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ABSTRACT

Fusion genes represent an important class of
biomarkers and therapeutic targets in cancer.
ChimerDB is a comprehensive database of fusion
genes encompassing analysis of deep sequenc-
ing data (ChimerSeq) and text mining of publica-
tions (ChimerPub) with extensive manual annota-
tions (ChimerKB). In this update, we present all
three modules substantially enhanced by incorpo-
rating the recent flood of deep sequencing data
and related publications. ChimerSeq now covers all
10 565 patients in the TCGA project, with compila-
tion of computational results from two reliable pro-
grams of STAR-Fusion and FusionScan with sev-
eral public resources. In sum, ChimerSeq includes
65 945 fusion candidates, 21 106 of which were
predicted by multiple programs (ChimerSeq-Plus).
ChimerPub has been upgraded by applying a deep
learning method for text mining followed by exten-
sive manual curation, which yielded 1257 fusion
genes including 777 cases with experimental sup-
ports (ChimerPub-Plus). ChimerKB includes 1597 fu-
sion genes with publication support, experimental
evidences and breakpoint information. Importantly,
we implemented several new features to aid estima-
tion of functional significance, including the fusion
structure viewer with domain information, gene ex-
pression plot of fusion positive versus negative pa-
tients and a STRING network viewer. The user in-
terface also was greatly enhanced by applying re-
sponsive web design. ChimerDB 4.0 is available at
http://www.kobic.re.kr/chimerdb/.

INTRODUCTION

Fusion genes continue to serve as an important source of
biomarkers and therapeutic targets in various types of can-
cer. Since the groundbreaking discovery of BCR–ABL1 fu-
sion gene in leukemia, numerous driver fusion alterations
have been identified as druggable targets, including genes
such as TMPRSS2, ALK, RET, FGFR3, ROS1 and ESR1,
leading to development of targeted therapies (1,2). Ad-
ditionally, many fusion genes function as biomarkers for
specific cancer types as can be seen in the examples of
DNAJB1–PRKACA fusion in fibrolamella carcinoma (3)
and EWSR1–FLI1 in Ewing’s sarcoma (4). Furthermore,
a number of fusion genes have been identified as prognos-
tic markers with biological roles. For example, fusion events
in metastatic ER-positive breast cancer are more frequent
than in primary cases, suggesting fusions as biomarkers of
advanced and aggressive disease (5). Thus, fast and reli-
able identification of fusion genes is increasingly relevant
for clinical and pharmaceutical applications.

Since the last update of ChimerDB 3.0 (6), an enormous
amount of RNA-Seq data, the major source of mining fu-
sion transcripts, has been released in public. The TCGA
dataset represents the largest collection including 13 786 tu-
mor samples in 33 cancer types, which were analyzed by
the following two groups independently. Verhaak and col-
leagues built the TumorFusions database (7) that identified
20 731 gene fusions from 9966 tumor samples and 648 nor-
mal specimens in the TCGA database applying their own
computational pipeline PRADA (8). The Fusion Analysis
Working Group (FAWG) of the TCGA research network
investigated 9624 tumors using multiple fusion calling tools
and identified 25 664 ‘reliable’ fusion events (9).

Reflecting the importance of fusion genes in cancer, nu-
merous algorithms and databases have been developed to
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Figure 1. Overview of ChimerDB 4.0. Each number indicates the number of unique gene pairs from the relevant resources.

predict and catalog the fusion genes. Li and colleagues car-
ried out comparative performance test for 12 public pro-
grams (10). Several more recent programs such as GFu-
sion (11), FusionScan (12) and STAR-Fusion (13) claimed
to have achieved higher sensitivity with less false posi-
tives. In addition, with so many fusion candidates predicted
from transcriptome data, it is also critical to rapidly as-
sess their reliability, functional significance and biologi-
cal roles. Thus, data aggregation and functional annota-
tion are necessary, ideally with powerful visualization sup-
port. INTEGRATE-Vis is a comprehensive visualization
tool for gene fusion events (14). FusionGDB provides ex-
tensive functional annotations for fusion events aggregated
from public resources such as TumorFusions (7), TCGA
FAWG (9) and ChiTaRS 3.1 (15). More recently, Fusion-
Hub introduced an integrated web platform that supports
both annotation and visualization for the largest collection
of fusion gene datasets aggregated from 24 resources (16).

The previous version ChimerDB 3.0 was a unique effort
to provide comprehensive pictures of fusion genes consist-
ing of several modules with different purposes––ChimerKB
as a knowledgebase with extensive manual annotation,
ChimerPub as a text-mining utility for identifying fusion
genes from PubMed abstracts and ChimerSeq to aggregate
the prediction results by analyzing transcriptome sequenc-
ing data. To the best of our knowledge, ChimerPub was the
first attempt of using text-mining technique to catalog the
fusion gene events from the literature. In this update, we
describe improvements for each of the three modules and
new tools implemented to aid evaluating functional signifi-
cance of fusion genes. Unlike other resources described ear-
lier, ChimerDB provides a wide range of information en-
compassing known fusion genes and literature reports as
well as candidates from deep sequencing data. ChimerDB

would continue to be a comprehensive up-to-date database
of fusion genes.

SYSTEM UPDATE AND METHODS

The overall procedure and contents of ChimerDB 4.0 are
summarized in Figure 1. The tripartite module design re-
mains unchanged, but each module was substantially im-
proved. We have developed a new ‘deep learning’-based
text-mining method, which was applied to PubMed ab-
stracts to identify 728 new fusion gene entries in ChimerPub
update. Importantly, we manually scrutinized the full text of
candidate-reporting papers to annotate the fusion break-
points and experimental evidences as well as to remove
false positives. ChimerSeq re-analyzed the whole TCGA
transcriptome data using recently developed reliable pro-
grams and combined the results with those of TumorFu-
sions and the TCGA FAWG. The number of patients be-
came more than twice the previous version. ChimerKB
was updated to reflect new authentic fusion genes identi-
fied from ChimerPub update after extensive manual cura-
tion. Methods for building ChimerSeq and ChimerPub are
described later with further details provided in the Supple-
mentary Information.

ChimerSeq module

ChimerSeq module analyzed RNA-Seq data available in
public and aggregated the results from other databases
or computation results. ChimerDB 3.0 covered 4569 tu-
mor samples in 23 cancer types in the TCGA project. In
this update, we re-analyzed 10 565 tumor samples across
33 cancer types downloaded from the GDC data por-
tal of NCI. We have also analyzed 1144 normal samples
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from the TCGA and SRA (E-MTAB-2836, E-GEUV-1,
GSE122401) archives to filter out germline fusions.

Our main objective was to reduce the number of false
positives, which would lead to unnecessary efforts in
the validation procedure. We used two high-performance
fusion detection tools to analyze all TCGA RNA-Seq
data––FusionScan (12) and STAR-Fusion (13). STAR-
Fusion was added because of its high precision and fast
computation. We kept the fusion candidates with ≥2 junc-
tion reads or with 1 junction read and ≥2 spanning reads.
Fusions from the same gene family or from the paralogous
genes were removed because of uncertainties in read align-
ments. We also filtered out fusion genes of germline ori-
gin that were observed in the pool of 1144 normal sam-
ples. Of note, however, several well-known fusion genes
such as TMPRSS2–ERG fusion were identified in a few
normal samples from the TCGA cohort. Thus, we res-
cued such fusion cases present in ChimerKB with litera-
ture evidence. The result was merged with two other pub-
lic resources that analyzed the same dataset (TumorFusions
and the TCGA FAWG). Additionally, we integrated the re-
sults from TopHat-Fusion prediction (17), EST and mRNA
analysis from ChimerDB 2.0 and ChiTaRS 2.1 as included
in ChimerDB 3.0. Most TCGA samples were analyzed by
five independent programs or pipelines. We collected fusion
cases called by multiple programs as the ‘ChimerSeq-Plus’
group representing a reliable list of fusion gene candidates
in cancer.

Functional annotation for fusion genes is important in
assessing their significance in cancer. We amassed the gene
expression and copy number data of the TCGA samples
from the UCSC Xena (https://xena.ucsc.edu). Gene lists for
functional classes included kinases in the human kinome
database (December 2007 update) (18), oncogenes in ON-
Gene (19) and tumor suppressor genes in TSGene 2.0 (20).

ChimerPub module

ChimerPub was introduced in ChimerDB 3.0 to extract
fusion-related sentences from PubMed abstracts semi-
automatically. Initial screening of candidate sentences was
based on identifying two gene names joined by a delimiter
(e.g. BCR–ABL or BCR/ABL). We subsequently built an
elaborate classifier model using feature selection and logis-
tic regression methods, which resulted in 2767 fusion genes
from 10 580 sentences.

In this update, we built a new ‘deep learning’-based model
to identify fusion relations that are not limited to two
gene names joined by delimiters in sentences. Thus, the
model can extract fusion relations from sentences in natu-
ral language forms without any hand-crafted features. Our
model was built on BioBERT (https://github.com/dmis-lab/
biobert), which is a ‘deep learning’-based language model
that showed state-of-the-art performance in representa-
tive biomedical text-mining tasks such as named entity
recognition, relation extraction and question answering. We
stacked one prediction layer on the last layer of the pre-
trained BioBERT model.

The training data for the prediction layer were obtained
from abstracts in ChimerKB 3.0 by extracting sentences
with two gene names using BERN (21), a biomedical entity

recognition tool. Resulting sentences were classified into
positive and negative datasets based on whether the candi-
date fusion relation existed in ChimerKB or not. To com-
pare the performance of this new tool with the old version,
we divided cases into two classes according to the presence
of fusion delimiters. We obtained 1295 positive and 5333
negative sentences as the training dataset for the fusion sen-
tences with delimiters, and 379 positive and 96 993 nega-
tive sentences for the fusion sentences without delimiters.
We also prepared the test datasets by random selection of
candidate sentences followed by manual curation (251 posi-
tives and 256 negatives for the class with delimiters, and 230
positives and 266 negatives for the class without delimiters).

For sentences with delimiters, both methods achieved ex-
cellent performance with high precision of 0.98 and the re-
call rate of 0.95 in ChimerPub 3.0 and 0.98 in ChimerPub
4.0. For sentences without fusion delimiters, ChimerPub 4.0
achieved the precision of 0.901 and the recall rate of 0.909,
which is still excellent although slightly worse than the re-
sults for sentences with delimiters. Thus, ChimerPub 4.0
now supports high-performance text mining of PubMed ab-
stracts whether the fusion delimiter symbols are present or
not.

The new ‘deep learning’-based model was applied to
analyze ∼30 million PubMed abstracts cumulated up to
November 2018. Disease terms, validation methods and
translocation information were also extracted from the ab-
stracts. We obtained >14 000 abstracts from this new algo-
rithm, and the total number of abstracts became >17 000
after summing abstracts from ChimerPub 3.0.

Text mining inevitably accompanies many false positives;
thus, manual curation is essential to increase the credibil-
ity and quality of annotations. In building ChimerPub 4.0,
we decided to examine the full text, not just the abstract
to annotate fusion-related information as well as to remove
false positives. Articles reporting cases in ChimerKB 3.0
were excluded from the manual curation and we manu-
ally inspected the full text of remaining 2816 articles. Dur-
ing the process of manual curation, we utilized the HGNC
gene synonyms from the BioMart service and the cell–cell
interaction database of G. Bader Lab (http://baderlab.org/
CellCellInteractions).

Finally, we collected the authentic cases as the
‘ChimerPub-Plus’ group where fusion genes were sup-
ported with experimental evidences such as Sanger
sequencing, reverse transcriptase-polymerase chain reac-
tion (RT-PCR) or fluorescence in situ hybridization (FISH).
These ChimerPub-Plus cases were added to ChimerKB
since they would meet the stringent requirements to be
genuine fusion genes.

RESULTS

ChimerDB 4.0 includes 67 610 fusion gene pairs as sum-
marized in the overall statistics (Table 1). Compared with
the previous version (6), the content of ChimerKB and
ChimerSeq increased by ∼50% and ∼100%, respectively.
ChimerPub’s entries, however, decreased from 2767 to 1257
unique fusions due to extensive manual curation with the
full-text proof. The overlap among three modules is limited
(Figure 2A) implying that three modules play complemen-
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Figure 2. Statistics and contents of ChimerDB 4.0. (A) Venn diagram of unique fusions in three modules. (B) Venn diagram of unique fusions from five
prediction pipelines that analyzed the TCGA dataset. (C) Contribution of each prediction pipeline to ChimerSeq-Plus. Dark colors indicate fusion genes
that were identified by ≥3 prediction programs, whereas light colors indicate fusion genes predicted by the program of interest and one additional program.
(D) Bar plot of TCGA samples for each cancer type. (E) Bar plot of fusion genes in different functional categories for each cancer type.

tary roles.
ChimerSeq was rebuilt by merging the results from five

different pipelines that analyzed the whole TCGA tran-
scriptome data (10 565 samples across 33 cancer types)
(Figure 2B, Table 1). TCGA analysis yielded 49 648 fusion
genes, representing ∼75% of all fusion genes in ChimerSeq.
The proportion of singletons can be an indirect mea-
sure of credibility for each prediction method, which in-
creased in the order of TCGA FAWG (27%), TumorFu-
sions (28%), STAR-Fusion (39%), FusionScan (41%) and
TopHat-Fusion (50%). Since common predictions from dif-
ferent programs are often regarded as more reliable fusions,
we built a new ‘ChimerSeq-Plus’ group that contained 21
106 fusion genes supported by any two of the pipelines. We
also examined the contribution of each prediction method
to ChimerSeq-Plus, which decreased in the order of STAR-
Fusion, TCGA FAWG, TumorFusions, FusionScan and
TopHat-Fusion (Figure 2C). However, the portion of fu-
sion genes predicted by ≥3 programs is higher in Fusion-
Scan and TopHat-Fusion, implying that their predictions
were precise (i.e. low false discovery rate). The number of
samples analyzed and the number of fusion genes identified
for each cancer type are shown in Figure 2D.

ChimerPub was greatly enhanced by implementing a new
‘deep learning’-based algorithm and by extensive manual
curation of full-text articles. Our text-mining tool can iden-

tify sentences with fusion genes even when two gene are
not necessarily joined by a delimiter symbol such as ‘–’ or
‘/’. ChimerPub 4.0 now contains 1257 fusion genes with
728 fusions as new members (Figure 3A). We have 565 fu-
sion genes from articles before June 2016, which should be
the contribution from the new deep learning method. This
number is comparable to that of the previous symbol-based
method (529 fusion genes), illustrating the power of new al-
gorithm. Moreover, a substantial portion of ChimerPub 3.0
(2238 fusion genes) was discarded after thorough curation
process as described later.

The manual curation process was extensively reinforced
to enhance the quality of fusion records. We obtained 17 188
abstracts (5675 fusion genes) from text mining (Figure 3B).
We found that many entries were false positives, where A/B
(or A–B) meant the receptor–ligand interactions, gene–gene
interactions, signaling or complex relations, or gene syn-
onyms rather than the genuine gene fusion event. Even the
gene order was reversed in some cases. The initial round
of curation to remove such errors yielded 12 332 articles
(2769 fusion genes). Then, articles reporting fusion genes
in ChimerKB 3.0 were excluded from the manual curation,
leaving 2816 articles (2182 fusion genes) for manual exami-
nation with the full-text proof. In the second round of cura-
tion, we removed further false positives reporting artificial,
synthetic or nonhuman fusions. We have also annotated in-
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Table 1. Statistics of ChimerDB 4.0

ChimerKB ChimerPub ChimerSeq

Literature curation 147 Information available TCGA 49 648
COSMIC 331 Translocation 925 STAR-Fusion 28 749
mRNA Sequence 272 Disease 1075 FusionScan 12 070
Mitelman, OMIM, GenBank 459 Validation method 1049 TumorFusions 18 404
ChimerPub-Plus 777 TCGA FAWG 23 978

TopHat-Fusion 1624
ChimerDB 2.0 142
ChiTaRS 2.1 16 270
Panel of Normals 2985

Total 1597 Total 1257 Total 65 945
ChimerPub supported 937 ChimerKB supported 937 ChimerKB supported 240
ChimerSeq supported 240 ChimerSeq supported 205 ChimerPub supported 205

ChimerSeq-Plus 21 106

Known breakpoint cases Novel fusiona

Exon junction 1063 TCGA 52 534
ChiTaRS 16 152

All numbers represent the number of unique fusion genes.
aTranscripts not included in ChimerKB and ChimerPub were classified as novel fusion.

Figure 3. Statistics and contents of ChimerPub 4.0. (A) Comparison of ChimerPub 4.0 versus 3.0. (B) Curative procedure and resulting numbers at each
step. (C) Number of ChimerKB entries with information on breakpoints and/or experimental evidences.

formation on the fusion breakpoints and set of experimen-
tal evidence from Sanger sequencing, RT-PCR and FISH.

As a result of manual curation and annotation, a sub-
stantial portion of ChimerPub entries became highly re-
liable with experimental evidences. Thus, we defined the
‘ChimerPub-Plus’ group whose fusion genes were sup-
ported by experimental evidences (Figure 3B). We identi-
fied 777 such cases and put them into ChimerKB, which

greatly expanded the content by ∼50%. The information
content of ChimerKB, ChimerPub-Plus is shown in Figure
3C. ChimerKB and ChimerPub now contain 1637 fusion
genes with known breakpoints and 1150 fusion genes with
experimental supports, which should be the largest collec-
tion of this kind.

Fusion genes in ChimerSeq were analyzed for functional
roles such as kinases, oncogenes, tumor suppressors or tran-
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Figure 4. Recurrent fusion genes from the TCGA cohort. (A) Representative known fusion genes in ChimerKB and ChimerPub. (B) Representative novel
fusion genes in ChimerSeq-Plus. (C) Recurrent fusion genes for each cancer type. Horizontal axes (A–C) indicate the number of patients with fusion genes
identified in ChimerSeq-Plus.

scription factors across cancer types (Figure 2E). Kinase
fusion genes of in-frame are of particular interest because
it can alter activity of signaling pathways. We have identi-
fied 2629 kinase fusion genes among which 1188 cases are
3′ kinases and 714 cases are in-frame. Likewise, we iden-
tified 6706 oncogene-associated, 10 538 tumor suppressor-
associated and 9108 transcription factor-associated fusions.
Majority of fusions are of CDS–CDS type, thus reading
frame change being important to assess their functional sig-
nificance. Most of known important fusion genes are in-
frame fusions because frame shift necessarily leads to loss
of function. We found 15 309 (23.2%) fusions as in-frame
fusions, 8079 of those belonging to the ChimerSeq-Plus
group.

Recurrence is the most critical property of clinically im-
portant fusion genes. Restricting our attention to fusion
genes in ChimerSeq-Plus dataset, we found that 85 fusion
genes from ChimerKB or ChimerPub were recurrent (Fig-
ure 4A). Additionally, we identified 1293 recurrent fusions
where 61 fusions were observed in ≥10 patients (Figure
4B). Of note, novel recurrent fusion genes tend to come
from diverse cancer types, highlighting the power of pan-
cancer study. Sorting out recurrent fusions according to
cancer types illustrates many famous fusion genes such as
TMPRSS2–ERG in PRAD (191 patients), PML–RARA
fusion in LAML (42 patients), FGFR3–TACC3 in GBM (29
patients), CCDC6–RET in THCA (21 patients), CLDN18–
ARHGAP26 in STAD (9 patients) and EML4–ALK in
LUAD (5 patients) (Figure 4C). Thus, mining recurrent

genes from ChimerSeq can be an attractive strategy to iden-
tify novel cancer biomarkers. The full list of recurrent genes
can be downloaded from the website.

USER INTERFACE

The user interface of ChimerDB adopted a responsive web
design, in a similar fashion to the NCI’s GDC data portal.
Figure 5 shows the important features in the user interface,
taking EML4–ALK fusion as an example query. Standard
search can be done with gene names or disease terms with
the autocomplete function in place (Figure 5A). Users may
filter the output list with important features such as data
sources, breakpoint information, validation methods, func-
tional classifications, etc. The preloaded numbers and dy-
namic pie charts allow users to estimate the number of hits
in advance. The result is shown in a tabular format where
the contents can be searched, sorted and downloaded. The
interface also includes links to more detailed information
and linkouts to external resources such as NCBI Entrez
genes or USCS Genome Browser (Figure 5B). For example,
click on a ChimerPub entry opens a new window showing
PubMed abstract with important information highlighted
(Figure 5C).

In an effort to help users assess functional significance of
fusion transcripts of interest, we implemented several novel
graphic utilities. Fusion structure viewer shows the tran-
script structures before and after fusion event, where users
can readily view exons, breakpoints and domains (Figure
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Figure 5. User interface of ChimerDB 4.0. (A) The search and filter window and output table in ChimerKB. (B) Main output form for a ChimerKB entry.
Colored blocks are links to detailed information. (C) Example of a PubMed abstract where key words are highlighted. (D) Example of fusion structure
viewer. (E) STRING network view. (F) Gene expression plots of 5′ and 3′ genes in fusion-positive versus fusion-negative patients in the TCGA dataset.
(G) Scatter plots of gene expression versus copy number for 5′ and 3′ genes in the TCGA dataset.

5D). The graphic supports zoom-in/out and panning for
detailed examination. We also added a protein–protein in-
teraction network using the STRING plugin (Figure 5E)
(22). Gene expression of 5′ and 3′ genes is informative
in assessing the activity of fusion genes. For gene fusion
events from the TCGA cohorts, we provide the gene ex-
pression plots of 5′ and 3′ genes in the fusion-positive and
fusion-negative patients (Figure 5F), such that users can see
whether the gene fusion leads to any dysregulation of 5′ or 3′
genes. The scatter plot of gene expression versus copy num-
ber provides additional insight into the function of fusion
genes (Figure 5G). In the case of EML4–ALK fusion, it is
evident that the fusion event is associated with elevated ex-
pression of 3′ ALK gene and that this overexpression is inde-
pendent of copy number variation. Such information would
be of great help in sifting candidate fusion genes with func-
tional significance.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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