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Abstract: In this paper we explore the ability of thermal analysis to check elastin and 

collagen integrity in different biomaterial applications. Differential Scanning Calorimetry 

(DSC) has been used to analyze the first and second order transitions of the biological 

macromolecules in the hydrated and dehydrated state. First, we report the characterization 

of control cardiovascular tissues such as pericardium, aortic wall and valvular leaflet. Their 

thermal properties are compared to pure elastin and pure collagen. Second, we present 

results obtained on two collagen rich tissues: pericardia with different chemical treatments 

and collagen with physical treatments. Finally, more complex cardiovascular tissues 

composed of elastin and collagen are analyzed and the effect of detergent treatment on the 

physical structure of collagen and elastin is brought to the fore. 

Keywords: elastin glass transition; collagen denaturation; differential scanning calorimetry; 

thermal stability 
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1. Introduction 

Development of biomaterials used as substitutes of the extracellular matrix for the replacement of 

cardiovascular tissues in associated pathologies (atherosclerosis, aneurysms and cardiac 

valvulopathies) or the realization of skin substitutes is a great challenge for repair medicine. 

Bioprosthesis conceiving from exogenic animal tissues is a promising issue to realize materials that 

mimic the mechanical properties of original tissues, allowing a repopulation by patients’ own cells [1-3].  

For two decades, detergent and enzymatic protocols have been optimized to obtain non antigenic 

extracellular matrices, preserving the main fibrillar proteins such as collagen, responsible for 

mechanical strength and elastin, responsible for elasticity [4-6]. Nevertheless, the durability of such 

bioprostheses must be improved by the mechanical stabilization of fibrillar proteins and their 

preserving against proteolytic degradation is necessary to a complete recellularization [7,8].  

The failure of the main materials results from a combination of degradation, calcification or 

inappropriate tissue overgrowth [9,10]. The mechanism of calcification is still unclear, but seems to be 

associated with both cell membrane remnants and glutaraldehyde treatment. Indeed this treatment, 

thought to reduce immunogenicity, ensures survival of the implant by stabilizing the xenogeneic tissue 

against protein degradation [11], by a cross-linking action, as well as protein denaturation induced by 

anticalcification treatments [12]. However, it can also induce cytotoxicity [13] and change the material 
mechanical properties [14,15].  

The present work is devoted the characterization of natural biomaterials for cardiovascular 

applications by the use of Differential Scanning Calorimetry (DSC). In this paper we chose to explore 

the ability of this calorimetric technique to extract thermal properties of collagen and elastin, and to 

check the integrity of these proteins in different biomaterials. The rich chemistry of collagen allows 

engineers to alter physical and chemical properties such as porosity, crystallinity and cross-links 

density. These in vitro characteristics allow controlled interaction with the host resulting in predictable 

tissue ingrowth and biodegradable rates [16]. The two first applications deal with chemical or physical 

modifications of collagen. The third application is devoted to the evaluation of structural modifications 

and possible damage of elastin and collagen in detergent treated aortic tissues. 

2. Results and Discussion 

2.1. Thermal Properties of Cardiovascular Tissues and Main Proteins 

In this first section, we report the thermal properties of three cardiovascular tissues widely used in 

medical applications: bovine pericardium, consisting mainly of collagen type I, which is a relatively 

simple and uniform tissue, porcine valvular leaflet and porcine aortic walls, which are more complex 

tissues, typically fiber reinforced composite materials [17]. In the aortic wall and valvular leaflet, the 

elastin content accounted for about 60% and 6% of the total dry weight while the corresponding values 

for collagen were 23% and 70%, respectively [18]. In order to specify the origin of the thermal 

transitions of the three tissues, the characterization of elastin (purified from bovine nuchae 

ligamentum) and collagen type I (extracted from Bovine Achille’s tendon) was performed. 
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2.1.1. Characterization in the Hydrated State 

Figure 1 displays the DSC thermograms (first scans) of fresh bovine pericardium, hydrated elastin 

and hydrated type I collagen. 

Figure 1. Differential Scanning Calorimetry (DSC) thermograms of bovine pericardium, 

collagen type I and elastin in the hydrated state recorded at 10 °C/min between −40 °C  

and 90 °C. 

 
 

The melting of ice, corresponding to freezable water, is observed as a large endothermic peak 

between −5 to 20 °C according to the tissue. This extrinsic transition is widely used to quantify the 

amount of freezable water in hydrated proteins and tissues (by dividing the area of the measured 

endothermic peak by 330 J/g, corresponding to the melting enthalpy of pure ice), and completes the 

thermogravimetric analyses that give access to the total amount of water. For the three samples, the 

total hydration level was shown to be superior to 1 g/g of dry protein. By a simple difference, the 

amount of unfreezable water—namely bound water can be calculated and was found equal to 40% (by 

weight of dry sample) in collagen and pericardium, and 35% in elastin. These values, which 

correspond to the filling of the first hydration shell of the proteins, are close to literature data for a 

wide class of proteins [19]; as elastin contains a large part of apolar residues, its ability to fix water is 

reduced when compared to collagen. The enlargement of the 60–80 °C range highlights the presence of 

a second endothermic phenomenon for collagen and pericardium, associated with the denaturation 

phenomenon of collagen. It is well-known that a characteristic feature of collagen is the triple helical 

structure of three left-handed polyproline type helices twisted into a right-handed superhelix. The 

formation of such a structure is due to the repeating sequence Gly-X-Y, where X and Y are often 

proline and hydroxyproline, respectively, and hydrogen bonding takes place between chains within the 

triple helix. On heating, the triple helix unfolds to produce random chains of gelatin [20], that can 

remain covalently linked to each other or not depending on the degree of heating [21,22]. The 

denaturation phenomenon -distinct from degradation- implies that the rupture of interchain hydrogen 



J. Funct. Biomater. 2011, 2                   

 

 

233

bonds leads to the formation of an amorphous polymer, called gelatin. The denaturation parameters 

that we found were hydrated collagen type I (Td = 78.3 °C and Hd = 47.8 J/g. These are close to the 

thermal parameters of fully hydrated rat tail tendon reported in the literature [23]: Td = 65.1 °C and  

Hd = 58.55 J/g. The high enthalpy of unfolding collagen immersed in water is thought to derive 

mainly from the breaking of hydrogen bonds forming the hydration network around the collagen 

molecules [24-26]. The hydrogen bonding may be dominated by the number and layout of the fixed 

hydrogen bonding sites on the collagen itself, e.g., C=O, N–H, and hydroxyl groups on  

hydroxy-proline, that are exposed to the solvent and available for supporting hydrogen-bonded solvent 

bridges [24-27]. The thermogram of bovine pericardium, a collagen rich tissue, presents some 

analogies with the collagen type I thermogram previously analyzed. The denaturation temperature of 

collagen in the pericardium is found at 69.8 °C, and the associated enthalpy is 61.7 J/g, as roughly 

observed in literature on cardiovascular tissues [4]. The differences observed between the denaturation 

parameters of bovine pericardium and collagen type I extracted from a bovine tendon can be explained 

by the differences in collagen type (in pericardium coexist type I and type III collagens), by the purity 

of the tissue (elastin and glycoaminoglycans are conserved in pericardium), and by the different 

packing of fibers inducing entropic effects. 

In contrast with collagen and bovine pericardium, the thermogram of elastin does not present any 

intrinsic endothermic peak; the only endothermic peak observed is associated with the melting of ice at 

around 0 °C. Contrary to collagen, elastin does not possess a long-range order, and although different 

secondary conformations in this protein, it can be considered as amorphous for the physical structure, 

which is in good agreement with the Tamburro’s model on labile, dynamic  turns in hydrophobic 

domains [28] and the Daggett’s model [29] that describes hydrophobic domains of elastin as compact 

amorphous structures. According to literature data, the only transition detectable for elastin is a glass 

transition, namely a pseudo-second order transition associated with a jump of the specific heat in DSC 

thermograms and due to the transition from a glassy to a rubber state [30-33]. We showed in a previous 

work [34] that water acts as a strong plasticizer for elastin, lowering the glass transition temperature Tg 

in a spectacular manner from 200 °C, in the dehydrated state, to the room temperature for a 30% 

hydration level. For higher hydration levels (>40%) the existence of a minimal glass transition 

temperature has been evidenced at 0 °C, when elastin fibers contain freezable water. In this case, the 

motions of some tens of nanometers along the polypeptidic chains are blocked until the beginning of 

ice melting. So in this case, the specific step of the glass transition is superimposed on the endothermic 

peak of ice melting as showed in the Figure 1. 

2.1.2. Characterization in the Freeze-Dried State 

Figure 2 shows the thermograms concerning the second scans of freeze-dried tissues (pericardium, 

aortic leaflet and aortic valve), collagen type I and elastin. 
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Figure 2. DSC thermograms of bovine pericardium, porcine valvular leaflet, porcine aortic 

wall, collagen type I and elastin in the dehydrated state recorded at 20 °C/min between 40 

and 250 °C after a first scan performed between 30 and 150 °C. 

 
 

The first scan performed between 40 and 150 °C is not shown, since it is only characterized by a 

broad endothermic peak around 100 °C associated with water bound departure for all the samples [18]. 

In the second scans reported here intrinsic transitions can be observed for all the samples. For collagen 

type I, the endothermic peak of denaturation is observed for Td = 225 °C, with an enthalpy area  

Hd = 7.05 J/g. These values, very distinct from what found in the hydrated state, are similar to 

thermal parameters of pure freeze-dried collagen generally observed in literature [23]. In this case, the 

value of the denaturation enthalpy of collagen for hydration <6% (corresponding to less than one mole 

of water per tripeptide) is assigned mainly to the breaking of the direct hydrogen bonds between alpha 

chains. This endothermic peak, that can be assigned as a first order transition is not reversible on 

successive scans in the dry state. In this case, only a jump of the specific heat is observed around  

200 °C, which is attributed to the glass transition of denatured collagen (i.e., gelatin), characteristic of 

its amorphous nature [18]. 

For elastin, a jump of the specific heat is observed at 200 °C, as previously observed in the  

literature [33]. This pseudo-second order corresponds to the glass transition of the dry protein. As for 

collagen denaturation, there is a drastic shift toward high temperature of the glass transition, due to the 

replacement of hydrogen bonds between the polypeptidic chain and water by hydrogen bonds between 

polypeptidic chains without water bridges, associated with brittle and stiffer elastin.  

The thermogram of freeze-dried bovine pericardium presents strong analogy with the pure collagen 

thermogram. The denaturation phenomenon is shifted toward high temperature when compared with 

fresh tissue, with Td = 214 °C and Hd = 12.3 J/g. The differences observed between the denaturation 

parameters of bovine pericardium and pure collagen type I extracted from bovine tendon can be 

explained by the arguments previously given in the hydrated state.  
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The thermal characteristic of the valvular leaflet also shows strong analogies with the collagen and 

pericardium thermograms: an endothermic peak associated with collagen denaturation is observed at 

Td = 232.2 °C with Hd = 10.3 J/g. Considering that the valvular leaflet contains 70% of collagen and 

only 6% of elastin, it is coherent to observe only the thermal signature of collagen in this kind of 

tissues. A previous work showed a strong analogy between the thermograms of human valvular leaflet 

and porcine valvular leaflet, confirming the ability of porcine bioprostheses to replace human aortic 

valves at a molecular level [35,36].  

Finally, the thermogram of aortic wall is the more complex one: an endothermic event associated 

with the collagen denaturation is evidenced at Td = 234.2 °C with Hd = 3.9 J/g. It is worth noting that 

the value of denaturation enthalpy value is roughly proportional to the percentage of collagen in the 

studied tissue (3.9 J/g for the aortic wall, containing 23% of collagen, and 10.3 J/g for the valvular 

leaflet, containing 70% of collagen). The thermal signature of elastin is also evidenced as a step of the 

specific heat at 204.7 °C. 

The assignation of thermal transitions can be performed in control cardiovascular tissues, in the 

hydrated and dehydrated states. The evolution of these parameters can be used to check the integrity 

of collagen and elastin in biomaterials; on this basis three applications are detailed in the  

following sections. 

2.2. First Application: Classification of Chemical Treatments for the Stabilization of Collagen in 

Bovine Pericardium 

In this application we focus on the characterization of collagen in acellular bovine cardiovascular 

tissues, fresh or glutaraldehyde treated, and stored in different solutions (phosphate buffered saline 

(PBS), ethanol, octanol and gluateraldehyde), to determine whether the resulting fibrous material is 

structurally preserved. Figure 3 shows the DSC second thermograms of the differently treated and 

freeze-dried samples. 

Figure 3. DSC thermograms of bovine pericardium samples in the dehydrated state 

recorded at 20 °C/min from 30 to 250 or 280 °C. 
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The thermal events occurring in the 180–280 °C zone, namely the denaturation window, is the zone 

of interest in this study. The denaturation peak of the control sample, stored in PBS, is quite similar to 

the endothermic denaturation of pure collagen. It is noteworthy that the glutaraldehyde treated sample, 

stored in octanol, possesses a well-defined endothermic denaturation that can be compared, for the 

general shape, with the control sample stored in PBS. In Table 1 we reported the corresponding 

denaturation temperatures Td computed from a statistical study. 

Table 1. Denaturation parameters of the bovine pericardium samples possessing a  

well-defined denaturation peak. 

 Td (°C) Hd (J/g)  

\PBS 214.8 ± 0.8 12.3 ± 2.4 

Glu\Oct 230.0 ± 0.6 7.8 ± 0.7 

Significant difference on Td mean values: p = 1.13 × 10−4; Significant difference on Hd values:  

p = 4.23 × 10−9. 

 

The denaturation temperature is shifted toward high temperature with glutaraldehyde. As for the 

other samples, we did not detect the well-shaped denaturation peak expected in this zone of 

temperature. A step of the specific heat can be detected on Glu/PBS and Glu/Glu samples, certainly 

associated with the glass transition of gelatin. 

The study of the thermal denaturation of collagen in differently treated bovine pericardium samples 

provides us with interesting information on the effects of treatment on the triple helical structure and 

stability of this protein. The control sample possesses a well-defined endothermic denaturation at  

215 °C, as is generally expected for lyophilized collagenic material. Another tissue presents a  

well-shaped denaturation, namely the glutaraldehyde sample stored in octanol. In this case, the 

denaturation temperature is shifted toward high values, allowing us to conclude that the triple helical 

domains of collagen are preserved and above all, stabilized by glutaraldehyde and preserved by octanol 

storage. This result is in good agreement with several studies that showed the stabilizing effect of 

glutaraldehyde on biological tissues [5,6]. The cross-linking action of this product can explain this 

peculiar behavior [3,5,7]. That is the reason that glutaraldehyde is used in many graft procedures, 

stabilizing and preventing proteins from degradation.  

All the other treatments have a harmful influence on the preservation of triple helical structure. 

Storage in ethanol of the untreated sample seems to change the triple helical structure of collagen, 

increasing the heterogeneity (multiple peaks) and facilitating the uncoiling of the protein (weak 

denaturation enthalpy). This assumption must be associated with the texture of the air-dried sample 

(strong rigidity) that does not have the features of the freeze-dried sample stored in PBS; all the 

samples treated with this procedure have this peculiar feature. The denaturation of the sample treated 

with glutaraldehyde and stored in PBS is very weak and broad, and the denaturation, hardly detectable, 

is shifted toward high temperature. We can conclude that the denaturation phenomenon is impaired by 

the combination of glutaraldehyde treatment and storage in PBS buffer. 

The combination of glutaraldehyde treatment and ethanol storage involves drastic alterations of the 

helical structure of collagen. The fraction of denatured collagen is certainly important. This aspect of 
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the air-dried sample (modification of color and rigidity, from all the series) is also indicative of 

profound chemical and/or structural modifications.  

As for the sample treated with glutaraldehyde and stored in the glutaraldehyde solution, the 

denaturation phenomenon is not well defined; it reveals a narrow peak or a very weak peak. Some 

triple helical domains must subsist, differently cross-linked. The heterogeneity and the fraction of 

denatured collagen are important. 

This work on bovine pericardium samples has allowed to propose a classification of different 

chemical treatments and storage conditions: the best conditions for the preservation of collagen 

structure and the enhancement of triple helical stabilization are the glutaraldehyde treatment followed 

by octanol storage; this procedure must be now applied to the conception of bioprosthetic heart valve, 

in order to increase the allografts’ durability in vivo. 

2.3. Second Application: Effect of Low Temperature Plasma Jet on Thermal Stability of Type I Collagen 

Non-thermal and low-temperature plasmas generated at atmospheric pressure have been extensively 

used in various biomedical applications such as sterilization and decontamination [37,38], tissue 

engineering and biomaterial treatment for their functionalization [39,40]. More recently they have been 

used in plasma medicine for blood coagulation, disinfection of living tissues involving wound healing 

and, more generally, for the interaction of plasmas with eukaryotic cells [41-43]. The non-thermal and 

low-temperature plasmas of our interest are generated at atmospheric pressure by corona or dielectric 

barrier discharges under specific geometry of electrode configuration. In the present work, for the 

collagen treatment we used a non-thermal and low-temperature plasma jet generated in ambient air and 

producing various active species that are in contact with collagen fibers during the remote  

plasma treatment. 

2.3.1. Dehydrated State 

Figure 4 shows the DSC thermograms of control collagen and collagen treated by the plasma jet for 

several time exposures in the freeze-dried state. 

The thermal events occurring in the 180–280 °C range are more particularly focused. Table 2 

displays the corresponding denaturation temperatures Td (defined as the maximum of the peak) and 

the corresponding enthalpies of denaturation Hd computed from a series of measurements. 
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Figure 4. DSC thermograms of freeze-dried collagens (control and plasma jet treated 

collagens) recorded at 20 °C/min between 40 and 250 °C. 

 

Table 2. Denaturation parameters of freeze-dried collagens (control and plasma jet treated). 

Sample Hd (J/g) Td (°C) 

Control 7.05 225 

5 min 13.7 215–223 
10 min 8.42 215–220–230 

60 min 3.7 217–220–231 

 

The denaturation parameters of control freeze-dried collagen Td =225 °C and Hd = 7.05 J/g were 

discussed in section 2.1.2. 

With the plasma exposure, several changes are noted on the denaturation event: multiple peaks 

appear even for 5 min exposure. The denaturation becomes a complex event, implying zones that 

denature at lower temperature (Td = 215 °C), with a large denaturation enthalpy. For a 10 min 

exposure, there are denaturing zones at temperatures Td = 215 °C and 220 °C, and denaturing zones at 

a higher temperature (Td = 230 °C), the total denaturation enthalpy being similar to control collagen 

one. For a 60 min exposure, the different zones of denaturation are still present on thermograms, but in 

this case the total enthalpy of denaturation is drastically decreased. Previous research on type I 

collagen irradiated by UVB [24] has reported the existence of denaturation peaks shifting towards low 

temperature and higher temperature, and attributed to destabilized zones and stabilized zones, 

respectively. By comparison with data on differently treated collagens, the destabilized zones could be 

attributed to the reduction of collagen in polypeptides of different molecular weight [24]. Nevertheless, 

the high enthalpy associated with destabilized zones for the 5 min exposure is a feature of a triple 

helical domain. A similar phenomenon was observed by calorimetric experiments for short time 

exposure to UVC ( = 254 nm) and it was addressed to an intermediate state before degradation or 

cross-linking. The stabilized zones can be attributed to a cross-linking of collagen; for 10 min 

exposure, the total enthalpy is slightly greater than the enthalpy corresponding to control collagen, 

meaning that the stabilization is mainly entropic, such as induced by an increase in the packing density 
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of collagen molecules in the fibers. Such a phenomenon was reported both with UVB [24] and  

UVC [44] irradiation or with the presence of a photosensitizing agent and laser irradiation in the 

visible spectra [45]. As the low temperature plasma jet generates radicals, excited and ionized species 

and also UV emissions, cross-linking of collagen in our experiments could be partly attributed to the 

UV emissions of plasma jet. However, this affirmation must be considered with care because it has to 

be confirmed by a plasma jet treatment of the collagen done with and without an UV filter. It must be 

recalled that collagen type I contains phenylalanine and tyrosine, aromatic residues that are the main 

absorber of UV light, and that are shown to decrease with UV irradiation, due to a possible aggregation 

of the fibers [46]. For a 60 min irradiation, the shape of denaturation peaks and the low value of the 

associated enthalpy suggest an important degradation of collagen triple helical structure. The optimum 

time seems to be between 10 and 60 min. 

As observed in the case of UV irradiation, with the increasing exposure time to the low temperature 

plasma jet, peptide bond cleavage becomes predominant. The relative proportion of these two 

competing reactions, both cross-linking and bond cleavage is unknown but was shown to depend on 

the water content and the oxygen tension [24]. That is the reason for which similar experiments were 

also performed on hydrated collagen. 

2.3.2. Hydrated State 

Figure 5 displays the DSC thermograms of control hydrated collagen (i.e., without plasma 

treatment) and hydrated collagen treated by the plasma jet for gradual time exposures (up to 90 min). 

Figure 5. DSC thermograms of hydrated collagens (control and plasma jet treated 

collagens recorded at 10 °C/min between 10 and 90 °C. 

 
 

Some authors [23] showed that the denaturation enthalpy of collagen was constant above 6 moles of 

water per tripeptide of collagen (corresponding to 0.4 g of water/g collagen), and that the denaturation 

enthalpy was constant above 30 moles of water per tripeptide (corresponding to 1.9 g of water per g of 

collagen). In the present study, the levels of hydration were checked to be largely superior to these 
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limits, allowing us to compare the denaturation parameters with time without fluctuations due to 

distinct hydration. 

A complex endothermic peak addressed to the denaturation phenomenon of hydrated collagen is 

detected for all the samples, splitting into two components or more for 10 min, 45 min and 90 min of 

plasma exposure times. Table 3 displays the corresponding denaturation temperatures Td and the 

corresponding enthalpies of denaturation Hd computed from a series of measurements. 

Table 3. Denaturation parameters of hydrated collagens (control and plasma jet treated). 

Sample Hd (J/g dry collagen) Td (°C) 

Control 47.8 78.3 
10 min 66.4 75.1–79.9 

20 min 48.8 76.5 
45 min 70.6 75.2–79.1 

90 min 126.2 78.0–85.1 

 

The denaturation parameters of control hydrated collagen (Td = 78.3 °C and Hd = 47.8 J/g) were 

discussed in section 2.1.1.  

For an exposure time of 10 min, the split of the denaturation peak can be attributed to destabilized 

and stabilized zones, showing in this case, as in the dehydrated one, the competition between two 

antagonist processes: reduction into polypeptides of various molecular weights and cross-linking of 

collagen. The value of enthalpy indicates a conservation of the triple helical structure. Nevertheless, a 

qualitative comparison between the two peaks shows that the destabilization mechanism is dominant. 

For an exposure time of 20 min, stabilized zones and destabilized zones must be roughly formed in 

equal parts, giving rise to a broad and complex denaturation peak. For a 45 min exposure, the  

cross-linking mechanism appears to be the main phenomenon according to peak height and area.  

Finally, a special feature is noticed for an exposure time of 90 min. Contrary to the evolution at long 

exposure time previously reported in the dehydrated case, with a drastic decrease of the enthalpy, in 

this hydrated case a sharp and intense peak is detected at 231 °C, corresponding to a highly stabilized 

collagen domain. The peak previously attributed to destabilized zones is also shifted towards higher 

temperature, the temperature of the peak maximum being analogous to the control collagen one. So the 

cross-linking mechanism is rather distinct from that observed in the dehydrated sate, and seems better 

to obtain highly stabilized samples. 

The present work of the thermal denaturation of collagen in differently treated collagen samples 

presents us with interesting information on the effects of the low temperature plasma jet treatment on 

the triple helical structure and the stability of this protein. There is a competition between reduction of 

collagen in polypeptides and cross-linking mechanism. In the freeze-dried state, the destabilization of 

the triple helical structure is the main event for the longest exposure times. The feature is distinct when 

collagen I fibers are exposed to the plasma jet in the hydrated state. In this case, the cross-linking 

phenomenon begins predominantly for the longest exposure times (between 45 min and 90 min). 

Therefore, it is clear that the plasma jet treatment of freeze-dried fibers must be avoided.  

Anyway, the present exploratory work is a first step to determine the best conditions for the 

preservation of the collagen structure and the enhancement of triple helical stabilization. However, as 
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plasma jet produces many active species (radicals, excited and ionized species and also photon 

emissions from UV up to near Infra-Red range), future experiments will be done in order to identify 

the most active species by using, for instance, filters for UV emissions and charged  

particle impacts.  

Furthermore, the present plasma treatment is first applied to collagen type I and pericardium. So, it 

will be interesting to extend this procedure to other biomaterial tissues to provide interesting fibrous 

material for the conception of bioprosthetic materials. Lastly, it will be also very interesting to study 

the biocompatibility and the cellular adhesion and proliferation of the collagenous biomaterials 

exposed to the low temperature plasma jet. 

2.4. Third Application: Comparison of Detergent Treatments for Cardiac Valves Bioprostheses 

One major problem is the elaboration of the most appropriate treatment for removal of cell debris 

and maintenance of the structural integrity of the collagen/elastin matrix. In this study, two multi-step 

extractions (TRI-COL and SDS extractions) have been achieved on porcine aortic tissues in order to 

obtain acellular matrices as used for cardiac bioprostheses [47]. The evaluation of structural 

modifications and possible damages on extracellular matrix fibrous proteins has been investigated by 

means of DSC. 

Since preliminary DSC scans are characteristic of proteins-water interactions, few differences between 

differently treated tissues have been noted. In this investigation, we focus on the evolution of the protein 

transitions of aortic wall and valvular leaflet following treatment with SDS. To precisely determine the 

influence of the detergent treatment on the proteins physical structures, second thermograms corresponding 

to the TRI-COL and SDS treated aortic tissues have been reported in figure 6. 

Figure 6. DSC thermograms of freeze-dried porcine aortic tissues (TRI-COL and SDS 

treated tissues) recorded between 40 and 250 °C recorded after a first scan performed 

between 40 and 150 °C. 
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2.4.1. Valvular Leaflet 

The comparison between the two scans clearly shows a shift of the collagen denaturation 

temperature towards the low values for the SDS treated leaflets (from 232 °C to 225 °C). A statistical 

analysis performed on a series of measurements confirms the significance of the results (p < 0.00005, 

see table 4); on the other hand, the denaturation enthalpy seems also to decrease with SDS treatment 

but analysis of values shows that it is not reduced in a significant manner (p > 0.05). 

Table 4. Transition parameters from DSC (second scans) for differently treated leaflets and 

aortic walls. 

 collagen elastin 
 Hd denaturation (J/g) Td denaturation (°C) Tg elastin (°C) 

TRI-COL leaflet 10.33 ± 0.54 232.3  0.4 Not meas. 
TRI-COL aortic wall 3.89 ± 0.33 234.2  0.5 204.7 ± 0.4 

SDS leaflet 
 

11.65 ± 0.4 224.9  0.7 Not meas. 

SDS aortic wall 3.04 ± 0.38 228.6 ± 0.9 196.7 ± 0.5 

 

2.4.2. Aortic Wall 

In a similar way to that previously described, the influence of SDS extraction on the aortic wall 

phase transitions has been studied by the comparison of the DSC thermograms. On one hand, the first 

order transition associated with collagen denaturation undergoes the same evolution as previously 

shown in the case of leaflet: with reference to the TRI-COL treatment the temperature transition is 

lowered from 234 °C to 229 °C after SDS treatment (p < 0.005), while the denaturation enthalpy is not 

subjected to significant changes. On the other hand, a significant decrease of the elastin temperature 

glass transition with SDS (from 205 °C to 197 °C, p < 0.005) is noted.  

The DSC technique is well suited to reveal the effects of SDS on the proteins structures; indeed the 

comparison between the differently treated tissues thermograms shows that SDS acts on all intrinsic 

transitions in a similar manner, i.e., a shift toward the low temperature values. The decrease of 

collagen temperature denaturation after SDS treatment has been observed previously in solution either 

by DSC technique or shrinkage [48,49] and had been interpreted as a loss of collagen thermal stability. 

The SDS treatment does not denature collagen in the sense that triple helical domains are conserved, but, 

as shown by transmission electron microscopy, the quarter-stagger conformation seems less stable [12]. 

The lowering of elastin glass transition temperature with SDS is in accordance with previous works on 

SDS/elastin interactions: SDS is an anionic hydrophobic ligand whom release rates from fibrous 

elastin on repeated washing with an SDS free buffer are much smaller than those from powder  

elastin [50] and therefore could be residual in the extracted samples. This component could alter the 

mechanical properties of elastin either by binding to the polypeptidic chains within the fibers [51,52] 

or rather, as it was suggested [50], by binding to the interfibers spaces and outer surfaces of the fibers.  

In this investigation, the previously reported denaturing action of SDS on collagen fibers has been 

correlated to changes of specific structural parameters in comparison with TRI-COL treatment which 



J. Funct. Biomater. 2011, 2                   

 

 

243

appeared to be devoid of such evident destabilizing effects and to preserve the structural integrity of 

collagen and elastin network in both valvular leaflet and aortic wall. 

3. Experimental Section 

3.1. Preparation of the Samples 

3.1.1. Bovine Pericardia 

Six types of tissues were prepared using different treatments and storage conditions as  

detailed below. 

- Control samples are fresh tissue stored in PBS: bovine pericardium was obtained fresh from the 

abattoir and placed in chilled phosphate buffered saline (pH 7.4) until the time of analysis or 

implantation. Extraneous fat or muscle was removed and sections with heavy vasculature or attached 

ligaments were discarded. These samples are referred to as control or /PBS. 

- Fresh tissue stored in 80% ethanol: fresh bovine pericardium stored in chilled PBS was transferred to 

80% ethanol buffered HEPES (10mM) solution for 3 days prior to analysis. These samples are referred 

as /Eth. 

- Glutaraldehyde treated, PBS stored: fresh bovine pericardium stored in PBS was transferred to a 

buffered solution of 0.25% glutaraldehyde for 1 week. The tissue was transferred to chilled PBS for 3 

days prior to analysis. These samples are referred as Glu/PBS. 

- Glutaraldehyde treated, stored in 80% ethanol: glutaraldehyde treated bovine pericardium was 

transferred to 80% ethanol buffered HEPES (10mM) solution for 3 days prior to analysis. These 

samples are referred as Glu/Eth. 

- Glutaraldehyde treated, stored in octanol: glutaraldehyde treated bovine pericardium was transferred 

to 5% octanol/40% ethanol solution for 3 days prior to analysis. These samples are referred as 

Glu/Oct. 

- Glutaraldehyde treated, stored in glutaraldehyde: fresh bovine pericardium stored in PBS was 

transferred to a buffered solution of 0.25% glutaraldehyde for 1 week prior to analysis. These samples 

are referred as Glu/Glu. 

Prior to DSC and TSC experiments, each of the tissues were flash frozen in liquid nitrogen and freeze-

dried in a Freezone 4.5 freeze dry system (Labconco Corp., Kansas City, MO, USA). 

3.1.2. Collagen Treated by the Plasma Jet 

Commercial insoluble type I collagen (Fluka Chemie AG, Switzerland) was extracted from bovine 

Achilles tendon and available in the form of air-dried fibers. 

The low temperature plasma jet used in the present work for the collagen treatment has been the 

subject of a patent [53]. The measured plasma temperature on the top of the jet, that has a length of 

about 1 cm, does not exceed 27 °C. The plasma jet is generated directly in the ambient air at 

atmospheric pressure and launched by itself without any system of gas inlet feed that making it very 

easily transportable because there is neither gas bottle nor gas pumping. It is a low-temperature plasma 
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generated by a specific corona discharge design giving a natural repetitive discharge current with a 

frequency of about 20 kHz under a high voltage power supply. 

Treatment in the freeze-dried state: Collagen fibers were compressed into pellets (thickness  

0.5 mm, diameter 10 mm) and each face of the pellet was exposed to the plasma jet during 5, 10 and 

60 min at ambient temperature (20 °C). 

Treatment in the hydrated state: 80 mg of collagen fibers were placed in 7 mL of deionized water, 

equilibrated for 1 hour so that the fibers were swollen and subsequently exposed to the plasma jet 

during 10, 20, 45 and 90 min under stirring at ambient temperature (20 °C). A set of samples were then 

carefully put down absorbent paper to remove excess water before thermal analysis. Another set of 

samples were freeze-dried again before further thermal analysis. 

Bovine pericardium was obtained fresh from the abattoir and placed in chilled phosphate buffered 

saline (pH 7.4) until the time of analysis. Extraneous fat or muscle was removed and sections with 

heavy vasculature or attached ligaments were discarded. Then, 80 mg of hydrated bovine pericardium 

(strips 1 mm × 10 mm × 10 mm) were exposed to the plasma jet during 20 and 45 min. Thermal 

analysis was performed immediately after treatment. 

3.1.3. Porcine Valvular Leaflets and Porcine Aortic Walls 

Aortic roots comprising terminal part of the aortic wall, sinus valvularis and corresponding leaflets 

were freshly dissected from the heart of young pigs. One set of such samples was suspended in a 

degassed physiological buffer (50 mM HEPES, 0.1 M NaCl, pH 7.4) containing protease inhibitors  

(5 mM EDTA, 2 mM PMSF, 5 mM NEM, 5 mM Benzamidine, 1 mM Iodoacetamide), 10 mM sodium 

ascorbate and 10% DMSO. The surrounding solution was gently stirred at 4 °C for 3 hours under N2 

atmosphere. Then samples were extracted in the same conditions by replacing DMSO with 1% (w/w) 

SDS at 37 °C for 16 h and for further 3 × 16 h periods in the absence of protease inhibitors. 

Another set of samples was treated initially in the same conditions as the first set but replacing the 

physiological buffer with hypotonic, 10 times diluted, PBS buffer pH 7.4. Then DMSO was replaced 

with 1% (w/w) Triton X-100 and samples were extracted for 10 h at 4 °C in the same conditions. After 

a further 10 h extraction in the absence of protease inhibitors, Triton X-100 was replaced by 10 mM 

Sodium Cholate and further extracted for 2 × 10 h periods at room temperature. Samples treated with 

Triton and Cholate as above will be further referred to as TRI-COL samples.  

Both sets of samples were then washed with 10% isopropanol, first in saline water and second in 

saline and deionized water before freeze-drying and drying under reduced pressure over P2O5. 

3.2. Differential Scanning Calorimetry (DSC) 

The phase transition thermograms were recorded with a DSC7 differential scanning calorimeter 

from Perkin Elmer. The temperature and energy scales were calibrated using the manufacturer's 

instructions with Mercury, Indium and Tin as standards. Samples of 5 mg of weight were sealed in 

aluminum pans. Empty pans were used as references. Thermal analysis is mainly performed to get 

insight into the denaturation phenomenon of collagen, which is known to occur in the 40–80 °C in the 

hydrated state and between 180 and 230 °C in the dehydrated state. That is the reason why 

investigations in the hydrated state were performed between −40 and 90 °C with 10 °C/min heating 
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rates, in hermetic pans. Investigations in the dehydrated state were performed between 30 °C and  

250 °C with 20 °C/min heating rates, in non-hermetic pans. Determination of transition parameters was 

performed with Origin software. 

4. Conclusions 

This work shows the ability of Differential Scanning Calorimetry to check the integrity of elastin 

and collagen in different kinds of biomaterials analyzed in hydrated conditions, physiological 

conditions, or in the freeze-dried state, avoiding the extrinsic response of water. The thermal stability 

of the triple helical domains of collagen, an ordered biopolymer, is directly related to the denaturation 

parameters—temperature and enthalpy of denaturation—that can be compared in the different 

biomaterials, allowing a classification of the different treatment of cellular extraction or collagen 

stabilization. The physical structure of elastin, an amorphous biopolymer, is connected to its glass 

transition. The comparison between the values of the glass transition temperature can reveal 

differences in the elastin network and allows predicting the mechanical properties. This work will be 

completed in a following paper by dielectric analyses (thermally stimulated depolarization  

currents-TSDC) performed on the biomaterials studied here. Dielectric techniques give more detailed 

information on the molecular dynamics and chain dynamics of collagen and elastin, more particularly 

on localized motions (secondary relaxations) and on amorphous phase.  
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