδ T cells over αβ T cells is that the 

former acquire professional antigen-presenting capacity upon 
stimulation, expressing increased levels of co-stimulatory mol-
ecules such as CD80 and CD86, as well as of molecules associ-
ated with the homing to lymph nodes.2-4,62,67.  γδ T cells also 
share some properties with NK cells and cytokine-induced killer 
(CIK) cells, such as the innate cytotoxic potential and the ability 
to mediate antibody-dependent cell-mediated cytotoxicity. The 
antigen-presenting capacity of dendritic cells has already been 
harnessed in clinical trials that have been running for over ten 
years.68 Adoptively transferred NK cells showed efficacy in meta-
static RCC,69 breast cancer,70 and malignant glioma patients.71 
The combination of innate cytotoxic and antigen-presenting 
functions raises the intriguing possibility that γδ T cells could be 
used as a cellular vaccine that would kill malignant cells in situ 
and cross-present tumor-associated antigens to αβ T cells, hence 
generating a potent and long-lasting immune response. γδ T cells 
can be expanded in vitro and in vivo and their role as antigen-
presenting cells, alone or combined with antibodies that enhance 
their effector functions, can be evaluated in clinical trials.

Overcoming inhibitory signals
The immunosuppressive nature of the tumor microenvironment 

is one of the biggest obstacles against successful immunotherapy. 
Strategies for unpicking these barriers are continuously progress-
ing, the discovery that blocking the PD-1/PD-L1 interaction sig-
nificantly reduces immune evasion and provides objective clinical 
benefits perhaps being the most recent example.72 Inhibiting the 
immunosuppressive activity of CTLA4 with the anti-CTLA4 
antibody ipilumumab is also highly effective in metastatic mela-
noma patients,73 and is likely to provide clinical benefits to patients 
affected by other malignancies, such as prostate cancer.74 In line 
with their central role in innate immunity, the activation of γδ 
T cells is controlled by a balance of activatory and inhibitory sig-
nals.10 Tumors are known to produce several mediators that inhibit 
γδ T and NK-cell functions including soluble NKG2D ligands as 
well as TGFβ1 and PGE

2
.10,13,75 However, compelling in vitro and 

in vivo evidence indicate that γδ T cells and antitumor antibodies 
can be successfully combined for the treatment of both hemato-
logical and solid malignancies,3,4,15-18 indicating that tumor-elicited 

immunosuppression can be overcome. The combination of γδ 
T cell-expanding agents and tumor-targeting antibodies could tip 
a failing immune response dominated by inhibitory cells such as 
T

regs
, myeloid-derived suppressor cells, and inhibitory/tolerizing 

dendritic cells76 and the activation of immune checkpoints medi-
ated by CTLA4 and the B7 protein family,77 toward a robust cyto-
toxic T-cell response. Although malignant cells accumulate higher 
amounts of phosphoantigens than healthy cells,1 an effect that 
is magnified by the administration of aminobisphosphonates,78 
this appears to be insufficient to fully overcome tumor-elicited 
immunosuppression. While TIL-derived γδ T cells derived will 
selectively kill transformed cells and spare healthy bystanders,79 
tumor-targeting antibodies may be required for achieving opti-
mal cytotoxic γδ T-cell responses. Thus, combining γδ T cell-
based immunotherapy with tumor-specific antibodies might spare 
healthy cells expressing tumor-associated antigens if the engage-
ment of the γδ TCR is also required for optimal effector functions. 
Moreover, this approach might result in full-blown activation of 
professional antigen-presenting cells at the tumor site. The com-
bination of γδ T cells with immunomodulatory and/or cytolytic 
antibodies is an attractive prospect for future clinical trials.

Conclusions

Successful immunotherapy relies on the control of the balance 
between antitumor cytotoxicity and immunological tolerance. In 
this context, adoptively transferred αβ T-cell populations potently 
attack specific targets but are limited by their specificity, dendritic 
cells lack cytotoxic functions of their own and NK cells have given 
inconsistent results in clinical trials.69-71 γδ T cells in combination 
with tumor-targeting antibodies might provide a direct but not 
antigen-exclusive response, potentially mediating not only antitu-
mor cytotoxic effects but also long-lasting protection upon antigen 
presentation. Results from Phase I and II clinical trials indicate 
that the efficacy of γδ T cell-based immunotherapy is comparable 
to that of conventional second-line therapies. Combining agents 
that promote γδ T-cell expansion and activation with cytolytic 
tumor-specific antibodies is a feasible and logical approach with an 
(expectedly) favorable toxicity profile.
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