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61-712 Poznań, Poland

2 Department of Biotechnology, Institute of Natural Fibres and Medicinal Plants, Wojska Polskiego 71b,
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Abstract: Astaxanthin (AST) and fucoxanthin (FUC) are natural xanthophylls, having multidirec-
tional activity, including antioxidant, anti-inflammatory, and anticancer. Both compounds also
show antimicrobial activity, which is presented in this review article. There are few papers that
have presented the antimicrobial activity of AST. Obtained antimicrobial concentrations of AST
(200–4000 µg/mL) are much higher than recommended by the European Food Safety Authority for
consumption (2 mg daily). Therefore, we suggest that AST is unlikely to be of use in the clinical
treatment of infections. Our knowledge about the antimicrobial activity of FUC is better and this
compound acts against many bacteria already in low concentrations 10–250 µg/mL. Toxicological
studies on animals present the safety of FUC application in doses 200 mg/kg body weight and
higher. Taking available research into consideration, a clinical application of FUC as the antimicrobial
substance is real and can be successful. However, this aspect requires further investigation. In this
review, we also present potential mechanisms of antibacterial activity of carotenoids, to which AST
and FUC belong.

Keywords: mechanisms of action; efflux pump; biofilm inhibition; toxicity; safety; carcinogenicity

1. Introduction

Astaxanthin (AST) and fucoxanthin (FUC) are natural xanthophyll pigments belonging
to carotenoids [1]. AST was first isolated from lobster by Kuhn and Sorensen in 1938 [2].
The AST is 3,3′-dihydroxy-β,β-carotene-4,4′-dione (Figure 1), and its molecular formula
is C40H5204 [3]. It was demonstrated that AST is produced by some microorganisms,
including bacteria (e.g., Escherichia coli, Mycobacterium lacticola, Paracoccus carotinifaciens, and
Brevibacterium sp.), green microalgae (e.g., Haematococcus pluvialis, Chlorella zofingiensis, and
Chlamydomonas nivalis) and yeasts (e.g., Phaffia rhodozyma = Xanthophyllomyces dendrorhous,
and Rhodosporidium toruloides) [4–6].

FUC was first isolated from the seaweeds Fucus, Dictyota, and Laminaria by Willstätter and
Page in 1914 [7]. The FUC is 3′-acetoxy-5,6-epoxy-3,5′-dihydroxy-6′,7′-didehydro-5,6,7,8,5′,6′-
hexahydro-β,β-carotene-8-one (Figure 1), and its molecular formula is C42H58O6 [8]. FUC is
present in brown seaweeds belonging among others to the genera Dictyota, Ecklonia, Fucus,
Hijikia, Laminaria, Petalonia, Sargassum, Scytosiphon, Sphaerotrichia, and Undaria [7–12].
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Figure 1. Chemical structures of AST and FUC.

Many studies showed that AST and FUC have antioxidant [12–16], anti-
inflammatory [14,17–20], and anticancer [21–25] activities. It was also demonstrated that
these phycochemical constituents have anti-diabetic [26,27], anti-obesity [28–30], and neu-
roprotective effects [31–33]. Both compounds also contain antimicrobial activity, and this
aspect is presented in the review.

Therefore, the aim of this review is to show the recent data concerning the antibacterial,
antifungal, antiviral, and antiparasitic activity of AST and FUC. The PubMed, Medline,
and Scopus databases were used to search for articles using the keywords “astaxanthin”,
“fucoxanthin”, “antibacterial”, “antifungal”, “antiviral”, “antiparasitic”, “activity”, and
“effect”. Additionally, a manual review of references from the obtained literature was
performed. Papers in which applied doses/concentrations of AST or FUC were missing
were excluded from this review.

2. Astaxanthin

There is a small number of studies presenting the antimicrobial activity of AST.
Shanmugapriya et al. [34] demonstrated that AST in the form of nanoemulsion can act
against various bacteria. MIC values for Gram-positive and Gram-negative species were
500–4000 µg/mL [34]. In the in vitro study of Trypanosoma cruzi, the viability of the parasite
was decreased in doses of AST 200-300 µg/mL. Simultaneously, the authors did not observe
the therapeutic effect of AST against acute T. cruzi infection in the mice model [35]. In
animal studies of mice infected with Helicobacter pylori, it was shown that AST has an impact
on the decrease of bacterial abundance in the stomach. AST also had an anti-inflammatory
effect reducing gastric inflammation and cytokine production by splenocytes [36]. In ad-
dition, some studies have shown a significant decrease of gastric H. pylori colonization in
mice treated with an algal meal rich in AST [37]. In in silico studies, it was demonstrated
that some xanthophylls, including AST, can inhibit SARS-CoV-2, acting on viral papain-like
protease [38].

Recently, recommended or approved doses of AST in different countries amount to
between 2 and 24 mg. According to the European Food Safety Authority, the proposed
acceptable daily intake of AST is 2 mg [39]. AST is approved by the United States Food
and Drug Administration (FDA) as generally recognized as safe (GRAS) for animals and
humans for use in food [40,41]. It is important that according to the EU Regulation (EC)
No. 1925/2006, the synthetic AST is not allowed for use in food, and that it has no GRAS
status in the US [3,42]. Spiller and Dewell demonstrated that AST is safe in a dosage
of 6 mg/day [40]. The EFSA Panel on Dietetic Products, Nutrition, and Allergies recom-
mended that the daily dose of AST should not exceed 4 mg (0.06 mg/kg bw/day for a
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70-kg person) [43]. Many studies have demonstrated that AST is also safe in much higher
doses, up to 40 mg, without developing side effects [44–46]. Simultaneously, other papers
demonstrated the following side effects: an increased frequency in bowel movement [47],
stomach/abdominal pain [48], itch, dyspepsia, muscle pain, or diarrhea [49]. In animal
studies, AST in repeat-doses of 100, 250, or 500 mg/kg bw showed no organ, hemato-
logical and biochemical abnormalities in pregnant mice [50]. In research with the use of
Ames and in vitro micronucleus tests, a lack of AST genotoxicity has been shown. In the
same paper, in a 2-year-long study on mice, the authors did not show the carcinogenicity
potential of AST. However, in rats carcinogenicity of AST was observed in doses of 200
and 1000 mg/kg bw/day. Hepatocellular adenoma was developed in 18% of rats fed with
200 mg AST/kg bw/day and in 28% of animals fed with 1000 mg/kg bw/day [41].

The antimicrobial concentrations of AST, presented in Table 1, are much higher than
recommended for consumption. This means that despite being active in high concentrations,
AST is unlikely to be of clinical use in the treatment of infections or as an additional
antimicrobial compound.

Table 1. Antimicrobial activity of astaxanthin.

Targeted Microorganism Antimicrobial Doses References

Bacillus subtilis in vitro, nanoemulsion, MIC 500–4000 µg/mL [34]
Escherichia coli in vitro, nanoemulsion, MIC 500–4000 µg/mL [34]

Helicobacter pylori in vivo, mice, 200 mg per kg body weight per day [36]
Pseudomonas aeruginosa in vitro, nanoemulsion, MIC 500–4000 µg/mL [34]

Staphylococcus aureus in vitro, nanoemulsion, MIC 1000–2000 µg/mL [34]
Streptococcus mutans in vitro, nanoemulsion, MIC 500–2000 µg/mL [34]

SARS-CoV-2 in silico [38]
Trypanosoma cruzi in vitro, 200-300 µg/mL; lack of in vivo activity [35]

3. Fucoxanthin

Our knowledge about the antimicrobial activity of FUC is better than that of AST. In
in vitro studies, FUC often acts against aerobic bacteria in low concentrations 10–250 µg/mL
but has poor activity against anaerobic bacteria with MICs >1000 µg/mL [8,51]. In the big
study, including 20 bacterial species, FUC acted against 13 aerobic bacteria. Obtained MICs
for Gram-positive bacteria were between 62.5 and 250 µg/mL (median 125 µg/mL), while
for Gram-negative ones were from 125 to 500 µg/mL (median 250 µg/mL) [8]. In another
study including three Gram-positive and three Gram-negative bacteria, FUC extracted from
Turbinaria triquetra had better activity, already in concentrations from 10–100 µg/mL [51].
Interestingly, very low MIC values were demonstrated against Mycobacterium tubercu-
losis: these were 2.8–4.1 µM (1.85–2.7 µg/mL) [52]. In a much higher concentration of
1000 µg/mL, FUC also acts against Listeria monocytogenes [53]. According to our previous
studies, in the case of natural compounds, including flavonoids, organic acids, and cur-
cumin, values of MIC above 1000 µg/mL should be considered as poor activity or lack of
activity [54–56]. So high concentrations have no real therapeutic application and should be
marked as inactive against microorganisms. A very high concentration of FUC, amounting
to 4250 µg/mL, was used in the study of Liu et al. [57] against S. aureus, Enterococcus sp.,
B. subtilis, and P. aeruginosa. In another work by Peraman and Nachimuthu [58], MIC values
of FUC were obtained against bacteria and also fungi (Aspergillus brasiliensis, A. fumigatus
and Candida albicans), and amounted to 1000–4000 µg/mL.

In animal studies with chickens, it was observed that diet supplemented with 100 mg/kg
or 200 mg/kg FUC meaningfully reduced the amount of Enterobacteriaceae, total mesophilic
aerobic bacteria (TMAB), Staphylococcus spp., and Pseudomonas spp. from one to six days, in
comparison to standard feed, without FUC. It is very interesting that FUC had low or no
effect on the count of probiotic bacteria Lactobacillus spp. [59].

There are also individual studies concerning antiviral and antiparasitic effects of
FUC. FUC from a brown alga Dictyota sp. acted against Herpes simplex virus type 1
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and Plasmodium falciparum [60]. The activity of FUC against Plasmodium falciparum was
also shown on a Chinese hamster ovarian cell line, with simultaneously relatively low
cytotoxicity on the cell line [61].

There are no recommendations of acceptable daily intake of FUC; however, as shown
by some studies, FUC is already active in low concentrations of 10–250 µg/mL.

Toxicological studies on rats demonstrated that a 28-day repeated oral dosing of
fucoxanthin (95% purity) on rats in doses of 10 and 50 mg/kg/day did not show toxicity [62].
By contrast, oil containing FUC was safe in a dose of 200 mg/kg body weight in rats over
a period of 13 weeks of feeding. Doses higher than 2000 mg/kg body weight led to 50%
mortality [63]. Another study on mice confirmed the safety of single orally administered
doses of 1000 and 2000 mg/kg and repeated doses of 500 and 1000 mg/kg administered for
30 days. In the study, no mortality or abnormalities were observed [64]. Both above studies
indicate that FUC has a high level of safety. This means that a clinical application of FUC is
more likely to be successful than AST, in addition to its use as an antimicrobial substance.

The antimicrobial activity of FUC is presented in Table 2.

Table 2. Antimicrobial activity of fucoxanthin.

Targeted Microorganism Antimicrobial Doses References

Acinetobacter lwoffii in vitro, MIC 250 µg/mL [8]

Actinomyces israelii in vitro, MIC > 1000 µg/mL [8]

Atopobium parvulum in vitro, MIC > 1000 µg/mL [8]

Bacillus cereus in vitro, 10–100 µg/mL [51]

Bacillus subtilis

in vitro, 10–100 µg/mL [51]

in vitro, MIC 4000 µg/mL [58]

in vitro, 4250 µg/mL [57]

Enterobacteriaceae in vivo, chicken, 100–200 mg/kg [59]

Enterococcus sp. in vitro, 4250 µg/mL [57]

Enterococcus faecalis
in vitro, MIC 125–250 µg/mL [8]

in vitro, 4250 µg/mL [57]

Escherichia coli
in vitro, 10–100 µg/mL [51]

in vitro, MIC 125 µg/mL [8]

in vitro, MIC 2000 µg/mL [58]

Klebsiella oxytoca in vitro, MIC 125–250 µg/mL [8]

Klebsiella pneumoniae

in vitro, 10–100 µg/mL [51]

in vitro, MIC 250 µg/mL [8]

in vitro, MIC 1000 µg/mL [58]

Listeria monocytogenes in vitro, 1000 µg/mL [53]

Mitsuokella multacida in vitro, MIC > 1000 µg/mL [8]

Mycobacterium tuberculosis in vitro, MIC 1.85–2.7 µg/mL [52]

Peptococcus niger in vitro, MIC > 1000 µg/mL [8]

Porphyromonas gingivalis in vitro, MIC > 1000 µg/mL [8]

Propionibacterium acnes in vitro, MIC > 1000 µg/mL [8]

Proteus mirabilis in vitro, MIC 500 µg/mL [8]

Pseudomonas spp. in vivo, chicken, 100–200 mg/kg [59]
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Table 2. Cont.

Targeted Microorganism Antimicrobial Doses References

Pseudomonas aeruginosa

in vitro, 10–100 µg/mL [51]

in vitro, MIC 250–500 µg/mL [8]

in vitro, MIC 1000 µg/mL [58]

in vitro, 4250 µg/mL [57]

Staphylococcus spp. in vivo, chicken, 100–200 mg/kg [59]

Staphylococcus aureus

in vitro, 10–100 µg/mL [51]

in vitro, MIC 125 µg/mL [8]

in vitro, MIC 1000 µg/mL [58]

in vitro, 4250 µg/mL [57]

Staphylococcus epidermidis in vitro, MIC 125 µg/mL [8]

Streptococcus agalactiae in vitro, MIC 62.5 µg/mL [8]

Streptococcus pneumoniae in vitro, MIC 125 µg/mL [8]

Streptococcus pyogenes in vitro, MIC 125 µg/mL [8]

Serratia marcescens in vitro, MIC 500 µg/mL [8]

Veilonella parvula in vitro, MIC > 1000 µg/mL [8]

Total mesophilic aerobic bacteria (TMAB) in vivo, chicken, 100–200 mg/kg [59]

Aspergillus brasiliensis in vitro, MIC 2000 µg/mL [58]

Aspergillus fumigatus in vitro, MIC 1000 µg/mL [58]

Candida albicans in vitro, MIC 2000 µg/mL [58]

Herpes simplex virus type 1 in vitro, IC50 5 µg/mL [60]

Plasmodium falciparum
in vitro, EC50 2.9 µg/mL [60]

in vitro, IC50 1.3 µg/mL (1.5 µM) [61]

4. Potential Mechanisms of Antibacterial Action of AST and FUC

The mechanisms of the antimicrobial activity of xanthophylls are little known. How-
ever, it is very likely that potential mechanisms of action of xanthophylls are the same
or similar to the mechanisms described in the carotenoids and terpenoids class, to which
xanthophylls belong. It was recently discovered that small terpenoids, like carvacrol, can
act directly on bacterial cell and membrane, leading to damage of the cell wall and mem-
brane and leakage of cell content [65]. Terpenoids have also the ability to permeabilize and
depolarize the cytoplasmic membrane [43]. It was also observed that FUC can increase
cell membrane permeability and thus the leakage of cytoplasm [66]. AST and FUC are
compounds, having 40 and 42 carbon atoms, respectively. Therefore, xanthophylls are
more similar to antibiotic molecules, like macrolides, which also have about 40 carbon
atoms. This suggests that their remaining mechanisms of action may require a link to a
protein receptor or nucleic acid. Some data from the literature indicate that terpenoids,
including carotenoids, can modulate efflux pumps [67–69]. The exact mechanism was
described among others in alkaloids and flavonoids [70,71]. Moreover, terpenoids can lead
to the accumulation of toxic compounds inside bacteria and can have an impact on ATP
hydrolysis, leading to disturbance of efflux pump activation. In Gram-negative bacteria,
these compounds can increase the permeability of the outer membrane and can change the
conformation of efflux protein structures [67,68]. Terpenoids can also lead to the accumula-
tion of intracellular reactive oxygen species (ROS), which can damage the bacterial cells,
causing oxidative damage of membranes, DNA, proteins, and lipid peroxidation [72–74].
Another mechanism of action of terpenoids, including carotenoids and xanthophylls, is the
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inhibition of biofilm formation, both in bacteria and fungi. This effect can be triggered by
inhibition of biofilm matrix formation, decreasing cell adhesion, inhibition of the virulence
factors, e.g., toxin production, and blocking the quorum sensing network [75–77]. Action
through inhibition of bacterial virulence and blocking of quorum sensing and biofilm was
described in flavonoids [70]. Anti-quorum and anti-biofilm activities were also demon-
strated for two xanthophylls: lutein and zeaxanthin [78,79]. Some studies confirmed that
FUC can affect lipopolysaccharide (LPS), an endotoxin of Gram-negative bacteria, which
impacts inflammatory response. FUC can suppress the NF-κB activation and inhibit the
production of pro-inflammatory cytokines induced by LPS [80–82]. It was also suggested
that FUC can act antibacterial by nucleic acid inhibition [66]. Mahizan et al. [67] proposed
two more mechanisms: inhibition of oxygen uptake and alteration in oxidative phosphory-
lation. Terpenoids act mainly against aerobic bacteria, for which oxidative phosphorylation
is a key biochemical process responsible for cellular respiration. The action of terpenoids
leads to a reduction in oxygen concentration, disturbance of bacterial respiration, and
ultimately death of the bacteria [83,84]. Potential antibacterial mechanisms of carotenoids,
such as AST and FUC, are presented in Figure 2.

Figure 2. Potential antibacterial mechanisms of action of carotenoids, such as astaxanthin and
fucoxanthin.

5. Conclusions

As demonstrated in the literature, antimicrobial concentrations of astaxanthin are
much higher than recommended by the European Food Safety for consumption. Therefore,
this compound is unlikely to be of clinical use in the treatment of infections. In the
case of fucoxanthin, it acts against many bacteria in low concentrations. Simultaneously,
toxicological studies present the safety of fucoxanthin application in high doses. Therefore,
a clinical application of fucoxanthin as an antimicrobial substance is real and can be
successful. However, this aspect requires further research.
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