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Abstract

Accurate future projections of population health are imperative to plan for the

future healthcare needs of a rapidly aging population. Multistate‐transition

microsimulation models, such as the U.S. Future Elderly Model, address this

need but require high‐quality panel data for calibration. We develop an alter-

native method that relaxes this data requirement, using repeated cross‐

sectional representative surveys to estimate multistate‐transition contingency

tables applied to Japan's population. We calculate the birth cohort sex‐specific

prevalence of comorbidities using five waves of the governmental health

surveys. Combining estimated comorbidity prevalence with death record

information, we determine the transition probabilities of health statuses. We

then construct a virtual Japanese population aged 60 and older as of 2013 and

perform a microsimulation to project disease distributions to 2046. Our esti-

mates replicate governmental projections of population pyramids and match

the actual prevalence trends of comorbidities and the disease incidence

rates reported in epidemiological studies in the past decade. Our future projec-

tions of cardiovascular diseases indicate lower prevalence than expected from

static models, reflecting recent declining trends in disease incidence and

fatality.
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1 | INTRODUCTION

Rapid population aging is a risk to social sustainability in countries like Japan that have low fertility rates and high life
expectancy. Japan's overall population is decreasing, and the proportion of the population aged 65 years has reached
27.3% (Cabinet Office, 2017). Future years will bring increasing demand for old‐age pensions, medical services, and
long‐term care, while revenues to support such services will decrease. Moreover, the distribution of economic, health,
and social resources among older people exhibits considerable disparities (Ichimura, Shimizutani, & Hashimoto, 2009).
Accurate estimates of future demand for health and social services in heterogeneous older populations are imperative
to design sustainable healthcare and social security systems.

Currently available projections of future population and health status assume a static and average status for comor-
bidity prevalence and mortality by age and sex strata (National Institute of Population and Social Security Research,
2017a); however, such projections fail to incorporate the diverse and dynamic associations between health, economic,
and social conditions among older people. To address this gap, a microsimulation model, the U.S. Future Elderly
Model, was developed using comprehensive information available in large panel datasets such as the Health and Retire-
ment Study (Goldman et al., 2015; Goldman, Shekelle, Bhattacharya, Hurd, & Joyce, 2004). Chen et al. (2016) have con-
structed a similar projection model using the existing available panel dataset for Japan, but the fact that the panel
dataset they use does not sample the oldest‐old (above age 75) limits their findings. The key input that panel data pro-
vide for these models is a set of health and mortality transition probabilities representative of the population at large
(Chen et al., 2016). Panel datasets are preferred for modeling highly complex processes in human aging (Saksena &
Maldonado, 2017) because they provide data on the dynamics of individual transitions. Longitudinal datasets enable us
to disentangle age, cohort, and period effects and help control for unobserved heterogeneity (Roßmann & Gummer,
2016).

Although microsimulation models based on panel data have been useful in modeling dynamic population changes
in health, the limited availability of panel data for estimating transition probabilities between health states often pre-
cludes developing such models. By contrast, repeated cross‐sectional survey data with a consistent sampling frame over
time (e.g., nationally representative surveys of health conditions) are more readily available in many countries ,includ-
ing Japan. In this study, we propose an alternative approach to estimate multistate transition contingency tables using
repeated cross‐sectional survey data for microsimulations.

We face at least two challenges to inferring multistate transition probabilities from cross‐sectional data. First, we
must estimate disease incidence rates despite not observing individuals over time; instead, we base our estimate on
changes in disease prevalence in the population. Second, we must account for the fact that coexisting comorbid statuses
are not independent events. We propose in this study a novel approach using multistate transition contingency tables
to overcome these challenges. Based on the model, we present our projection of population health among elderly Japa-
nese forward to 2046 and discuss its implications for health policy in the super‐aged society of Japan.

2 | METHODS

2.1 | Data sources

Our model requires repeated cross‐sectional data of a closed cohort of the target population (a) collected over at least
two waves, which allows us to estimate health state transition probabilities, and (b) a consistent sampling frame across
survey waves. To estimate disease prevalence between survey waves, we applied a local polynomial smoothing function
in which we assumed evenly spaced knots over time.

For this purpose, we analyzed microdata derived from the Comprehensive Survey of Living Conditions (CSLC), a
large cross‐sectional nationally representative survey conducted every 3 years by the Japan Ministry of Health, Labour,
and Welfare. Approximately 600,000 individuals in 295,000 households were sampled by two‐stage cluster sampling in
each wave. We calculated time trends in disease prevalence and functional status specific to age‐sex‐specific cohorts to
create a synthetic panel from 2001 to 2013. We also incorporated cause‐specific mortality data from vital statistics data
for 2000 through 2014 that included death records of approximately 1.2 million people per year (Ministry of Health,
Labour and Welfare). We obtained the monthly age‐sex‐disease‐specific probability of death to reflect changing trends
in cause‐specific mortality, and we standardized the cohort population using data from the 2010 population census.
(For more details about data selection and adjustment, see the supporting information.)

≥
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2.2 | Health and functional status variables

The 14 health status variables consisted of self‐reported morbidity for 11 chronic diseases, subjective health status, and
two measures of limitations in activities of daily living. Morbidity diagnoses included diabetes, coronary heart disease,
stroke, hypertension, hyperlipidemia, cancer, all respiratory diseases, joint disorders, eye diseases, kidney disorders,
and other. The “other” category included circulatory diseases other than coronary heart disease (e.g., heart failure), gas-
tric diseases, and noncancer prostatic conditions (e.g., hyperplasia). We also included poor subjective health (measured
as five levels of self‐reported health status), which is known to be highly related to mortality prognosis (DeSalvo, Bloser,
Reynolds, He, & Muntner, 2006; Idler & Benyamini, 1997; Idler, Russell, & Davis, 2000). We indicated “1” if the respon-
dent reported “poor” or “very poor” health. Finally, dysfunctions in activities of daily living were defined as limitations
in at least one of the following basic activities: independently getting out of bed, bathing, dressing, and eating. We reg-
arded this as a condition requiring nursing care. In contrast, “mobility dysfunction” was defined as requiring personal
care/assistance when leaving the home.

2.3 | Strategy for determining the transition probability parameters

Based on birth cohort‐ and‐sex‐specific health and functional status variables obtained from waves of repeated cross‐
sectional surveys, we determined transition probabilities over time using contingency tables as described shortly.

Brunet and Struchiner proposed a nonparametric continuous‐time method to estimate incidence rate based on infor-
mation for disease prevalence and differential mortality by the disease when only repeated cross‐sectional survey data
were available (Brunet & Struchiner, 1999). Goldman et al. (2004) developed a discrete‐time version of these methods in
the context of a simulation model for projecting population aging. Our application of these methods assumes:

1. Disease conditions are absorbing states. All chronic conditions included in the model were assumed to be absorbing
states (i.e., there is no recovery from any chronic condition). This assumption is justified in our case by the fact that
for many chronic conditions (such as diabetes), there is no cure.

2. The mortality rate of a disease condition is always at least as large as the base rate of the age‐sex‐specific mortality
without comorbid conditions. With these assumptions, Brunet and Struchiner determined that the disease incidence
rate (or transition probability from not having the condition to having the condition) is a function of the change in
disease prevalence between periods and the difference between the disease‐specific mortality rate and the base rate
of mortality.

3. Related to the above assumption, we limited the population at risk (or candidate subpopulation) for a disease‐
specific death to those who had that disease. In other words, we assumed that one could not die from heart disease
if one did not have heart disease in the previous period. To account for deaths from diseases that are not reported in
the data or categorized in our model, we included a base rate of age‐sex‐specific mortality from other causes.

4. In addition, following previous models (Goldman et al., 2015), we further assumed Granger causality (Adams, Hurd,
McFadden, Merrill, & Ribeiro, 2003; Michaud & Van Soest, 2008; Stowasser, Heiss, McFadden, & Winter, 2011). That
is, we predicted future time series (such as health conditions) using prior values of a time series. We adopted this
assumption of Granger causality because our aim was to predict future health states not to identify causal pathways.

5. Finally, because of data limitations, we assumed that the total death probability was additive across concurrent con-
ditions; for example, the total probability of death for an individual with stroke and heart disease was the sum of the
mortality probability from stroke and the mortality probability from heart disease. If information on multiple causes
of death were available, this fifth assumption would have been unnecessary.

2.3.1 | Estimating the prevalence of coexisting health states

Previous studies used regression‐based prediction models of health status transition with panel data to model changing
trends in correlated health states over waves (Chen et al., 2016; Goldman et al., 2015). In their models, they regressed
each comorbidity status on a set of time‐lagged comorbid conditions judged to predict future acquisition of health con-
ditions, while controlling for age, sex, and other demographic or socio‐behavioral characteristics such as race, educa-
tion, body mass index, and smoking status. They bring the covariance structure between coexisting morbidity
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conditions into the model by including past comorbid condition variables as regressors, which is possible because they
rely on panel data. Instead, we explicitly account for the joint distribution of coexisting morbidity prevalence. The exis-
ting literature related to our approach treats each health state as mutually exclusive (Brunet & Struchiner, 1999;
Goldman et al., 2004; Hallett et al., 2008). To account for the joint distribution of disease statuses, we estimated two‐by‐
two contingency tables for each pair of disease statues by age, sex, and time period.

Because CSLC data had a 3‐year interval between waves, we smoothed the required numbers for each cell in the
2 × 2 contingency tables using the local polynomial method to obtain monthly prevalence. We chose 1 month as the
unit of time interval for incidence estimation, because the number of incident cases and deaths should be relatively
small during such a short period. Using this assumption, we determined incidence based on the prevalence and death
values we obtained from the data sources. (For a depiction of our estimation process, see Appendix Figure 2S1).

We chose this simple 2 × 2 table method because the frequency distributions across two health states ensured non-
zero positive numbers in each cell for stable estimation. Also, two‐dimensional data captured a large portion of the total
variance on 14‐dimensional joint distributions (i.e., >80%), which justified the use of two‐dimensional tables for model
simplicity.

2.3.2 | Mortality estimation

Vital statistics data listing multiple causes of death linked with past comorbidity history are the ideal data to estimate
cause‐specific case fatality when individuals have multiple comorbidities. Unfortunately, the official Japanese vital sta-
tistics data contain only a single cause of death. Because of this limitation, we assumed additive probability of mortality
(e.g., those who had heart disease and stroke should have a risk of mortality equal to the risk of mortality from heart
disease plus that from stroke). We calculated case‐fatality rates for the 11 chronic diseases we listed and the additive
probability of mortality from corresponding comorbidities. We attributed additional mortality exits from the poor sub-
jective health cell to mental health conditions. Because of data limitations, we assumed that impaired mobility and dys-
functions in activities of daily living do not independently increase the mortality risk. Therefore, regardless of
limitations in activities of daily living and mobility, the probability of mortality depends only on subjective health and
the 11 diseases. Appendix Table 2 lists the definitions of cause‐specific death based upon the International Classification
of Cause of Death version 10 (ICD‐10) systemS2. We determined the age‐sex‐specific base mortality rate so that the total
mortality exits in the model agreed with the observed natural decreasing trend in the population of a given birth cohort.
We adopted local polynomial smoothing with four age‐year width bands around the kernel to obtain age‐specific mor-
tality curves.

2.3.3 | Incidence estimation

Under the assumption that during a 1‐month interval, prevalence is balanced with incidence (entry into the cohort)
and death (exit from the cohort), we evaluated new entry and exit from each cell in the sex‐birth cohort‐specific 2 ×
2 contingency tables to derive state‐specific incidence.

For two arbitrary diseases i and j, the 2 × 2 table at time t contains the initial prevalence numbers at the beginning
of the month for four comorbidity patterns (di, dj) = (0,0), (1,0), (0,1), (1,1) for each birth cohort (c) and sex (s) where di
and dj are diagnostic statuses of diseases. We denoted the population size at the beginning of time t in each cell as:
pop i,jð Þ

c,s,t di,dj
� �

.
Then, between time t and t + 1, the cohort population decreases by the number of the deceased population. The

population with condition (di, dj) = (0,0) decreases by the base mortality rate, α i,jð Þ
base c,s,tð Þ , depending on individuals' age

and sex. The base mortality rate is determined by the all‐cause mortality rate and the case fatality rates, αi(c,s,t) and αj(c,s,
t), respectively. The remaining three cells have additive mortality risks attributable to diseases describing individuals'
health conditions at time t, and the population in the cells decreases by the corresponding mortality rates.

We write the number of survivors at the end of the month t in each cell for that closed cohort population,
surv i,jð Þ

c,s,t di,dj
� �

as

surv i,jð Þ
c,s,t 0,0ð Þ=pop i,jð Þ

c,s,t 0,0ð Þ 1−α i,jð Þ
base c,s,tð Þ

� �
,×
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Next, we compared the numbers of survivors at the end of the month (t) in the four cells with the estimated preva-
lence numbers in the corresponding cells at the beginning of the subsequent month t + 1. We attributed differences to
changes in comorbidity prevalences because of disease incidence during the month. For the population with condition
(di, dj) = (0,0), there are two possible status changes: to develop disease i from the (0,0) condition and to develop disease
j from the (0,0) condition. Thus, for the incidence rates of diseases i and j from the precondition (0,0), the following
equation holds

However, this equation cannot be uniquely solved for the incidence rates because of a lack of constraint conditions.
Therefore, we solved the equilibrium of the solutions using a relevant set of multiple 2 × 2 tables.

Equations (1) and (2) provide the incidence rates of diseases i and j from the (0,0) condition. Similarly, in the 2 ×
2 table, developments of diseases affect population sizes in adjoining cells. The incidence of disease i from the (0,1) con-
dition reduces pop i,jð Þ

c,s,t 0,1ð Þ, and the incidence of disease j from the (0,0) condition increases pop i,jð Þ
c,s,t 0,1ð Þ. This relation-

ship leads to the incidence rate of disease i from the (0,1) condition.

From the estimated monthly incidence rates using 91 2 × 2 tables above, we calculated the conditional incidence
probabilities under the condition (d1, d2, d3, d4, d5, d6, d7, d8, d9, d10, d11, d12, d13, and d14). We converted the incidence

≈
1
12

X

k 6¼ i

k=1,…,14

ðincidence i,kð Þ
i c,s, tð Þ 0,0ð Þ+ incidence i,kð Þ

k c,s, tð Þ 0,0ð ÞÞ

8>>>>>><
>>>>>>:

−
X

k 6¼ j

k=1,…,14

ðincidence j,kð Þ
j c,s, tð Þ 0,0ð Þ+ incidence j,kð Þ

k c,s, tð Þ 0,0ð ÞÞ

9>>>>>>=
>>>>>>;

: ðð2ÞÞ

In the same way, the incidence rate of disease j from the (1,0) condition is obtained by
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surv i,jð Þ
c,s,t 1,0ð Þ=pop i,jð Þ

c,s,t 1,0ð Þ× 1−αi c,s,tð Þ−α i,jð Þ
base c,s,tð Þ

� �
,

surv i,jð Þ
c,s,t 0,1ð Þ=pop i,jð Þ

c,s,t 0,1ð Þ× 1−αj c,s,tð Þ−α i,jð Þ
base c,s,tð Þ

� �
,

surv i,jð Þ
c,s,t 1,1ð Þ=pop i,jð Þ

c,s,t 1,1ð Þ× 1−αi c,s,tð Þ−αj c,s,tð Þ−α i,jð Þ
base c,s,tð Þ

� �
:

incidence i,jð Þ
i c,s,tð Þ 0,0ð Þ+ incidence i,jð Þ

j c,s,tð Þ 0,0ð Þ= surv i,jð Þ
c,s,t 0,0ð Þ−pop i,jð Þ

c,s,t+1 0,0ð Þ
pop i,jð Þ

c,s,t 0,0ð Þ
ðð1ÞÞ

incidence i,jð Þ
i c,s,tð Þ 0,0ð Þ− incidence i,jð Þ

j c,s,tð Þ 0,0ð Þ

incidence i,jð Þ
i c,s,tð Þ 0,1ð Þ= incidence i,jð Þ

j c,s,tð Þ 0,0ð Þ× pop i,jð Þ
c,s,t 0,0ð Þ

pop i,jð Þ
c,s,t 0,1ð Þ

−
surv i,jð Þ

c,s,t 0,1ð Þ−pop i,jð Þ
c,s,t+1 0,1ð Þ

pop i,jð Þ
c,s,t 0,1ð Þ

:

incidence i,jð Þ
j c,s,tð Þ 1,0ð Þ= incidence i,jð Þ

i c,s,tð Þ 0,0ð Þ× pop i,jð Þ
c,s,t 0,0ð Þ

pop i,jð Þ
c,s,t 1,0ð Þ

−
surv i,jð Þ

c,s,t 1,0ð Þ−pop i,jð Þ
c,s,t+1 1,0ð Þ

pop i,jð Þ
c,s,t 1,0ð Þ

:



rates in the 2 × 2 table form to conditional incidence probabilities of disease k in the 14‐dimensional health status forms
using the weighted average:

For example, to calculate the conditional incidence probability of diabetes (k = 1) under the condition (d1, d2,
d3, d4, d5, d6, d7, d8, d9, d10, d11, d12, d13, d14) = (0,0,0,1,0,0,0,1,0,0,0,0,0,0), we used the weighted average of

the incidence rates of diabetes in 13 2 × 2 tables as follows: incidence 1,2ð Þ
1 c,s,tð Þ 0,0ð Þ, incidence 1,3ð Þ

1 c,s,tð Þ 0,0ð Þ,
incidence 1,4ð Þ

1 c,s,tð Þ 0,1ð Þ, incidence 1,5ð Þ
1 c,s,tð Þ 0,0ð Þ, incidence 1,6ð Þ

1 c,s,tð Þ 0,0ð Þ, incidence 1,7ð Þ
1 c,s,tð Þ 0,0ð Þ, incidence 1,8ð Þ

1 c,s,tð Þ 0,1ð Þ,
incidence 1,9ð Þ

1 c,s,tð Þ 0,0ð Þ, incidence 1,10ð Þ
1 c,s,tð Þ 0,0ð Þ, incidence 1,11ð Þ

1 c,s,tð Þ 0,0ð Þ, incidence 1,12ð Þ
1 c,s,tð Þ 0,0ð Þ, incidence 1,13ð Þ

1 c,s,tð Þ 0,0ð Þ, and

incidence 1,14ð Þ
1 c,s,tð Þ 0,0ð Þ.

Consequently, we obtained a total of 114,688 (= 14 health variables × (214/2) comorbidity patterns) monthly conditional
incidence probabilities as solutions for each sex, birth cohort, and month. We translated the sex‐birth cohort‐specific condi-
tional incidence probabilities into age‐sex‐specific conditional incidence probabilities with the following two steps. First,
after translating the monthly rates into annual rates for the consecutive 13 years, we regressed the pooled incidence esti-
mates for each of the 114,688 combinations of comorbidities on age, age squared, and birth‐cohort dummy variables to
incorporate cohort‐specific fixed effects, for men and women separately. Second, we used the estimated values for age‐sex‐
specific conditional incidence probabilities for the years 2001–2013 to compare existing data sources for validation purposes.
We used the numbers for the years 2010, 2011, and 2012 for projection to account for the recent trend change.

2.4 | Simulation

With the estimated sex‐age‐comorbidity‐specific incidence and case‐fatality rates, we performed a microsimulation
projecting future distributions of health states. Transitions between health states, including mortality exit, followed a
first‐order Markov process; specifically, we assumed that disease incidence and mortality at time t + 1 depended only
on comorbidities and age at time t.

For the microsimulation, we simulated an older Japanese population (aged 60+) with health conditions probabilisti-
cally distributed according to 2013 CSLC comorbidity prevalence data (approximately 42 million observations). For
each individual, we calculated the conditional incidence and mortality probability, using data for 2010–2012, and
assumed that these probabilities were constant in the future. We used a 6‐month cycle length in our Markov process
and prepared transition probability parameters accordingly.

Every 3 years, we supplemented the simulation population with an incoming cohort of 60‐ to 62‐year‐olds, using the
birth‐cohort population and mortality rates as of 2011–2013 up to age 60 for the standardized years of age. We assumed
that the population disease distributions were the same as those of 60‐, 61‐, and 62‐year‐olds in the middle of 2013.

2.5 | Corroboration of the simulation parameters

We tested the validity of our simulation parameters by forward corroboration and, external, and backward validation.
In the forward corroboration, we projected the future total Japanese population to 2046 using the 2013 population as a
baseline, then compared our projected population forecast with the governmental official projection to 2046 (National
Institute of Population and Social Security Research, 2017a). For external validation, we compared our values for dis-
ease incidence with those reported in existing epidemiological cohort studies conducted in Japan for cardiovascular dis-
eases (Kubo et al., 2003) and cancer (National Cancer Center, 2015). To determine age‐sex‐specific annual incidence
rates for cardiovascular diseases and cancer, we pooled birth cohort‐sex‐disease‐specific conditional incidence

P
l 6¼ k

l=1,…,14

incidence k, lð Þ
k c,s, tð Þ dk,dlð Þ× pop k, lð Þ

c,s, t dk,dlð Þ

P
l 6¼ k

l=1,…,14

pop k, lð Þ
c,s, t dk,dlð Þ:
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probabilities for 2001 through 2013, and then calculated pooled means weighted by the frequency of the comorbid com-
binations. Finally, as backward validation, we performed a simulation with cohorts born between 1924 and 1953 based
on CSLC 2001 prevalence data as a baseline population to predict the disease prevalence for 2013 and then compared
the projected results with the actual prevalence trends of corresponding age‐sex strata in CSLC 2013 survey data.

After validating our parameters, we projected the age‐sex‐specific prevalence of comorbid conditions to 2046, using
the initial conditions as of 2013. As a reference for comparison, to demonstrate the importance of dynamic micro-
simulation, we calculated disease prevalence based on the static model by multiplying sex cohort‐specific prevalence
rates by the governmental official population estimates for 2022, 2034, and 2046.

3 | RESULTS

3.1 | Forward corroboration

Figure 1 shows the future projection of the age‐sex‐specific population for men on the left‐hand side and for women on
the right‐hand side, by 3‐year‐interval birth cohorts for 2022, 2034, and 2046, using the 2013 population structure as a
baseline. Population Pyramids in black are the governmental population projections published by the National Institute
of Population and Social Security Research. Our projected population for 2022 was statistically equivalent to the existing
governmental projection of the Japanese population structure (Dinno, 2017; Schuirmann, 1987; Table S1). However, we

FIGURE 1 Simulated population pyramid (in gray); Japanese governmental official projections (in black); Japanese governmental

projections with low-mortality and high-mortality assumptions (error bars)

observed a small but significant difference between our projections and official projections of those aged 75 years in≥
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2034 and 2046. Our long‐term simulations predict slightly smaller cohorts of those aged 75 years, compared with the
official projection.

3.2 | External validation

Figure 2 shows the validated annual incidence rate by age for coronary heart disease (Figure 2a), stroke (Figure 2b), and
cancer (Figure 2c) in 2013, for men (circle) and women (diamond). The solid lines depict the weighted averages of the con-
ditional incidence rates, while the shadowed area depicts the range between the 5th and 95th percentiles. The gray dots in
Figures 2a and 2b plot the heart and stroke incidence rates from the Hisayama study of the 1990s (Kubo et al., 2003), which
were higher in all age groups compared with our estimations. In Figure 2c, we compared our cancer incidence results with
the numbers published in the Japanese national cancer registry. The cancer registry showed consistently higher incidence
rates for both men and women, compared with our incidence rates. Japan's cancer registry included approximately 8.8%
“Death Certificate Only” (DCO) cases (National Cancer Center, 2017). When we accounted for this number and allowed
8.8% death exits from the “no cancer comorbidity” cell, we obtained an incidence rate similar to the registry.

3.3 | Backward validation

As shown in Figure 3 and Table S2, the results of two‐sample paired mean‐equivalence t testing supported that our sim-
ulation model produced health status prevalence rates statistically equivalent to observed trends, except for a slight

our model replicated up to third‐order joint distribution of comorbidities.
>Overall, women's base mortality was lower than for men. When we plotted the estimated case fatality for each

year, we observed a gradual decline in case fatality rates for all diseases in our observation period, and the base mortal-
ity rates increased slightly at 80 years of age. Incidence trends varied by disease. The incidence of circulatory diseases
and cancer increased with age, and men had higher risks compared with women. We observed declining incidence of
these diseases over time.(for detailed estimation results, refer to Supplemental Figures S1 and S2)

3.4 | Future projection of disease prevalence

Figure 4 presents our estimates of future disease prevalence for selected key chronic diseases by age and sex. Our pro-
jections indicate a lower prevalence of coronary heart disease and stroke compared with what would be expected in a
static model based on multiplying 2013 disease prevalence by the projected population published by the National Insti-
tute of Population Research (Figures 4a and 4b). In 2034, when the second wave of baby boomers (born 1971–1974)
reach 60 years of age, and the proportion of the population over 65 years reaches 33% (Cabinet Office, 2017), our projec-
tion estimated stroke prevalence at 1.8 million compared with 2.2 million in a static model. At the same time, the preva-
lence of difficulties in activities of daily living and impaired mobility was lower in our projection compared with a static
model (see supplemental figures).

Our projections of cancer and respiratory disease prevalence among Japan's future older population were similar to
those based on a static model. In 2034, cancer prevalence will increase by 109,000, and respiratory prevalence will
increase by 213,000 compared with 2013. However, our projection suggests that both incidence and case fatality will
decline in the future, with offsetting effects, resulting in similar prevalence but longer survival for the affected popula-
tion (Figures 4c and 4d).

4 | DISCUSSION

In this study, we proposed a multistate transition contingency table method for future projection of health conditions
in older populations based on a microsimulation using repeated cross‐sectional representative surveys in Japan. The sta-
tistical equivalence between existing epidemiological cohort data and our estimates of disease incidence and case‐

overestimation of the prevalence of hyperlipidemia and joint disorders in those aged 80 years. We also confirmed that≥

≥

≥

KASAJIMA ET AL. 37



fatality rates support the validity of our model. Our projection results imply that traditional static models do not accu-
rately forecast the prevalence of some comorbid conditions.

Our projections of future population pyramids were statistically equivalent to those published by governmental
institutes until 2022, supporting the validity of our estimation of transition parameters. However, we found a small but
significant gap between the governmental projection and our simulation results for those aged 75 years in the long‐
term simulation, which requires discussion. Governmental projections by the National Institute of Population and
Social Security Research assume hypothetical elongation of potential life years in addition to common adjustment with
Lee and Carter modeling to account for improved longevity of the Japanese older subpopulation (National Institute of
Population and Social Security Research, 2017b). We did not rely on this hypothetical adjustment. Instead, our

FIGURE 2 The range between the 5th and

95th percentiles is shadowed. The gray plots

indicate epidemiological observations derived

from the references (Kubo et al., 2003; National

Cancer Center, 2017)

≥
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FIGURE 3 The solid line indicates estimations using observations from 2001 as a baseline. The dashed line indicates actually observed

data in the Comprehensive Survey of Living Conditions 2013. The range of 95% confidence intervals is shadowed. ADL 1+, at least one

condition among dysfunctions in activities of daily living
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FIGURE 4 The bars in left-hand side describe the prevalence for men, and the bars in right-hand side describe the prevalence for

women. The black bars represent estimates based on a static model
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projection empirically estimated improved base mortality rates and lower incidence and case fatality rates for several
conditions as a driver for improved population longevity. Our results were comparable with other projections using
Bayesian modeling without such assumptions (Kontis et al., 2017).

Our estimates of the incidence rates of heart disease and stroke were lower than those reported in previous epidemi-
ological studies. However, a simple comparison may not be plausible because we relied on self‐reported health condi-
tions in the CSLC data, and the Hisayama study defined disease diagnosis based on clinical examinations and autopsy
findings, which should have detected more asymptomatic cases (Kubo et al., 2003). The Hisayama study was also based
mainly on observations during the 1990s when the incidence of cardiovascular disease was higher than currently. In
light of these considerations, we believe that our estimates reflect the current number of symptomatic stroke cases.

Cancer incidence published by the National Cancer Institute includes DCO cases to compensate for cancer death,
but these are not recorded in the population‐based cancer registry system. In Japan, reports of cancer cases are collected
through clinics and hospitals and added to the cancer registry database (Japanese Association of Cancer Registries,
2010). When a cancer death is reported, the death record is matched with a cancer case in the cancer registry database.
In cases of no matching registration, the cancer death is treated as a DCO case. In this study, because DCO cases were
considered dead at the time of case identification, the related survivor time was treated as zero, which created an
upward bias in the incidence estimates given the calculated prevalence (i.e., prevalence = incidence × average disease
length; Brenner et al., 2016; Brenner & Holleczek, 2011). Indeed, when we performed ad hoc reestimation of cancer
incidence allowing a DCO of 8.8% (or death by cancer from noncancer preconditions), the percentage reported in the
2013 National Cancer Registry, we confirmed that our estimate matched that of the registry. Therefore, we believe that
the actual figure lies somewhere between the Cancer Registry number and our estimate.

In the backward validation, we slightly overestimated the prevalence of hyperlipidemia and joint disorders, proba-
bly because our absorbing assumption (no recovery) may not reflect the natural course of these conditions. Otherwise,
our simulation accurately captured real‐world health transitions of older Japanese from 2001 to 2013. Despite decreas-
ing trends in incidence and mortality for most diseases, we project an increase in prevalence of multiple chronic condi-
tions (and longer survival with disease) in Japan's near future because of the increasing absolute numbers of older
people and improved survival of those with multiple conditions.

It is important to carefully discuss the differences between the results based on our dynamic model and those based
on existing static models, which simply depict the average status of comorbidity prevalence by age and sex strata while
assuming constant rates over time. Because new incoming cohorts had lower risks for stroke and coronary heart dis-
ease, our estimates of future prevalence of these conditions were located outside the 95% confidence interval range of
the static model estimates. Although the estimated prevalence of respiratory conditions and cancer was similar between
the dynamic and static models, our model suggested that this was because of lower incidence and better survival for the
same conditions in the future older population, which may have different implications for future health policy
decisions.

Our proposed multistate transition contingency table method with repeated cross‐sectional data provides a comple-
mentary method with existing multistate transition models based on a panel‐data structure. Repeated cross‐sectional
datasets are widely available, and our approach may be useful especially for those with limited availability of panel
data. Our proposed approach also may be useful when an existing panel suffers from nonignorable attrition.

We acknowledge that our method requires further refinement. The model could be extended to include a wider list
of comorbid conditions including cognitive limitations. In addition to age, sex, and health status, the model could also
incorporate more detailed stratification by education level and/or other socioeconomic status indices to clarify social
disparity in health in older people after retirement age. Our model also does not include risk factors such as body mass
index, smoking habits, or exercise, which could improve the accuracy of the model. The model could also be expanded
to include estimates of medical and long‐term care costs.

Our simulation model may help assess the impact of policy and technological innovations on disease prevalence
using counterfactual simulations. For instance, the model may help policy makers make informed decisions on policy
reform by projecting the implications of different policy changes. Our model also has great potential to identify diverse
and dynamic associations between health, the economy, and social conditions among older populations when we incor-
porate socioeconomic factors into future iterations (Shimizutani, Oshio, & Fujii, 2014; Stowasser, Heiss, McFadden, &
Winter, 2011). Health affects, and is affected by, socioeconomic conditions (World Health Organization, 2008); changes
in living conditions and available health technologies over time lead to changes in health, function, and likelihood of
death (Ma et al., 2007; Tang & Kurashina, 1987; Wang, Weber, & Graham, 2015). Our model may help clarify the
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implications for health and social disparities among older people with diverse sets of sociobehavioral, clinical, and eco-
nomic risk factors.

Despite the promising benefits, we acknowledge that our proposed approach has limitations. First, we assumed an
additive increase in mortality risk in those with multiple comorbidities. However, this assumption may overestimate or
underestimate mortality risks for some combinations of diseases, depending on their synergetic or competing impacts
on case fatality. Second, we postulated that all chronic conditions are absorbing in the Markov process; however, some
symptomatic conditions, such as knee pain, included in joint disorders, may be reversible. Third, we fixed mortality
and incidence parameters as of the most recent years of observation to minimize uncertainty and to obtain the most
conservative result. For the same reason, we assumed that future incoming 60‐ to 62‐year‐old cohorts will be as healthy
as those in the 2013 data. Instead, we could have incorporated future time trends for the health states of incoming
cohorts, as in the original Future Elderly Model (Goldman et al., 2015). Fourth, our model does not consider future
changes in technology that may improve morbidity and mortality. With sufficient knowledge of how certain changes in
technology could change our estimated parameters, we could run counterfactual analyses of the impact of new technol-
ogy on the distribution of morbidity and mortality in the future. Finally, we did not present confidence interval esti-
mates in our simulation results. Bootstrapping confidence interval estimates is an option but one that requires
overwhelming computing time.

Despite these challenges, developing a multistate transitional microsimulation model is a promising endeavor to
open new horizons for policy evaluation and discussion regarding aging societies. The method also furthers our knowl-
edge of the dynamic interactions between a diverse set of risk factors among heterogeneous older populations. Our pro-
posed multistate transition contingency table method could be a useful tool to broaden the potential of
microsimulations.
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APPENDIX TECHNICAL DOCUMENT A.

A.1. | Adjustment of Data Source Information
A.1.1. | Population adjustment in demographics
The number of older individuals in the population census data is often underreported because of institutionalization
and other reasons, while death reports are likely complete. Therefore, the number of deaths often exceeds the popula-
tion size in advanced‐age segments. We corrected estimates for the older population (> 80 years of age) by following
protocols recommended by the Human Mortality Database project, an international collaborative project for demo-
graphic statistics, as this database has been widely adopted by many national institutions including in Japan and
Australia (National Institute of Population and Social Security Research, 2010; Terblanche & Wilson, 2015; Wilmoth
et al., 2007).

using Vital Statistics (death records) microdata from 2000–2014 using extinct cohorts and survivor ratios. The protocol
for this method is publicly available from the website of the Human Mortality Database Project (Wilmoth et al., 2007)).

The extinct cohorts method determines the number of survivors retrospectively by summing all counts of deaths of
extinct generations for the period, under a “no immigrant” assumption. For example, as the birth cohorts born in 1898
or earlier reached extinction in 2014, their population sizes as of the year 2000 should be equal to the cumulative death
counts during the years 2000–2014.

The survivor ratio method is a modified extinct cohorts method applied to pre‐extinct cohorts. By estimating a
proper survival ratio, one can reconstruct a past population by adding the estimated number of survivors to the accu-
mulated death counts.

A.1.2. | Data selection for prevalence estimates of comorbidity
We derived the prevalence estimate of each combination of the listed disease statuses from the CSLC by sex and 3‐year
interval birth cohorts (Appendix Fig. 1). The CSLC asked about comorbid conditions only for individuals who received
regular medical attention for chronic conditions. The proportion of individuals receiving regular medical attention
increased with age. We observed a discontinuous increase in disease prevalence at age 60 years, which corresponds to
the legal retirement age in Japan, suggesting improved access to medical care after retirement rather than sudden
changes in health status. Based on this finding, we decided to include only individuals 60 years for our prevalence
estimates. We also set 90 years as an upper age range for men, and 95 years for women because the CSLC asks for
comorbidity information only from noninstitutionalized adults, and the proportion of those hospitalized and/or institu-
tionalized exceeded nonignorable levels (e.g., 8%) at the cutoff age points. For those over the cutoff age, we adopted the
same prevalence ratios as for the cutoff age.

≥

Because of incomplete or missing responses from census data, populations of those aged ≥ 80 years was determined
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A.1.3. | Inflation of numbers of cancer prevalence
When we compared the self‐reported disease prevalence obtained from the CSLC data with the hospital‐record‐based
numbers derived from the Japanese Patient Survey (Ministry of Health, Labour and Welfare, 2014) for our data validity
check, we found that disease prevalences were comparable between the two data sources except for cancer, for which
we observed approximately 30% under‐reporting in the CSLC data. To address the under‐reporting, we generated addi-
tional cancer cases in the CSLC sample by assigning uniform random numbers to a disease‐free subpopulation
(e.g., those who had no comorbidities) of each sex‐ and birth‐specific cohort and recategorized those with the largest

APPENDIX FIGURE 1 Prevalence estimate from the CSLC data for 2001 and 2013 by sex and 3-year interval birth cohorts with

synthetic panel datasets using 2 × 2 contingency tables 2.
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randomly generated numbers into cancer status until the number of cancer cases matched those in the Japanese Patient
Survey.

We use 2 × 2 tables, keeping exact numbers of frequencies standardized for sex‐specific birth‐cohort populations for
all possible combinations of comorbidities as described in Note , which follows. An alternative method to the exact
method is to estimate comorbidity status by generating a joint normal distribution based on the prevalence of comor-
bidity statuses of multiple diseases. Although this can be applied directly to panel data, its application to synthetic panel
data requires an additional assumption regarding the covariance of comorbidities. Instead, we propose using the contin-
gency table method, which does not require such a strong assumption.

In this contingency table approach, we retain the additive assumption on case fatality for comorbid status, i.e.; the
model is calibrated such that the case fatality rate for each combination of comorbidities is equal to the sum of the case
fatality rates for each individual morbidity status (see details in Note ).

We also note that we use monthly data for cohort dynamics rather than yearly or longer time periods because some
disease conditions (e.g., cancer) have a rapid turnover. Using a 1‐month interval, we can safely assume that during the
period, a cohort can be considered closed, and any change in the prevalence of comorbidity conditions over periods can
be attributed to a dynamic equilibrium of new entries (incidence) and exits (case fatality). Although vital statistics were
available on a monthly basis, the original data in the Comprehensive Survey was collected every three years. Therefore,
we smoothed the 3‐year interval prevalence to estimate monthly prevalence, and we decomposed the data into entry
and exit data to obtain the number of incident cases.

To determine the comorbidity‐specific incidence rates, we solve for equilibria of equations obtained using multiple
2 × 2 tables (see Note 3 for details). We estimate the conditional incidence rates by taking the weighted average of all
possible incidence patterns calculated from the corresponding 2 × 2 tables for each comorbidity status.

APPENDIX FIGURE 2 Work flow of incidence determination using a contingency table method
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A.2. | Note 1. 2 × 2 table creation
To create a 2 × 2 table, we first take two diseases and consider 0 or 1 status for each disease where 0 stands for not diag-
nosed and 1 stands for diagnosed. Next, we distribute the birth‐sex cohort population into four cells based on the preva-
lence of two diseases and the frequency of two concurrent diseases. Because we have 91 (= 14 × 13/2) possible
combinations of disease conditions, two gender groups (s=1,2), and 19 birth cohorts (c=1,2, … ,19; 1903–1905 birth
cohort, 1906–1908 birth cohort, continuing to the 1957–1959 birth cohort), we create 3458 (= 91 × 2 × 19) 2 × 2 tables
for each survey wave. Using five waves from the Comprehensive Surveys for 2001, 2004, 2007, 2010, and 2013, we
smoothed the required numbers for each cell in the contingency tables using the local polynomial method to obtain
monthly prevalence.

For two arbitrary statuses, di and dj, the 2 × 2 table at time t contains the initial prevalence numbers at the begin-
ning of the month for four comorbidity patterns (di, dj) = (0,0), (1,0), (0,1), (1,1). Then, between time t and t + 1, the
cohort population decreases by the number of the deceased population. The population with condition (di, dj) = (0,0)
decreases by the base mortality rate depending on individuals' age and sex. The remaining three cells have additive
mortality risks attributable to diseases describing individuals' health conditions at time t, and the population in the cells
decreases by the corresponding mortality rates. The remaining populations are the numbers of survivors in each cell at
the end of the month for that closed cohort population. We compared the numbers of survivors in the four cells in the
2 × 2 table with the estimated prevalence numbers in the corresponding cells of the subsequent month's table (for time
t + 1). Differences are attributed to changes in health status because of disease incidence during the month. We com-
puted 364 differences (four differences in 91 2 × 2 tables) over time for each sex‐birth cohort using this process.

To convert differences into the status incidence cases under the 14‐dimensional health condition vectors, we built
systems of difference equations to estimate the conditional incidence probabilities (see the appendix technical docu-
ment for details). Consequently, we obtained a total of 114 688 (= 14 × (214/2)) monthly conditional incidence probabil-
ities as solutions for each sex, birth cohort, and month.

Finally, we translated the sex‐birth cohort‐specific conditional incidence rates into age‐sex‐specific conditional inci-
dence rates in the following two steps: after translating the monthly rates into annual rates for the consecutive 13 years,
we regressed the pooled incidence estimates for each of the 114 688 combinations of comorbidities for age, age squared,
and birth‐cohort dummy variables to incorporate cohort‐specific fixed effects, for men and women separately.

A.3. | Note 2. Age‐sex‐disease‐specific mortality rates
In this section, we estimate mortality rates (Appendix Table 1‐(b)) using monthly 2 × 2 tables (Appendix Table 1‐(a)).
Let us denote the case fatality rate attributable to disease 1 (diabetes in the following example) as α1(c,s,t), the case fatal-
ity rate attributable to disease 2 (heart disease in the following example) as α2(c,s,t), and the mortality rate for other con-
ditions as α 1,2ð Þ

base c,s,tð Þ.

Under the assumption of additive mortality rates, the following equations hold:
(Observed mortality from diabetes in the vital statistics data) = α1 c,s,tð Þ � fpop 1,2ð Þ

c,s,t 1,0ð Þþpop 1,2ð Þ
c,s,t 1,1ð Þ}

(Observed mortality from heart disease in the vital statistics data) = α2 c,s,tð Þ � pop 1,2ð Þ
c,s,t 0,1ð Þþpop 1,2ð Þ

c,s,t 1,1ð Þ
n o

(Observed mortality from diseases other than diabetes or heart disease)

TABLE 1 2 × 2 tables of population and mortality rates

Table 1-(a) d1

Population 0 1
d2 0 pop 1,2ð Þ

c,s,t 0,0ð Þ pop 1,2ð Þ
c,s,t 1,0ð Þ

1 pop 1,2ð Þ
c,s,t 0,1ð Þ pop 1,2ð Þ

c,s,t 1,1ð Þ
Table 1-(b) d1

Mortality rate 0 1
d2 0 α 1,2ð Þ

base c,s,tð Þ α1 c,s,tð Þ + α 1,2ð Þ
base c,s,tð Þ

1 α2 c,s,tð Þ + α 1,2ð Þ
base c,s,tð Þ α1 c,s,tð Þ + α2 c,s,tð Þ + α 1,2ð Þ

base c,s,tð Þ
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= α 1,2ð Þ
base c,s,tð Þ � pop 1,2ð Þ

c,s,t 0,0ð Þþpop 1,2ð Þ
c,s,t 1,0ð Þþpop 1,2ð Þ

c,s,t 0,1ð Þþpop 1,2ð Þ
c,s,t 1,1ð Þ

n o
:

We attribute additional mortality exits from the poor subjective health cell to mental health conditions. Because of
data limitations, we assume that impaired mobility and dysfunctions in activities of daily living do not independently
raise mortality risk. Therefore, regardless of dysfunctions in activities of daily living and mobility, the probability of
mortality depends on subjective health and the 11 diseases. Definitions of cause specific death with International Classi-
fication of Death cause version10 (ICD‐10) were listed in Appendix Table 2.

A.4. | Note 3. Conditional incidence using 2 × 2 tables
In the next step, to estimate the conditional incidence rates, we count the monthly incidence as the difference between
the number of survivors and the prevalence number in the subsequent period. Using the example of the diabetes‐heart
disease table as in Appendix Table 3, we obtain the following four incidence numbers:

• Incidence of diabetes from pop 1,2ð Þ
c,s,t 0,0ð Þ

• Incidence of heart disease from pop 1,2ð Þ
c,s,t 0,0ð Þ

• Incidence of diabetes from pop 1,2ð Þ
c,s,t 0,1ð Þ

TABLE 2 List of categories in ICD-10 for calculation of cause-specific mortality from vital statistics.

Disease categories ICD-10
Diabetes E10-E14
Coronary heart diseases I20-I25
Stroke I60-I69
Hypertension I10, I11, I12, I13, I15
Hyperlipidemia E78
Cancer C00 - C97
All respiratory diseases J10-J22, J40-J47, J60-J70, J80-J84, J99, A15-A16
Joint disorders (rheumatoid arthritis, collagen vascular disease) M05-M08, M10-M14, M15-M19, M40-M54
Eye diseases H25-H28, H30-H36, H40-H42
Kidney disorders N00-N07, N10-N15, N17-N19
Others I00-I09, I26-I52, K00-K99
Liver B15-B19, K70-K77
Ulcer K25-K27, K29
Prostatic hyperplasia N40
Mental disorders F20-F48, X60-X84

TABLE 3 Population flow (gray arrows) because of disease incidence in equations (1)–(4) in the (d1,d2) 2 × 2 table
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• Incidence of heart disease from pop 1,2ð Þ
c,s,t 1,0ð Þ

The incidence numbers satisfy the following relationships if we assume closed cohorts:
Population flow from [(d1,d2) = (0,0)]
Incidence of heart disease from [(d1,d2) = (0,0)] + Incidence of diabetes from [(d1,d2) = (0,0)]

= Survivors in d1,d2ð Þ= 0,0ð Þ½ �−Prevalence of having the condition d1,d2ð Þ= 0,0ð Þ½ � at tþ1ð Þ

= pop 1,2ð Þ
c,s,t 0,0ð Þ � 1−α 1,2ð Þ

base c,s,tð Þ
� �

−pop 1,2ð Þ
c,s,tþ1 0,0ð Þ ðEq1Þ

Population flow into [(d1,d2) = (1,1)]
Incidence of heart disease from [(d1,d2) = (1,0)] + Incidence of diabetes from [(d1,d2) = (0,1)]

= Prevalence of having the condition d1,d2ð Þ= 1,1ð Þ½ � at tþ1ð Þ−Survivors in d1,d2ð Þ= 1,1ð Þ½ �

= pop 1,2ð Þ
c,s,tþ1 1,1ð Þ−pop 1,2ð Þ

c,s,t 1,1ð Þ � 1−α 1,2ð Þ
base c,s,tð Þ−α1 c,s,tð Þ−α2 c,s,tð Þ

� �
ðEq2Þ

Population flow in/out [(d1,d2) = (0,1)]
Incidence of heart disease from [(d1,d2) = (0,0)] − Incidence of diabetes from [(d1,d2) = (0,1)]

= Prevalence of having the condition d1,d2ð Þ= 0,1ð Þ½ � at tþ1ð Þ−Survivors in d1,d2ð Þ= 0,1ð Þ½ �

This system of equations cannot be uniquely solved because of a lack of constraint conditions. However, we can find
the equilibrium of the solutions for Eq(1)−Eq(4) using a relevant set of multiple 2 × 2 tables. Let us denote “the inci-
dence rate of diabetes (disease 1) from [(d1,d2)=(0,0)] condition in the (d1,d2) − 2 × 2 table” by incidence 1,2ð Þ

1 c,s,tð Þ 0,0ð Þ, and
denote “the incidence rate of heart disease (disease 2) from [(d1,d2) = (0,0)] condition in the (d1,d2) – 2 × 2 table” by
incidence 1,2ð Þ

2 c,s,tð Þ 0,0ð Þ. Then we can rewrite Eq(1) as:

ðEq1Þ

We average the values on the right side of Eq(1)' for 12 consecutive months in a certain year. Because we have 91 2
× 2 tables, we obtain 91 patterns of monthly averages for Eq(1)' for each sex, cohort, and year. To separate the elements
on the left side of Eq(1)', we use the multiple 2 × 2 tables listed in Appendix Table 4.

ðEq3Þ

Population flow in/out [(d1,d2) = (1,0)]
Incidence of diabetes from [(d1,d2) = (0,0)] − Incidence of heart disease from [(d1,d2) = (1,0)]

= Prevalence of having the condition d1,d2ð Þ= 1,0ð Þ½ � at tþ1ð Þ−Survivors in d1,d2ð Þ= 1,0ð Þ½ �

ðEq4Þ
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= pop 1,2ð Þ
c,s,t+1 0,1ð Þ−pop 1,2ð Þ

c,s,t 0,1ð Þ× 1−α 1,2ð Þ
base c,s,tð Þ−α2 c,s,tð Þ

� �

= pop 1,2ð Þ
c,s,t+1 1,0ð Þ−pop 1,2ð Þ

c,s,t 1,0ð Þ× 1−α 1,2ð Þ
base c,s,tð Þ−α1 c,s,tð Þ

� �

incidence 1,2ð Þ
1 c,s,tð Þ 0,0ð Þ+ incidence 1,2ð Þ

2 c,s,tð Þ 0,0ð Þ=1−α 1,2ð Þ
base c,s,tð Þ−

pop 1,2ð Þ
c,s,t+1 0,0ð Þ

pop 1,2ð Þ
c,s,t 0,0ð Þ

:



Arithmetically subtracting the sum of the elements in the right column from the sum of the elements in the left col-
umn in Appendix Table 4, we obtain the following equations:

TABLE 4 Set of 26 Eq(1)0s to determine the incidence rates of diabetes and heart disease

Eq(1)0s including diabetes incidence (disease 1) Eq(1)0s including heart disease (disease 2)

incidence 1,2ð Þ
1 c,s,tð Þ 0,0ð Þ+ incidence 1,2ð Þ

2 c,s,tð Þ 0,0ð Þ incidence 1,2ð Þ
1 c,s,tð Þ 0,0ð Þ+ incidence 1,2ð Þ

2 c,s,tð Þ 0,0ð Þ

incidence 1,3ð Þ
1 c,s,tð Þ 0,0ð Þ+ incidence 1,3ð Þ

3 c,s,tð Þ 0,0ð Þ incidence 2,3ð Þ
2 c,s,tð Þ 0,0ð Þ+ incidence 2,3ð Þ

3 c,s,tð Þ 0,0ð Þ

incidence 1,4ð Þ
1 c,s,tð Þ 0,0ð Þ+ incidence 1,4ð Þ

4 c,s,tð Þ 0,0ð Þ incidence 2,4ð Þ
2 c,s,tð Þ 0,0ð Þ+ incidence 2,4ð Þ

4 c,s,tð Þ 0,0ð Þ

incidence 1,5ð Þ
1 c,s,tð Þ 0,0ð Þ+ incidence 1,5ð Þ

5 c,s,tð Þ 0,0ð Þ incidence 2,5ð Þ
2 c,s,tð Þ 0,0ð Þ+ incidence 2,5ð Þ

5 c,s,tð Þ 0,0ð Þ

incidence 1,6ð Þ
1 c,s,tð Þ 0,0ð Þ+ incidence 1,6ð Þ

6 c,s,tð Þ 0,0ð Þ incidence 2,6ð Þ
2 c,s,tð Þ 0,0ð Þ+ incidence 2,6ð Þ

6 c,s,tð Þ 0,0ð Þ

incidence 1,7ð Þ
1 c,s,tð Þ 0,0ð Þ+ incidence 1,7ð Þ

7 c,s,tð Þ 0,0ð Þ incidence 2,7ð Þ
2 c,s,tð Þ 0,0ð Þ+ incidence 2,7ð Þ

7 c,s,tð Þ 0,0ð Þ

incidence 1,8ð Þ
1 c,s,tð Þ 0,0ð Þ+ incidence 1,8ð Þ

8 c,s,tð Þ 0,0ð Þ incidence 2,8ð Þ
2 c,s,tð Þ 0,0ð Þ+ incidence 2,8ð Þ

8 c,s,tð Þ 0,0ð Þ

incidence 1,9ð Þ
1 c,s,tð Þ 0,0ð Þ+ incidence 1,9ð Þ

9 c,s,tð Þ 0,0ð Þ incidence 2,9ð Þ
2 c,s,tð Þ 0,0ð Þ+ incidence 2,9ð Þ

9 c,s,tð Þ 0,0ð Þ

incidence 1,10ð Þ
1 c,s,tð Þ 0,0ð Þ+ incidence 1,10ð Þ

10 c,s,tð Þð0;0Þ incidence 2,10ð Þ
2 c,s,tð Þ 0,0ð Þ+ incidence 2,10ð Þ

10 c,s,tð Þð0;0Þ

incidence 1,11ð Þ
1 c,s,tð Þ 0,0ð Þ+ incidence 1,11ð Þ

11 c,s,tð Þð0;0Þ incidence 2,11ð Þ
2 c,s,tð Þ 0,0ð Þ+ incidence 2,11ð Þ

11 c,s,tð Þð0;0Þ

incidence 1,12ð Þ
1 c,s,tð Þ 0,0ð Þ+ incidence 1,12ð Þ

12 c,s,tð Þð0;0Þ incidence 2,12ð Þ
2 c,s,tð Þ 0,0ð Þ+ incidence 2,12ð Þ

12 c,s,tð Þð0;0Þ

incidence 1,13ð Þ
1 c,s,tð Þ 0,0ð Þ+ incidence 1,13ð Þ

13 c,s,tð Þð0;0Þ incidence 2,13ð Þ
2 c,s,tð Þ 0,0ð Þ+ incidence 2,13ð Þ

13 c,s,tð Þð0;0Þ

incidence 1,14ð Þ
1 c,s,tð Þ 0,0ð Þ+ incidence 1,14ð Þ

14 c,s,tð Þð0;0Þ incidence 2,14ð Þ
2 c,s,tð Þ 0,0ð Þ+ incidence 2,14ð Þ

14 c,s,tð Þð0;0Þ

X

k 6¼ 1

k=1,…,14

ðincidence 1,kð Þ
1 c,s,tð Þ 0,0ð Þ+ incidence 1,kð Þ

k c,s,tð Þ 0,0ð ÞÞ−
X

k 6¼ 2

k=1,…,14

ðincidence 2,kð Þ
2 c,s,tð Þ 0,0ð Þ+ incidence 2,kð Þ

k c,s,tð Þ 0,0ð ÞÞ

≒12 incidence1 c,s,tð Þ 0
!� �

− incidence2 c,s,tð Þ 0
!� �� �

where incidence1 c,s,tð Þ 0
!� �

denotes the equilibrium of the incidence rate of diabetes from disease-free condition (d1, d2,
d3, d4, d5, d6, d7, d8, d9, d10, d11, d12, d13, d14)=0

!
, and incidence2 c,s,tð Þ 0

!� �
denotes the equilibrium of the incidence rate of

heart disease from disease-free condition.
The first row of Appendix Table 4 can be approximated by incidence 1,2ð Þ

1 c,s,tð Þ 0,0ð Þ + incidence 1,2ð Þ
2 c,s,tð Þ 0,0ð Þ ≒

incidence1 c,s,tð Þ 0
!� �

+ incidence2 c,s,tð Þ 0
!� �

, which determines the solutions for Eq(1)', incidence 1,2ð Þ
1 c,s,tð Þ 0,0ð Þ , and

incidence 1,2ð Þ
2 c,s,tð Þ 0,0ð Þ. The solution to Eq(1)' sequentially provides the remainder of the solutions in the system of equa-

tions (1)–(4), incidence 1,2ð Þ
1 c,s,tð Þ 0,1ð Þ, and incidence 1,2ð Þ

2 c,s,tð Þ 1,0ð Þ.
From the estimated monthly incidence rates using 91 2 × 2 tables above, we calculated the conditional incidence

probabilities under the condition (d1, d2, d3, d4, d5, d6, d7, d8, d9, d10, d11, d12, d13, d14). We converted the incidence rates
in the 2 × 2 table form to conditional incidence probabilities of disease k in the 14 dimensional health status form by
the weighted average:
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For example, to calculate the conditional incidence probability of diabetes (k=1) under the condition (d1, d2, d3, d4,
d5, d6, d7, d8, d9, d10, d11, d12, d13, d14)=(0,0,0,1,0,0,0,1,0,0,0,0,0,0), we took the weighted average of incidence rates of
diabetes in 13 2 × 2 tables, such as incidence 1,2ð Þ

1 c,s,tð Þ 0,0ð Þ, incidence 1,3ð Þ
1 c,s,tð Þ 0,0ð Þ, incidence 1,4ð Þ

1 c,s,tð Þ 0,1ð Þ, incidence 1,5ð Þ
1 c,s,tð Þ 0,0ð Þ,

incidence 1,6ð Þ
1 c,s,tð Þ 0,0ð Þ, incidence 1,7ð Þ

1 c,s,tð Þ 0,0ð Þ, incidence 1,8ð Þ
1 c,s,tð Þ 0,1ð Þ, incidence 1,9ð Þ

1 c,s,tð Þ 0,0ð Þ, incidence 1,10ð Þ
1 c,s,tð Þ 0,0ð Þ,

incidence 1,11ð Þ
1 c,s,tð Þ 0,0ð Þ, incidence 1,12ð Þ

1 c,s,tð Þ 0,0ð Þ, incidence 1,13ð Þ
1 c,s,tð Þ 0,0ð Þ, and incidence 1,14ð Þ

1 c,s,tð Þ 0,0ð Þ.
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P
l 6¼ k

l=1,…,14

incidence k,lð Þ
k c,s,tð Þ dk,dlð Þ× pop k,lð Þ

c,s,t dk,dlð Þ

P
l 6¼ k

l=1,…,14

pop k,lð Þ
c,s,t dk,dlð Þ

:
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