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ABSTRACT
Objectives Patients with lupus nephritis (LN) are in urgent 
need for early diagnosis and therapeutic interventions 
targeting aberrant molecular pathways enriched in affected 
kidneys.
Methods We used mRNA- sequencing in effector (spleen) 
and target (kidneys, brain) tissues from lupus and control 
mice at sequential time points, and in the blood from 367 
individuals (261 systemic lupus erythematosus (SLE) patients 
and 106 healthy individuals). Comparative cross- tissue and 
cross- species analyses were performed. The human dataset 
was split into training and validation sets and machine 
learning was applied to build LN predictive models.
Results In murine SLE, we defined a kidney- specific 
molecular signature, as well as a molecular signature 
that underlies transition from preclinical to overt disease 
and encompasses pathways linked to metabolism, 
innate immune system and neutrophil degranulation. The 
murine kidney transcriptome partially mirrors the blood 
transcriptome of patients with LN with 11 key transcription 
factors regulating the cross- species active LN molecular 
signature. Integrated protein- to- protein interaction and drug 
prediction analyses identified the kinases TRRAP, AKT2, 
CDK16 and SCYL1 as putative targets of these factors 
and capable of reversing the LN signature. Using murine 
kidney- specific genes as disease predictors and machine- 
learning training of the human RNA- sequencing dataset, we 
developed and validated a peripheral blood- based algorithm 
that discriminates LN patients from normal individuals 
(based on 18 genes) and non- LN SLE patients (based on 20 
genes) with excellent sensitivity and specificity (area under 
the curve range from 0.80 to 0.99).
Conclusions Machine- learning analysis of a large whole 
blood RNA- sequencing dataset of SLE patients using human 
orthologs of mouse kidney- specific genes can be used for 
early, non- invasive diagnosis and therapeutic targeting of LN. 
The kidney- specific gene predictors may facilitate prevention 
and early intervention trials.

INTRODUCTION
In lupus nephritis (LN), current therapy fails to 
induce remission in more than 50% of patients. 
Even in cases with clinical remission, repeat kidney 
biopsies often exhibit residual inflammation and 

increased fibrosis, with 15%–20% of patients 
eventually developing end- stage kidney disease.1–3 
Importantly, several clinical trials have failed to 
meet their primary endpoint4 5 with only two new 
treatments approved for LN.6–9 Accordingly, there is 
urgent need for therapeutic interventions targeting 
aberrant molecular pathways enriched within the 
kidneys, to maximise drug efficacy.

Subclinical (silent) LN represents an early stage 
in the natural history of the disease10–12 prior to 

WHAT IS ALREADY KNOWN ON THIS TOPIC
 ⇒ Prediction of patients with systemic lupus 
erythematosus (SLE) that will develop nephritis 
and early diagnosis represents an unmet 
need because of the limited value of known 
predictors and the invasiveness of kidney 
biopsy.

 ⇒ Even with best treatment up to 40% of 
patients fail to reach a complete renal response 
suggesting that early diagnosis and prompt 
treatment including targeting of renal specific 
pathways is needed.

WHAT THIS STUDY ADDS
 ⇒ Distinct, renal- specific molecular pathways are 
associated with the development of nephritis 
and its progression from subclinical to full 
blown disease in murine SLE.

 ⇒ The mouse kidney transcriptome mirrors the 
human whole- blood transcriptome in lupus 
nephritis (LN).

 ⇒ Upstream and downstream regulators of the 
cross- species (murine and human) kidney- 
specific gene signatures have been identified as 
putative targets in LN and novel cross- species 
drug signatures for kidney disease in lupus.

 ⇒ Using the mouse kidney- specific transcriptome 
and through training by machine- learning 
techniques of a large whole- blood RNA- 
sequencing dataset of SLE patients, we 
developed and validated an algorithm that 
predicts patients that will develop LN based on 
a small number (no more than 20) of genes.
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full- blown disease.13 14 Notably, genetic and immunological 
interventions in lupus models have underscored the potential to 
avert autoantibody deposition and ensuing immune responses 
within the kidneys,15–19 suggesting that preemptive therapy 
might represent a valid therapeutic concept.15 19 However, the 
mechanisms underlying the progression to clinical LN are not 
clearly understood and kidney biopsies at the preclinical stage 
are not performed.

In this paper, we performed sequential mRNA- sequencing 
studies in effector (spleen) and target tissues (kidneys, brain) 
from lupus and healthy mice, as well as in the whole blood 
of patients with systemic lupus erythematosus (SLE) (including 
patients with active or responding LN or neuropsychiatric 
lupus) and healthy individuals. Comparative cross- tissue and 
cross- species analyses yielded common, cross- species, nephritis- 
specific genes that could be prioritised as potential therapeutic 
targets. Using machine- learning algorithms, we constructed 
a clinical- transcriptome predictive model that can be tested 
as a non- invasive ‘liquid biopsy’ marker of kidney disease in 
patients with SLE, to be used for monitoring of kidney disease 
in SLE, as well as enrollment in LN prevention and early treat-
ment studies.

METHODS
Patients and healthy individuals
Patients with SLE (n=261) who met the SLICC 2012 or EULAR/
ACR 2019 classification criteria and age- matched and sex- 
matched healthy individuals (n=106) were recruited from the 
Departments of Rheumatology and Nephrology at the Univer-
sity Hospitals of Heraklio, ‘Attikon’ University Hospital and 
the respective Blood Transfusion Units. Active LN was defined 
by the presence of proteinuria more than 0.5 g/day and active 
urine sediment. A kidney biopsy was performed in all patients 
with evidence of active kidney disease. Patients either devel-
oped active LN de novo or had had a history of LN and were 
flaring at the time of sampling. Responding LN was defined by 
preservation or improvement of kidney function with reduction 
of proteinuria to less than 50% after 6 months of therapy or 
less than 0.5–0.7 g/day by 12 months.20 21 Following informed 
consent, whole blood was sampled, and RNA was extracted 
from all participants.

Animals
NZB/W- F1 mice were sacrificed at the prepuberty (1 month 
old), preautoimmunity (3 months old) and nephritic (6 months 
old with proteinuria more than 200 mg/dL for three consecu-
tive days) stage of SLE. Age- matched C57BL/6 mice were used 
as controls. Spleen, kidneys and brain were removed for RNA 
extraction.

RNA-sequencing
RNA libraries were prepared using the Illumina Truseq kit. 
Paired- end 37 bp (for mouse) and 67 bp (for human) mRNA- 
sequencing was performed on the Illumina HiSeq2000 and 
HiSeq4000, respectively, at the University of Geneva Medical 
School.22 FastQC software assessed quality.23 Raw reads were 
aligned to the mouse (mm10 version) and human (hg38 version) 
genome using STAR V.2.6 algorithm.24 Gene quantification 
was performed using HTSeq.25 Differential expression analysis 
of mouse and human data was conducted using DESeq226 and 
edgeR,27 respectively. Enrichment and network analyses were 
performed using gProfiler28 and GeneMANIA.29 The Expres-
sion2Kinases (X2K)30 was used to yield transcription factors 
(TFs), kinases and protein- to- protein interaction (PPI) networks. 
Prediction of drugs was performed with L1000CDS2 search 
engine.31 Statistical significance was set at 5% false discovery 
rate (Benjamini- Hochberg).

Machine learning
The human mRNA- sequencing dataset was randomly split into 
training (70%) and validation (30%) sets. Using the training 
set and feature selection algorithms, the smallest set of human 
orthologs that most accurately predicted the outcome of interest 
was selected. Using these orthologs as predictors, models were 
fit and compared for their ability to predict human disease. To 
improve performance, clinical predictors (not included in the 
definition of active or responding LN) were added to the final 
model. Accuracy, sensitivity, specificity and area under (AUC) the 
receiver operating curve (ROC) were determined in the valida-
tion set.

Detailed information for all methods can be found 
in online supplemental material. Scripts used and 
online supplemental table can be found at https://1drv.
ms/u/s!Au_gakpSntTbrGO3- 3RQ39ByOId1?e=MLF007.

RESULTS
Molecular signatures associated with murine LN and 
transition from preclinical to clinical disease
Patients with SLE are in urgent need for therapeutic interven-
tions targeting molecular pathways enriched within individual 
tissues to treat their disease effectively and safely. To decipher 
aberrant molecular pathways enriched uniquely within the 
kidneys in SLE, we profiled gene expression at the spleen (an 
effector peripheral lymphoid organ), kidneys and brain (major 
end- organ tissues) from NZB/W- F1 lupus mice and age- matched 
C57BL/6 healthy counterparts. Tissues were collected at the clin-
ical (nephritic) stage of the disease when nervous system involve-
ment also occurs. Differentially expressed genes (DEGs) in lupus 
versus healthy mice tissues were analysed. Using genes differen-
tially expressed within kidneys of the NZB/W- F1 lupus mice but 
not in other tissues studied, we defined a ‘kidney- specific signa-
ture’ comprising 726 DEGs (425 upregulated, 301 downregu-
lated) (online supplemental figure S1A,B, table S1A). Enriched 
functions within this signature included pathways linked to cell 
metabolism, innate immune system and neutrophil degranula-
tion (online supplemental figure S1C, table S1B), reiterating the 
role of neutrophils in lupus kidney injury.32 By representing the 
signature DEGs as a gene network, we found several hub genes 
with high- degree nodes of the network corresponding to human 
lupus- susceptibility loci33–35 such as FCGR2B, PTPRC, ITGAM, 
NCF1 and RASGRP1 (online supplemental figure S1D, table 
S1C).

HOW THIS STUDY MIGHT AFFECT RESEARCH, PRACTICE 
AND/OR POLICY

 ⇒ Common cross- species (murine and human) genes could be 
prioritised as potential therapeutic targets for LN or tested as 
an alternative, non- invasive ‘liquid biopsy’ marker of kidney 
disease in patients with SLE.

 ⇒ The mouse kidney- specific set of gene predictors may be used 
towards monitoring human kidney disease in SLE patients 
and enrolment in LN prevention and early treatment studies.
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Next, we examined the molecular events underlying tran-
sition from the preclinical to clinical stage of lupus kidney 
disease by comparing DEGs between the tissues from lupus mice 
probed at the prepuberty versus the nephritic stage. Genes that 
were differentially expressed uniquely within kidneys of the 
NZB/W- FI lupus mice but not in other tissues studied defined 
the ‘kidney- specific LN- transition signature’ comprising 507 
DEGs (316 upregulated, 191 downregulated) (figure 1A,B, 

online supplemental table S2A) that were enriched in innate and 
adaptive immune system pathways. The former were linked to 
neutrophil degranulation and reactive oxygen species produc-
tion in phagocytes, whereas the latter included T cell receptor 
signalling, signal transduction by G- protein coupled receptors 
(in particular, chemokine receptors) and costimulation through 
programmed cell death protein 1 (PD- 1) signalling. In addi-
tion, pathways involved in platelet activation, signalling and 

Figure 1 Mouse kidney- specific transcriptome of lupus mice between the clinical (nephritic) and the preclinical (prepuberty) stage of the lupus. 
(A) Venn diagram demonstrating the comparison between differentially expressed genes (DEGs) within the spleen, the kidneys and the brain from 
NZB/W- F1 lupus mice at the clinical (nephritic) versus the preclinical (prepuberty) stage of lupus. The kidney- specific gene signature is defined by 507 
genes that are differentially expressed only within kidneys but not in other tissues, (B) Heatmap of the 507 kidney- specific DEGs (316 upregulated, 
191 downregulated), (C) Dot- plot diagram demonstrating functionally enriched REACTOME pathways of the 507 kidney- specific DEGs, (D) gene 
network representation of the 507 kidney- specific DEGs. Hub genes that correspond to lupus risk loci are depicted by larger size fonds. ROS, reactive 
oxygen species; TCR, T cell receptor.

https://dx.doi.org/10.1136/annrheumdis-2021-222069
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aggregation were identified (figure 1C, online supplemental 
table S2B). Of note, the lupus- susceptibility risk loci PTPRC, 
NCF1 and ITGAM genes, as well as the IRF8,33–35 emerged as 
hub network genes, suggesting a pathogenic role during evolu-
tion from preclinical to clinical LN (figure 1D, online supple-
mental table S2C).

To analyse the sequential molecular events underlying the 
evolution towards LN, we identified DEGs in tissues from lupus 
vs healthy mice demonstrating a strain- specific effect in a time- 
series analysis. DEGs within kidneys demonstrating the lupus- 
specific pattern were combined with genes within kidneys that 
were differentially expressed across all stages of the disease. 
Combined signatures were compared across tissues and genes 
that were differentially expressed uniquely within kidneys—but 
not in other tissues—defined the ‘sequential kidney- specific 
signature’, composed of 1668 genes (online supplemental table 
S3A). Functional interpretation of the result revealed enrich-
ment in the establishment of sister chromatid cohesion pathway 
(online supplemental table S3B). Kidney- specific DEGs in lupus 
versus healthy mice at the preautoimmunity stage, kidney- 
specific DEGs from lupus mice at the preautoimmunity versus 
the prepuberty stage and the respective functional enrichment 
analyses are presented in online supplemental tables S3C–F. 
DEGs within kidneys demonstrating the strain- specific pattern 
in the time- series analysis are presented in online supplemental 
figure S2.

The human peripheral blood and the murine kidney 
transcriptome share common kidney-specific signatures and 
associated hub genes
Kidney biopsy, an invasive procedure linked to increased risk for 
adverse events, is currently essential to confirm diagnosis and 
guide therapeutic decisions in LN; however, it is still an imper-
fect predictor of response to treatment. Previous studies have 
reported shared molecular signatures within LN kidneys of mice 
and humans,36 as well as between kidney and non- kidney (eg, 
skin) tissues of patients with LN.37 38 Recent evidence suggests 
that neutrophils from ultraviolet skin reach the kidney and cause 
inflammation in murine models; it is conceivable that these 
circulating neutrophils prior to their homing to the kidneys may 
be captured in the blood.39 To this end, we next asked whether 
the kidney- specific signatures in murine lupus may exist also 
in patients with LN using blood as an easily accessible, mini-
mally invasive tissue. Specifically, we investigated whether the 
mouse kidney could serve as non- invasive (not- requiring biopsy 
in humans) marker of kidney disease in human SLE. To address 
this, we performed whole- blood mRNA- sequencing in 141 SLE 
patients and 48 healthy counterparts. Data were combined with 
our previously analysed cohort,22 thus yielding a dataset of 367 
individuals (including 261 SLE patients and 106 healthy indi-
viduals) (online supplemental table S4A). We found extensive 
transcriptome perturbations with 10 672 DEGs between active 
LN patients and healthy individuals (online supplemental figure 
S3A, table S4B) and 4119 DEGs between active LN and SLE 
patients without history of kidney disease (non- LN patients) 
(figure 2A, online supplemental table S4C).

Next, we examined whether the human peripheral blood 
from patients with LN shares common gene expression aberra-
tions with the mouse kidney- specific gene signatures. Using the 
human orthologous genes of the mouse genome, we examined if 
the mouse ‘kidney- specific signature’ is present in the blood of 
patients with active LN as compared with healthy individuals. A 
total 272 genes (193 upregulated and 79 downregulated) were 

common between the two datasets (online supplemental figure 
S3B,C, table S5A), referred to as ‘shared active LN signature’. 
Neutrophil degranulation was the most significantly enriched 
pathway in this signature (online supplemental figure S3D, 
table S5B), whereas gene network analysis revealed that the 
lupus- susceptibility risk loci NCF2, ITGAM, NCF1, RASGRP1 
and FCGR2A33–35 were high- degree hub genes, suggesting their 
central pathogenic role in LN (online supplemental figure S3E, 
table S5C).

A similar cross- species analysis was performed to determine 
whether the mouse ‘kidney- specific LN- transition signature’ 
intersects with the human blood transcriptome of patients 
with active LN versus non- LN patients. Ninety- seven common 
genes (67 upregulated and 30 downregulated) were identified 
(figure 2B,C, online supplemental table S6A), comprising the 
‘shared active LN- transition signature’. Functional enrichment 
analysis revealed pathways linked to hematopoietic cell lineage, 
B- cell receptor signalling and immunoregulatory interactions 
between lymphoid and non- lymphoid cell (figure 2D, online 
supplemental table S6B). CD53, ITGB2 and LAPTM5 were the 
highest- degree hub genes, underscoring their role in evolution of 
LN. The risk locus ITGAX was also identified, further supporting 
its pathogenic role33 and its gene expression deregulation within 
kidneys during lupus progression (figure 2E, online supple-
mental table S6C).

To characterise the ‘sequential kidney- specific signature’ in 
the context of human LN, we compared the human ortholo-
gous genes of the mouse signature with the DEGs between active 
LN patients and healthy individuals and revealed 609 common 
genes that defined the ‘shared sequential kidney- specific signa-
ture’ (online supplemental table S7A). These genes were func-
tionally enriched in pathways linked to selenocysteine synthesis 
and non- sense mediated decay independent of the exon junction 
complex (online supplemental table S7B).

In silico analysis of upstream regulators, downstream kinases 
and drug signatures for the identification of novel therapeutic 
targets in LN: Kinases TRRAP, AKT2, CDK16 and SCYL1 as 
putative targets for reversing the LN signature

Genetic association studies have identified TFs to play a major 
pathogenic role in SLE.40 Taking advantage of our study design, 
we performed TF enrichment analysis30 in the cross- species 
gene signatures and found a total of 11 TFs (including E2F4, 
FOXM1, SPI1 and SIN3A) and 6 TFs (including SPI1, IRF8, 
RUNX1 and VDR), which were predicted to regulate the ‘shared 
active LN signature’ (figure 3A, online supplemental table S8A) 
and the ‘shared active LN- transition signature’ (figure 3B, online 
supplemental table S9A), respectively.

To decipher downstream kinases of the shared gene signatures 
that might serve as druggable targets, the aforementioned lists of 
enriched TFs were expanded by identifying proteins previously 
shown to physically interact with them, followed by construction 
of PPI subnetworks (online supplemental table S8B, table S9B). 
Based on the overlap between known kinase–substrate phos-
phorylation interactions and the proteins in the subnetworks, 
we found kinases that phosphorylate the proteins interacting 
with the TFs. The kinase TRRAP was predicted to phosphory-
late the NCOR2 and HCFC1 (hypergeometric p=0.0004799) 
that interact with the enriched TFs that regulate the ‘shared 
active LN signature’ (online supplemental table S8C); and the 
AKT2, CDK16 and SCYL1 kinases were predicted to phosphor-
ylate ACTN4 and AES or SMARCA4 or AES (hypergeometric 
p=0.005443), respectively, that interact with the enriched TFs 
that regulate the ‘shared active LN- transition signature’ (online 
supplemental table S9C), suggesting they could represent 
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putative targets in LN. Complete upstream pathways of the 
gene signatures connecting the enriched TFs to kinases through 
known PPIs were also inferred (online supplemental tables S8D 
and S9D).

Finally, through the L1000 Characteristic Direction Signature 
Search Engine (L1000CDS2), we detected the top 50 drugs or 
small molecule compounds (online supplemental tables S8E and 
S9E) and the top 50 compound combinations that may reverse 

(A) (B)

“Shared active LN-transition signature”

(D)

(C) (E)

Figure 2 Common genes between the kidney- specific gene expression profile from lupus mice at the symptomatic (nephritic) versus the 
asymptomatic (prepuberty) stage and the whole- blood gene expression profile from active LN (aLN) patients versus SLE patients without history 
of kidney involvement (non- LN) define a ‘shared active LN- transition signature’. (A) Heatmap of the 4119 differentially expressed genes (DEGs) in 
the whole- blood from aLN patients versus non- LN patients, (B) Venn diagram demonstrating the comparison between the orthologous genes of the 
mouse kidney- specific DEGs from NZB/W- F1 lupus mice at the symptomatic (nephritic) versus the asymptomatic (prepuberty) stage and the whole- 
blood gene expression profile from aLN versus non- LN SLE patients. The ‘shared active LN- transition signature’ is defined by the union of the Venn 
diagram, corresponding to 97 common genes, (C) Heatmap of the ‘shared active LN- transition signature’, composed of 97 genes (67 upregulated, 30 
downregulated), (D) Dot- plot diagram demonstrating functionally enriched REACTOME pathways of the ‘shared active LN- transition signature’, (E) 
gene network representation of the ‘shared active LN- transition signature’. Hub genes that correspond to lupus risk loci are depicted by characters of 
a larger size. LN, lupus nephritis; SLE, systemic lupus erythematosus.
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the ‘shared active LN signature’ and the ‘shared active LN- transi-
tion signature’, respectively (online supplemental tables S8F and 
S9F). Among these, the R(+)−6- BROMO- APB was predicted 
to reverse the former, and the HEMADO, norketamine hydro-
chloride, trichostatin A and others were predicted to reverse 
the latter signature, respectively, in the HA1E kidney cell line, 
suggesting they could be further tested in the therapy of LN.

Eighteen genes may predict patients with active LN from 
healthy individuals
Demographic, clinical and serological data are imperfect in 
predicting the onset of kidney disease in patients with SLE. 
Importantly, early identification and prompt treatment have been 
linked to improved outcomes.13 14 We examined whether the 
human orthologs of the mouse kidney- specific gene signatures 

and the human whole- blood gene signatures may predict those 
patients with SLE who will develop LN. For this, the complete 
mRNA- sequencing dataset was randomly split into training 
(70%) and validation (30%) sets, and machine- learning algo-
rithms were applied (figure 4).

To distinguish patients with active LN from healthy individ-
uals, we used the human orthologs of the mouse kidney- specific 
DEGs from lupus versus healthy mice at the nephritic stage 
(corresponding to the ‘kidney- specific signature’, composed of 
726 DEGs). To remove noise and keep the smallest set of human 
orthologs of the mouse genes which best predicts outcome, we 
performed feature selection using recursive feature elimination 
with a random forest (machine- learning) model under a 10- fold 
cross- validation. Based on model accuracy, a set of 50 human 
orthologs were selected. Next, prediction models were fit to 
identify which performs best with the selected genes. The glmnet 
model using 18 genes—including PLD4, PTPRN2, CASP8 and 
POLE (figure 5A, online supplemental table S10)—(32 genes 
had a coefficient=0 and were considered redundant in the 
model) best distinguished patients with active LN from healthy 
individuals with a 10- fold cross- validation calculated accuracy 
of 95.7% (95% CI (0.85% to 0.99%)], 100% sensitivity and 
92.9% specificity (0.99 AUC of the ROC curve analysis) in the 
validation set (figure 5B,C), demonstrating an excellent model 
efficiency to discriminate true positive (active LN patients) from 
false positive (healthy individuals) cases. Inclusion of clinical 
factors (not included in the definition of active or responding 
LN), such as age, gender and the presence of anti- dsDNA, did 
not improve further the performance of the model. Using the 
validation set, principal component analysis (PCA) demonstrated 
that the 18 selected genes could accurately discriminate patients 
with active LN from healthy individuals (figure 5D). The rela-
tionship between the expression of each gene and the probability 
of predicting active LN is demonstrated in online supplemental 
figure S4. These data define a LN prognostic gene signature 
and demonstrate the feasibility of developing and validating an 
algorithm to predict patients with active LN from healthy indi-
viduals non- invasively, through machine- learning analysis of a 
large whole blood RNA- sequencing dataset of SLE patients using 
human orthologs of mouse kidney- specific genes as predictors of 
kidney involvement.

Machine-learning model distinguishes LN from non-LN SLE 
patients
Next, we examined whether the above approach could also 
discriminate active LN patients from SLE patients without 
kidney disease (non- LN patients) in a non- invasive manner. We 
sought that the kidney- specific gene expression profile of lupus 
mice at the clinical (nephritic) versus the preclinical (prepu-
berty) stage of the disease (corresponding to the ‘kidney- specific 
LN- transition signature’, composed of 507 DEGs) could reflect 
the whole- blood gene expression profile of SLE patients with 
active LN versus SLE patients without history of LN (non- LN 
patients). Thus, we used the human orthologs of the mouse 
‘kidney- specific LN- transition signature’ as predictors, and 
applied feature selection under a 10- fold cross- validation. Based 
on accuracy, 20 genes best predicted the outcome. Models were 
fit to identify which performs best with the selected genes. 
Model performance was further improved by the addition of 
age, sex and presence of anti- dsDNA, as predictors of outcome. 
As expected, due to the higher likelihood of patients with prolif-
erative LN to have anti- DNA antibodies, the presence of anti- 
dsDNA was the most important predictor of kidney disease, 

Figure 3 Upstream regulators of the ‘shared active LN signature’ 
and the ‘shared active LN- transition signature’. (A) Dot- plot diagram 
demonstrating the transcription factors (TF) that are predicted to 
reverse the common genes between the kidney- specific gene expression 
profile from lupus vs healthy mice at the clinical (nephritic) stage and 
the whole- blood gene expression profile from active LN (aLN) patients 
vs healthy individuals (HI). The x- axis represents the hypergeometric 
p value and dots correspond to the number of enriched targets of the 
TF, (B) Dot- plot diagram demonstrating the TF that are predicted to 
reverse the common genes between the kidney- specific gene expression 
profile from lupus mice at the clinical (nephritic) versus the preclinical 
(prepuberty) stage and the whole- blood gene expression profile from 
patients with active LN (aLN) versus SLE patients without history of 
kidney involvement (non- LN). The x- axis represents the hypergeometric 
p- value and dots correspond to the number of enriched targets of the 
TF. LN, lupus nephritis; SLE, systemic lupus erythematosus.
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followed by the expression of PTPRO gene (the lower its expres-
sion, the higher the probability of predicting active LN) and 
IL10RA gene (the higher its expression, the higher the proba-
bility of predicting active LN). Male sex and younger age of SLE 
patients were associated with higher probability of active LN. In 
the validation dataset, the glm model displayed accuracy 81.7% 
(95% CI (0.70% to 0.90%)), sensitivity 63.2% and specificity 
90.2% (AUC 0.80) in distinguishing patients with active LN 
from SLE patients without history of LN (figure 6A–C, online 
supplemental table S11, figure S5), demonstrating that the 
model correctly identified SLE patients without LN (true nega-
tive cases). Using the validation set, PCA demonstrated how gene 
predictors could accurately discriminate patients with active LN 
from non- LN SLE patients (figure 6D). Together, these data 

demonstrate the feasibility to distinguish patients with active 
LN from SLE patients without kidney involvement. These gene 
predictors could be of prognostic value in the clinical setting 
following further validation studies in independent cohorts.

DISCUSSION
Patients with LN are in need for an early diagnosis and thera-
peutic targeting of aberrant molecular pathways enriched within 
the affected kidneys. Here, we performed sequential mRNA- 
sequencing in three tissues of lupus and healthy mice, and in 
the whole- blood of SLE and healthy individuals. Through cross- 
tissue analysis, we defined a murine kidney- specific molecular 
signature and a molecular signature that underlines progression 

Figure 4 Schematic overview of the machine- learning approach. RNA- sequencing data from the two human cohorts were combined and then split 
in training to test sets at 70:30 ratio. For each outcome measure, a corresponding gene list derived from mouse data was used. The training set was 
used to develop a prediction model and the test set was used to validate the results. Using the training set, feature selection was applied to remove 
noise and keep the smallest set of genes which best predicts each outcome based on accuracy. Then, different prediction models were fit to identify 
which performs best using the gene signature selected in the previous step. Once the best model was selected based on accuracy, sensitivity and 
specificity, the addition of age, gender and the presence of anti- dsDNA as predictors were tested if they could improve the model. The final model was 
validated in the test set. AUC, area under the curve; CV, cross- validation; dsDNA, double- stranded DNA; ROC, receiver operating characteristic curve.
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from the predisease stage to overt clinical disease. We also 
demonstrated that the murine kidney transcriptome mirrors—in 
part—the human whole blood transcriptome of LN patients and 
found upstream and downstream transcriptional regulators that 
may be prioritised as potential therapeutic targets. Finally, we 
developed a blood gene- based predictive model for human LN 
that can be tested as an alternative, non- invasive ‘liquid biopsy’ 
marker of kidney disease in patients with SLE. Pending further 
confirmation, this marker could identify patients in need of 
monitoring for development of LN, as well as enrolment in LN 
prevention and early treatment studies.

To improve therapeutic interventions and optimise the use of 
animal models, gene expression profiling across three samples 
and species is important in defining how mouse biology can 
be extrapolated to humans.41 To this end, the sequential cross- 
organ (murine spleen, kidney and brain) and cross- species 
(murine and human) comparative transcriptomics analysis in 
this paper is novel, defining unique- to- kidney molecular aber-
rancies in SLE that can be extrapolated to the transition from the 
preclinical to clinical stage of human LN. Our human transcrip-
tomic analysis involved a large number of well- characterised 

patients and healthy controls which makes it the larger, single- 
centre, RNA- seq analysis ever performed in SLE. In addition to 
providing potential biomarkers for prediction and non- invasive 
diagnosis and monitoring, our data also reflect biological path-
ways involved both in the development and clinical transition of 
LN in a systematic and unbiased manner, without preconceived 
notions.

In view of the heterogeneity of lupus, we used next- generation 
sequencing as an unbiased and not requiring a priori hypothesis 
approach to uncover novel molecular pathways implicated in 
major end- organ injury in SLE. Initially we performed mRNA- 
sequencing of a peripheral lymphoid organ (the spleen, that 
may be used as a surrogate of peripheral blood) and two end- 
organ tissues (kidneys and brain) from the NZB/W- F1 lupus 
model at the prepuberty, preautoimmunity and nephritic stage 
of SLE and identified the molecular profile which is expressed 
uniquely within kidneys of this model—but not in other tissues 
studied—and the molecular profile that characterises unique- 
to- kidney molecular events underlying LN transition from the 
preclinical to clinical stage of kidney disease. In this process, we 
identified pathways enriched within each signature and found 

Figure 5 Machine- learning modelling of the human whole- blood RNA- sequencing data, using mouse kidney- specific genes as predictors, 
distinguishes patients with active lupus nephritis (active LN) from healthy individuals (H) in a non- invasive manner and defines a LN prognostic gene 
signature. (A) The 18 predictors of the glmnet model distinguishing patients with active LN from healthy individuals based on their importance, as 
evidenced by their absolute coefficient. Gene predictors in green fonts indicate that the higher their expression the higher the probability of being 
a patient with active LN compared with being a healthy individual; while gene predictors in red fonts indicate that the lower their expression the 
higher the probability of being a patient with active LN, (B) Characteristics of the prediction model of patients with active LN from healthy individuals, 
(C) Receiver operating characteristic curve (ROC) analysis of the glmnet model in the validation set reveals an area under the curve (AUC) of 0.99, (D) 
principal component analysis (PCA) using the 18 genes.



1417Frangou E, et al. Ann Rheum Dis 2022;81:1409–1419. doi:10.1136/annrheumdis-2021-222069

Systemic lupus erythematosus

that hub genes correspond to lupus susceptibility risk loci (such 
as the PTPRC, ITGAM, NCF1 and IRF8 genes), reinforcing 
their pathogenic role in LN and the progression from preclin-
ical to clinical kidney disease. Validating our results, the VEGF, 
TLR2 and SOCS3 genes were also differentially expressed in the 
kidneys from NZB/W- F1 mice 9 months old vs 6 months old as 
well as the kidneys from patients with LN.36 In agreement with 
Arazi et al,42 genes such as the ITGAM and FCGR2B were also 
differentially expressed in the ‘kidney- specific gene signature’. 
The FPR2, IL18R1, ITGAM and NCF4 genes were also differen-
tially expressed in the myeloid lineage from paediatric patients 
with LN,43 genes such as the MDP1, PTGR1 and MX2 were also 
differentially expressed within the kidneys from LN patients, as 
assessed by microarrays44 and genes such as the TMEM167A, 
TNFAIP8 and VCAM1 were also differentially expressed in 
kidney tubular cells from LN patients.38

Blood transcriptome analysis identified similarities as well 
as differences from the molecular signatures detected within 
kidneys in patients with LN, underscoring that limitations exist 

in the use of blood for uncovering kidney disease processes.42 
However, gene expression studies have shown shared inflamma-
tory responses within kidneys between mice and humans with 
LN,36 but also shared gene signatures between kidney tubular 
cells and keratinocytes of LN patients.37 38 Our data suggest 
that the mouse kidney transcriptome and the human whole- 
blood transcriptome share a common gene expression profile 
that corresponds to common biological processes and pathways. 
Lupus medications were held for 12 hours prior to sampling thus, 
a potential downstream effect cannot be excluded. However, 
validating our results, in the ‘shared active LN signature’, genes 
such as the CEACAM1, TYMP, NCOA7 and AIM2 were also 
differentially expressed in interferon stimulating genes identified 
through single- cell RNA- sequencing within the kidneys from 
LN patients42 and SERPINA1, IL1RN and ABCB1 genes were 
also differentially expressed in kidney tubular cells from LN 
patients.38 We also identified hub genes of the common cross- 
species kidney- specific gene network corresponding to lupus- 
susceptibility risk loci, uncovering their cross- species pathogenic 

Figure 6 Machine- learning modelling of the human whole- blood RNA- sequencing data using mouse kidney- specific LN- transition genes as 
predictors distinguishes patients with active lupus nephritis (active LN) from SLE patients without history of kidney disease, non- invasively. (A) The 
23 predictors of the glm model distinguishing patients with active LN (active LN) from SLE patients without kidney disease (non- LN) based on their 
importance, as evidenced by absolute z value. Gene predictors in green fonts indicate that the higher their expression the higher the probability 
of being a patient with active LN compared with being non- LN patient, while gene predictors in red fonts indicate that the lower their expression 
the higher the probability of being a patient with active LN. The presence of anti- dsDNA (indicated in green fonts) is associated with a higher the 
probability of being a patient with active LN and the older age and female gender (indicated in red fonts) are associated with a lower probability 
of being a patient with active LN, (B) Characteristics of the prediction model of active LN patients from non- LN patients, (C) Receiver operating 
characteristic curve analysis of the glm model in the validation set reveals an area under the curve (AUC) of 0.8, (D) Principal component analysis 
(PCA) using the 20 gene- predictors. LN, lupus nephritis; SLE, systemic lupus erythematosus;



1418 Frangou E, et al. Ann Rheum Dis 2022;81:1409–1419. doi:10.1136/annrheumdis-2021-222069

Systemic lupus erythematosus

role in LN, and identified that the pathway interactions between 
lymphoid and non- lymphoid cell characterises the transition 
from preclinical to clinical LN across species. Although we do 
not validate the LN blood transcriptome with the kidney tran-
scriptome in humans, part of the mouse kidney transcriptome 
mirrors the human whole- blood transcriptome in patients with 
LN, suggesting that common genes can be prioritised as poten-
tial therapeutic targets for LN, or tested as an alternative, non- 
invasive ‘liquid biopsy’ marker of kidney disease in patients with 
SLE.

To decipher cross- species specific targets in LN, we used 
systems biology approaches and combined our experimental 
data with simulation- based analyses. We report upstream and 
downstream regulators of the cross- species kidney- specific gene 
signatures as specific targets in LN and describe novel cross- 
species drug signatures for kidney disease in lupus, suggesting 
non- immune- based approaches to be tested in LN therapeutics, 
as ‘add on’ therapy to conventional immune therapy. We must 
underscore that due to limitations in the analysis, identified TFs 
are not restricted to immune cells therefore therapies targeting 
them could have off- target effects with potential toxicity.

Although current therapeutic decisions in LN are guided 
by its histological classification,20 21 45 kidney histology is 
an imperfect predictor of kidney outcome,1 highlighting the 
need for improved biomarkers.44 The urokinase- type plasmin-
ogen activator receptor and the decrease in urinary epidermal 
growth factor to creatine ratio have been identified as inde-
pendent predictors of progression to chronic kidney disease in 
patients with glomerular diseases46 47; however, a biomarker for 
preclinical LN has not been identified. Since preclinical LN is 
an early stage in the natural history of the disease and improve-
ments in the prognosis of LN have been attributed to early 
diagnosis and prompt therapy,10–14 we used machine- learning 
approaches to identify non- invasive predictors of kidney 
involvement in SLE patients. Specifically, we used the ‘kidney- 
specific gene signature’ as a tool to build a machine- learning 
algorithm to distinguish patients with active LN from healthy 
individuals and demonstrated that this approach can be used 
successfully as a non- invasive prediction method. Then, using 
the murine lupus kidney- specific transcriptome, we built and 
validated a machine- learning algorithm that predicts patients 
with active LN from SLE patients without LN, to be used in the 
monitoring for kidney disease in such patients and enrolment 
in LN prevention and early treatment studies. Although valida-
tion in an independent dataset was not used, cross- validation 
was performed during modelling, thus reinforcing our results. 
These gene predictors could be of prognostic value in the clin-
ical setting, following further validation studies in independent 
cohorts. Although machine- learning distinguishes patients 
with LN from non- LN patients accurately, yet at this point 
this method is not better than clinical diagnosis of LN. More-
over, sequential clinical and transcriptomic data are necessary 
for the prediction of patients that will flare. The prediction of 
patients that truly have responding LN would have also been 
useful; however, a kidney- specific signature corresponding to 
responding kidney disease (not preclinical) is not available in 
murine, making this algorithm not applicable for this purpose. 
Further validation in independent human datasets or longitu-
dinal studies are needed to further explore these findings in 
human LN.

In conclusion, common cross- species, nephritis- specific genes 
could be used as potential therapeutic targets for LN or tested 
as a surrogate, non- invasive ‘liquid biopsy’ marker of kidney 
disease in patients with SLE. These kidney- specific genes can be 

used to design prevention and early intervention trials, following 
their validation in longitudinal studies.
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