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Androgens have a complex role in the regulation of insulin sensitivity in the pathogenesis of
type 2 diabetes. In male subjects, a reduction in androgens increases the risk for insulin
resistance, which is improved by androgen injections. However, in female subjects with
polycystic ovary syndrome (PCOS), androgen excess becomes a risk factor for insulin
resistance. The exact mechanism underlying the complex activities of androgens remains
unknown. In this review, a hormone synergy-based view is proposed for understanding
this complexity. Mitochondrial overactivation by substrate influx is a mechanism of insulin
resistance in obesity. This concept may apply to the androgen-induced insulin resistance
in PCOS. Androgens and estrogens both exhibit activities in the induction of mitochondrial
oxidative phosphorylation. The two hormones may synergize in mitochondria to induce
overproduction of ATP. ATP surplus in the pancreatic b-cells and a-cells causes excess
secretion of insulin and glucagon, respectively, leading to peripheral insulin resistance in
the early phase of type 2 diabetes. In the skeletal muscle and liver, the ATP surplus
contributes to insulin resistance through suppression of AMPK and activation of mTOR.
Consistent ATP surplus leads to mitochondrial dysfunction as a consequence of
mitophagy inhibition, which provides a potential mechanism for mitochondrial
dysfunction in b-cells and brown adipocytes in PCOS. The hormone synergy-based
view provides a basis for the overactivation and dysfunction of mitochondria in PCOS-
associated type 2 diabetes. The molecular mechanism for the synergy is discussed in this
review with a focus on transcriptional regulation. This view suggests a unifying mechanism
for the distinct metabolic roles of androgens in the control of insulin action in men with
hypogonadism and women with PCOS.
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INTRODUCTION

Testosterone is the primary sex hormone in regulating male sex
organ development and reproduction activities. It is produced by
the testis in males and ovarian interstitial cells in females.
Testosterone is converted into the more active form,
dihydrotestosterone (DHT), in the cell cytoplasm by 5a-
reductase. DHT directly activates the androgen receptor (AR)
for induction of target gene transcription. After DHT binds to its
receptor, the AR undergoes a conformational change to
disassociate from the heat shock protein and travels to the
nucleus. In the nucleus, AR binds to the androgen response
elements (AREs) of target genes to modulate gene transcription
for the control of male organ development, reproductive cell
differentiation, muscle growth, bone strength, and acceleration of
energy (glucose, fatty acids, and amino acids) metabolism.
Additionally, androgens have receptor-independent activity in
the regulation of endothelial cell proliferation (1). Testosterone-
driven energy metabolism favors energy expenditure to prevent
metabolic disorders, such as obesity and type 2 diabetes in male
subjects (2, 3). Testosterone deficiency (hypogonadism)
increases the risk of metabolic disorders in male subjects and
animals (4–6). In some cases, however, hypogonadism can be the
result of obesity due to hypothalamus–pituitary axis inhibition
by aromatase conversion of androgen into estradiol in peripheral
tissues [such as white adipose tissue (WAT)] (7). Injection of
male hormones is a treatment strategy for obesity and type 2
diabetes in male patients with hypogonadism. Although the
hormone treatment is effective in most studies, there are
reports of inefficacy in some studies (8, 9).

In female subjects, testosterone excess (hypergonadism) is a
risk factor for type 2 diabetes due to testosterone’s role in the
induction of insulin resistance (10). Elevated plasma testosterone
levels are often associated with insulin resistance in obese girls
(11) and women with polycystic ovary syndrome (PCOS) (12,
13). Inhibition of testosterone production and antagonism of its
activity are clinical strategies to control insulin resistance in
PCOS patients (14–16). Treatment often leads to visceral fat
reduction and improved insulin sensitivity. Studies have
shown that testosterone exhibits opposite effects on the
regulation of insulin sensitivity in male versus female patients
(17, 18); however, the exact mechanism remains unknown.
Here, we propose a potential mechanism by integration of
multidisciplinary information with a focus on mitochondria to
explain the androgen activity. Estrogen protects insulin
sensitivity in female subjects (19). Reduced estrogen levels in
postmenopausal patients lead to an increased risk of insulin
resistance, which can be improved by estrogen supplementation
(19). Both estrogens and androgens regulate metabolism through
nuclear receptors. Activation of these receptors involves
transcription-mediated reprogramming of the neuroendocrine
system according to current studies; however, there is no
unifying mechanism of how sex hormones regulate insulin
sensitivity in PCOS. Mitochondria are the targets of both
hormones (more discussion below). Interestingly, mitochondrial
genes that play a role in oxidative phosphorylation and
antioxidant properties have been observed to be sexually
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dimorphic in the skeletal muscle and liver of female rats (20).
Therefore, we propose that mitochondria may be the key targets
for androgens and estrogens in the control of insulin sensitivity,
which may hold an answer for the gender-dependent effects of
androgens. This review will integrate information from several
fields, such as obesity, diabetes, cardiovascular diseases,
endocrinology, and mitochondrial biology to explore the
mechanism. The aim is to propose a mitochondrion-centered
mechanism for how androgens together with estrogen regulate
insulin sensitivity, with energymetabolism in mitochondria as the
primary focus.
MITOCHONDRIA IN ENERGY
EXPENDITURE

Mitochondria are the center of energy metabolism in cells, as
mitochondria carry out both the catabolism and anabolism of
substrates for fuel (21). In the catabolism process, substrates such
as glucose, fatty acids, and amino acids are broken down to
generate ATP or heat through OXPHOS, which is used as energy
for cellular activities. Heat production (thermogenesis) is
required for the maintenance of body temperature in
mammalians (22). Induction of thermogenesis is an ideal
approach in the control of obesity. Thermogenesis includes
UCP1-dependent and UCP1-independent mechanisms (23).
The UCP1-dependent mechanism is dominant in brown and
beige adipocytes (24). The UCP1-independent system comprises
the adenine nucleotide transporters 1/2 (ANT1/2) and UCP3,
which play a major role in non-adipocytes (23). Mammalian
ANT is a “new” uncoupling protein found in the mitochondria of
several tissues including the muscle, kidney, liver, and brown fat
(25) and is equivalent to the ADP/ATP carrier (AAC) in yeast.
The reduction of energy output by dysfunctional mitochondrial
may lead to a buildup of intermediate metabolites, which plays a
role in the pathogenesis of insulin resistance.

Mitochondria export intermediate metabolites, such as acetyl-
CoA and oxaloacetate to use for anabolism. In the cytoplasm,
acetyl-CoA is a substrate for de novo lipogenesis of fatty acids and
cholesterols. In hepatocytes, oxaloacetate is a substrate for
gluconeogenesis. Insulin plays a role in regulating these
metabolite levels by stimulating lipogenesis and inhibiting
gluconeogenesis. However, these metabolites may also feedback
to impact insulin sensitivity. In the lipotoxicity model of insulin
resistance, acetyl-CoA buildup inhibits insulin-induced glucose
utilization in the skeletal muscle through substrate competition
(26). Oxaloacetate buildup in liver hepatocytes promotes
gluconeogenesis, contributing to insulin resistance of the liver.
In obesity, overproduction of these metabolites in tissues
contributes to systemic insulin resistance, and mitochondrial
dysfunction in OXPHOS results in insulin resistance through the
buildup of the metabolites (27).

Mitochondrial function is regulated by multiple factors, such
as biogenesis and mitophagy. Each mitochondrion contains
about 1,200 different types of proteins, of which 13 proteins
are encoded by mitochondrial genome DNA (mtDNA), and the
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rest are encoded by nuclear DNA (28). Crosstalk of the nuclear
and mitochondrial genomes is required for mitochondrial
biogenesis. In the mechanism, the biogenesis is controlled by a
network of transcription factors, such as peroxisome
proliferator-activated receptor g (PPARg), PPARa (29, 30),
estrogen-related receptors (ERRs) (31), cAMP response
element-binding protein (CREB), and Forkhead box
transcription factor (FOXO) (32, 33). In addition, these
transcription factors require peroxisome proliferator-activated
receptor g coactivator 1 alpha (PGC-1a) as a primary cofactor.
They induce expression of other transcription factors, such as
nuclear respiratory factor-1 (NRF-1), which in turn activates
expression of mitochondrial DNA transcription factor A
(TFAM) in the nucleus (34–36). TFAM is transferred into
mitochondria to induce expression and duplication of mtDNA
(37, 38). TFAM also requires PGC-1a in the induction of
mitochondrion-related gene expression (39). NRF-2, an
isoform of NRF-1, is required for expression of the cytochrome
c oxidase (COX) in complex IV of the respiratory chain, in
which NRF-2 interacts with PGC-1a (30). Therefore, PGC-1a
is a major coactivator in the transcription network for
mitochondrial biogenesis. Hormones that induce the PGC-1a
activity may induce mitochondrial biogenesis through this
transcription network.

Mitophagy is the process by which mitochondria are recycled.
Mitochondrial components are frequently damaged by high
levels of reactive oxygen species (ROS). ROS levels are
increased upon active ATP production and have been shown
to be coupled with heat production (40, 41). Irreversibly
damaged mitochondria are removed by the process of
mitophagy (42), a specific form of autophagy in the quality
control system of mitochondria. Mitophagy is regulated by
PTEN-induced kinase 1 (PINK1), which is on the outer
mitochondrial membrane (OMM). In the damaged
mitochondria, PINK1 recruits Parkin through phosphorylation.
Parkin promotes mitophagy through ubiquitination of proteins
on the mitochondrial membrane in the formation of
autophagosomes (43). Other mitochondrial proteins, such as
NIX, BNIP3, and FUNDC1, are also involved in mitophagy, and
a defect in any of those molecules may contribute to impaired
mitophagy. A defect in mitophagy has been reported in the
pathogenesis of insulin resistance in several studies (44–46).
Therefore, dysregulation of the mitochondria quality control
process may lead to mitochondrial dysfunction in the
pathogenesis of insulin resistance.
ENERGY SURPLUS LEADS TO
MITOCHONDRIAL DYSFUNCTION IN
OBESITY

Obesity and type 2 diabetes represent the body’s compensatory
responses to energy surplus conditions. In these conditions,
mitochondria suffer from an oversupply of fuel substrates such
as lipids, glucose, amino acids, and their derivatives. A chronic
state of fuel surplus may lead to mitochondrial dysfunction and
Frontiers in Endocrinology | www.frontiersin.org 3
reduction in ATP production capacity (47). Mitochondrial
inflexibility is a type of mitochondrial dysfunction in which
substrate switch between fatty acids and glucose is disordered
(26). This concept, however, is challenged by a new study (48).
The signaling mechanism of mitochondrial inflexibility remains
unclear (27). We propose that mitochondrial inflexibility is a
mitochondrial compensatory response to fuel surplus, where
signaling pathways are involved in the suppression of AMPK
and Sirtuin-1 (SIRT1) and the activation of mammalian target of
rapamycin (mTOR). This mitochondrial dysfunction worsens
metabolic disorders by reducing energy expenditure, which leads
to further accumulation of fuels in the insulin-sensitive cells (49).
These mitochondrial dysfunctions are improved by lifestyle
modifications such as physical exercise, calorie restriction, and
weight loss, which are established strategies in the control of
obesity, type 2 diabetes, and metabolic disorders (27). These
practices induce activation of AMPK and SIRT1, while reducing
mTOR activity at the molecular level (50). These molecular
pathways provide a mechanism for the correction of
mitochondrial dysfunction in the practices, suggesting that
energy surplus is a major cause of mitochondrial dysfunction.

The activities of AMPK and SIRT1 are reduced in obesity and
type 2 diabetes as a result of energy surplus. Energy status in cells
is sensed by molecules including AMPK, SIRT1, and mTOR (51).
AMPK is activated in energy-deficient states in order to restore
energy supply (51, 52). AMPK activity is reduced when there is a
rise in ATP or ATP/AMP ratio, which occurs during states of
overfeeding, obesity, type 2 diabetes, and lack of physical exercise
(51). Inhibition of AMPK leads to mitochondrial degeneration or
dysfunction in the energy surplus condition (51). In addition,
AMPK inhibition limits the mobilization of energy substrates,
leading to an accumulation of glycogen and fatty acids in the
cytoplasm (51). AMPK inhibition decreases the phosphorylation
of a mitochondrial scaffold protein, a kinase anchor protein 1
(AKAP1), therefore decreasing mitochondrial ATP/heat
production through suppression of the respiratory chain (53).
AMPK inhibition also induces a reduction in SIRT1 activity (54).
A rise in NADH/NAD+ ratio, another indicator of energy status,
reduces SIRT1 activity as well. In diabetes and obesity, excess
insulin, branch chain amino acids, and ATP activate mTOR.
This mTOR activation induces downregulation of mitochondrial
biogenesis- and autophagy-related genes (50). Taken together,
alteration in AMPK, SIRT1, and mTOR activity occur in energy
surplus states such as obesity and type 2 diabetes to compensate
for mitochondrial dysfunction and metabolic disorders.
METABOLIC ORGANS TARGETED BY
TESTOSTERONE

Testosterone controls energy metabolism through the actions in
several organs, including the brain (55), skeletal muscle, adipose
tissue (56), liver, and pancreatic islet cells (4, 13, 57, 58). Here,
the discussion focuses on the liver for the availability of
transcriptomic data. The testosterone activity is mediated by
AR activity, which is regulated by post-translational
December 2021 | Volume 12 | Article 749451
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modifications including phosphorylation, acetylation,
methylation, SUMOylation, and ubiquitination [more detail in
review (59)]. Testosterone controls energy metabolism through
the induction of gene transcription, which has been investigated
in the liver of castrated male pigs using the RNA-seq strategy.
Testosterone deficiency led to reduced gene expression in
multiple metabolic pathways, such as fatty acid oxidation,
steroid biosynthesis, cholesterol and bile acid metabolism, and
glucose metabolism (60). Analysis conducted with the Kyoto
Encyclopedia of Genes and Genomes (KEGG) database
suggested that energy output by mitochondria is reduced when
fatty acid synthesis and tricarboxylic acid (TCA) cycle activity is
decreased (60). Decreased mitochondrial energy output led to an
upregulation of inflammatory proteins, oxidative stress, and
apoptotic responses. This study suggests that testosterone
deficiency causes decreased catabolism of energy substrates
(glucose and fatty acids) in mitochondria during ATP and heat
production. The effects of testosterone may apply to other tissues
as well, such as the skeletal muscle, fat, and pancreatic islet cells
(61). In testosterone-deficient patients and animals, decreased
catabolism of energy substrates increased the risk of obesity. For
example, castration of male rats induced expression of fatty acid
synthesis-related genes, thereby leading to fat accumulation in
the skeletal muscle and increased subcutaneous fat deposition in
normal diet-fed rats (58). In the skeletal muscle, androgens
promote myogenesis in male mice and humans by enhancing
the expression of glycogen synthase, GLUT4, and insulin
receptor substrate 1 (IRS1) (19). In b-cell, testosterone has a
protective effect because b-cell-specific AR knockout (ARKO)
male mice experience glucose intolerance and b-cell failure
similar to hypogonadal men (62, 63). Together, these results
illustrate the important effects of androgens on energy
metabolism. However, the transcriptome of other tissues in
testosterone-deficient animals and patients remains to
be revealed.
TESTOSTERONE INDUCES
MITOCHONDRIAL BIOGENESIS

Testosterone affects mitochondrial function in several ways,
including mitochondrial structure. Mitochondria have two
layers of membranes, OMM and inner mitochondrial
membrane (IMM). The IMM holds the respiratory chain and
maintains the mitochondrial membrane potential by pumping
protons into the intermembrane space. The cristae of the IMM
provide structural support to the respiratory chain. Under
pathological conditions, the orderly arrangement of the tubular
and lamellar mitochondrial cristae may be disrupted (64). In
androgen-deficient rats, crista number and length are reduced in
the cardiomyocytes, but these pathologic changes are reversed by
androgen supplementation (65). Similar changes are observed in
ARKO mice (66). The mechanism behind androgen’s role in the
regulation of cristae has yet to be elucidated and may be related
to gene expression. These studies suggest that androgen is
Frontiers in Endocrinology | www.frontiersin.org 4
required in the maintenance of mitochondrial structure in
male animals.

Androgen stimulates mitochondrial biogenesis through
activation of the AR/PGC-1a/TFAM pathway (67). PGC-a is a
crucial positive regulator of mitochondrial biogenesis, and
TFAM plays a vital role in the transcription and replication of
mtDNA in mitochondrial biogenesis. When androgen activity is
blocked by AR gene knockout, the mitochondrial number is
reduced together with a fall in PGC-1a expression in the muscle
of ARKO mice (68). The expression of PGC-1a and TFAM in
the muscle of the castrated rats (65), mice (69), and pigs (67) was
reduced, but these effects were reversed by the administration of
exogenous androgen. In the cellular model, testosterone induces
the expression of PGC-1a and TFAM in the C2C12 cells (68).
AR may mediate the androgen signal through direct binding to
the target gene promoter. AREs have been identified in the
promoter of TFAM gene (67). However, TFAM seems to
exhibit different activities in the muscle cells vs. adipocytes. It
was reported that the inactivation of adipocyte TFAM gene
protected the knockout mice from obesity and insulin
resistance in the dietary obesity model (70). It remains
unknown how testosterone regulates PGC-1a expression. Non-
genomic pathways may play a role in the regulation, given that
no ARE has been identified in PGC-1a gene so far.

Androgens increase mitochondrial content through
induction of transcription and duplication of mtDNA, which
encodes 13 crucial components of the respiratory chain. Those
include the seven subunits (ND1–6 and ND4L) of complex I,
CytB of complex III, COX1-3 subunits of complex IV, and two
subunits (ATP6 and ATP8) of complex V. Mutations in mtDNA
or changes in their copy number are a risk factor for
mitochondrial dysfunction, excessive ROS production, and
ATP production deficiency, which are often observed in the
inherited metabolic diseases (71–73). Castration leads to a
reduction in mtDNA copy number (by almost 38%) in the
muscle of male pigs (67), suggesting that testosterone is
required for the maintenance of mtDNA copy number.
Emerging evidence suggests that AR acts in mitochondria to
induce gene transcription. AR is found in mitochondria (74), and
AREs are identified in the mitochondrial genome (75, 76). AR
contains a mitochondrial localization sequence (MLS) for its
translocation into mitochondria. Deletion of MLS through gene
mutation abolishes AR import into mitochondria (74).
Mitochondrial AR is reported in the C2C12 skeletal muscle cell
line, with a function similar to the nuclear Ars (77). In prostate
cancer cell lines, AR was reported to inhibit respiration chain
complex activity in an overexpression study. AR overexpression
in PC-3 cells decreases the activity of complex I, complex II, and
complex III in the respiratory chain. Inhibition of AR activity by
gene knockdown and pharmacological agents increases the
complex III activity by 22% and 10%, respectively (74). These
results suggest that androgens may regulate the expression and
duplication of mtDNA in the control of mitochondrial
biogenesis. AR may act directly in mitochondria in addition to
its activity in the nucleus. Overactivation of mitochondrial AR
may lead to suppression of mitochondrial respiration.
December 2021 | Volume 12 | Article 749451
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TESTOSTERONE REGULATES
MITOPHAGY

Mitophagy determines mitochondrial number and mass.
Testosterone inhibits mitophagy as demonstrated by the
accelerated mitophagy in the androgen-deficient mice (78).
Inhibition of mitophagy was observed by the decreased
expression of fusion-control proteins including OPA1 and
MFN2 in the castrated rats, which was reversed by androgen
supplementation (65, 69). Androgens induced expression of
OPA1 in cultured C2C12 cells to promote mitochondria fusion
activity (75). In contrast, androgen deficiency increases
mitochondrial fission. In the mechanism, an increase in the
activity of fission protein DRP1 is observed in cardiomyocytes of
castrated rats, which is reversed by androgen supplementation
(65). Clearance of damaged mitochondria is enhanced by
elevation of LC3 II/I ratio in the castrated mice (79, 80).
Digestion of recycled mitochondria requires the fusion of
mitophagosome with lysosome, which is promoted by
conversion of the inactivated form (LC3-I) into the activated
form (LC3-II). An increase in the ratio of LC3 II/I enhances
fusion of mitophagosome with lysosome in the skeletal muscle of
castrated mice (79, 80), which is observed with reduction in the
mitochondrial mass and OXPHOS function. These studies
suggest that androgens may raise mitochondrial mass through
induction of fusion and inhibition of fission in physiological
conditions. In androgen-deficient conditions, this effect is gone,
leading to mitochondrial mass reduction through elevated fission
and mitophagy.
TESTOSTERONE AFFECTS
MITOCHONDRIAL ATP PRODUCTION

Mitochondria are the “powerhouse” in eukaryotic cells to
provide energy for cellular activities. ATP production through
OXPHOS reactions accounts for about 90% of ATP production
in cells (81). Preclinical studies revealed that decreased complex I
and II activity was closely associated with decreased ATP
production in the cardiomyocytes of obese male rats with
insulin resistance (82). Clinical studies revealed that a
deficiency of COX in complex IV was associated with
decreased ATP production and induced cell apoptosis in the
skeletal muscle of humans (83). Additionally, the activity of the
ATP synthase b subunit was greatly reduced in the vastus
lateralis muscle of obese patients (84). This evidence confirms
that deficiency in mitochondrial respiration is closely associated
with metabolic disorders.

Androgens are responsible for maintaining the structural
integrity of the mitochondrial respiratory chain. A study in
vitro showed that the AR antagonist, flutamide, decreased
complex I activity, mitochondrial membrane potential, and
ATP production (by almost 51.2%) in cultured hepatocytes
(46, 85). This fall in mitochondrial membrane potential leads
to an upregulation of permeability transition pore (PTP) openings,
resulting in loss of mitochondrial content and cristae (86).
Frontiers in Endocrinology | www.frontiersin.org 5
In the hippocampus and substantia nigra of castrated male
rats, a lack of androgens is associated with a reduction in ATP
synthesis and complex I and complex III activity and a decrease
in MFN2 and OPA1 levels in cardiomyocytes (87, 88).
Interestingly, mitochondrial dysfunction was reversed by the
administration of exogenous testosterone (65, 89). These
studies suggest that androgens play a crucial role in the
regulation of ATP production through an impact on the
mitochondrial respiratory chain. Several mechanisms are
discussed below.

Androgens may protect the respiratory chain of mitochondria
by alleviating oxidative damage. At physiological levels, ROS
serve as a redox messenger in the regulation of multiple cellular
processes, including cell growth, differentiation, proliferation,
and apoptosis (90). However, excessive ROS cause damage to
several biological molecules, including DNA-repair enzymes.
Damage to these enzymes consequently causes OXPHOS
malfunction (91). Mitochondria are the main site of ROS
production; therefore, mtDNA is more susceptible to oxidative
damage than nuclear DNA (92). In the skeletal muscle of
testosterone-deficient rats, ROS production by mitochondria is
increased, as indicated by the increase in plasma
malondialdehyde (MDA) concentration (93). ROS increases
cell apoptosis in testosterone-deprived men and male rats (94),
which were at tenuated by exogenous tes tosterone
supplementation (95). Inhibition of AR activity by flutamide
also increased ROS (H2O2) levels and damaged mitochondria, as
indicated by a drop in the mitochondrial membrane potential
and ATP production in cultured hepatocytes (46). Therefore,
these results suggest that androgen/AR may reduce ROS and
protect the mitochondrial respiratory chain.

Androgens may also exert their effects through the regulation
of cardiolipin, a phospholipid in stabilizing the mitochondrial
respiratory chain and IMM structure for mitochondrial function
(96). Chemical-induced reduction in testosterone was associated
with a significant loss of cardiolipin in the brains of mice (97).
However, the connection between cardiolipin and androgens
remains to be elucidated.

It should be noted that at least partial effects of testosterone
on mitochondria are exerted through its intratissue
aromatization, especially in the WAT and brain, leading to the
increase in estrogen (98). Aromatase, which is encoded by
CYP19A1 gene, actively converts testosterone into estradiol in
granulosa cells located in the ovaries (99). Estrogen has a broad
impact on energy metabolism through the regulation
of mitochondria.
EFFECTS OF ESTROGEN ON
MITOCHONDRIA

Estrogen is secreted by the ovaries as well as the adrenal gland in
females. The active form of estrogen is 17b-estradiol (E2).
Estrogen typically acts through the nuclear estrogen receptors
(ERs) ERa and ERb. Like androgens, estrogens exert their
activity through ER by transcriptional control of gene
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expression at the estrogen response elements (EREs) on the
target genes (100). ERs are activated when a ligand binds to the
receptor in the cytoplasm, which is followed by nuclear
translocation. ER is also activated by a G protein-coupled
receptor, G protein-coupled ER (GPER), which is mainly
responsible for rapid non-genomic responses (101).

Estrogen has a profound impact on glucose and lipid
metabolism in females. Reduction of estrogen or its receptor is
closely associated with impaired energy metabolism, which
includes a reduction in lipolysis and glucose uptake and an
increased risk of obesity (102). In genetic studies, the inactivation
of ERs in the skeletal muscle or the whole body of female mice by
ERa gene knockout increased the risk of obesity and insulin
resistance (103, 104). In an epidemiology study, the
administration of exogenous estrogen reduced the risk of
metabolic disorders in postmenopausal women (105). In
randomized clinical trials, estrogen hormone therapy greatly
reduced fasting glucose, insulin resistance, and the risk of
diabetes in postmenopausal women (102). A study done in
female mice also confirmed the protective effects of estrogen
against obesity and insulin resistance, which disappeared in
ovariectomized female mice (106). These studies suggest that
estrogen/ERs play a role in the regulation of energy metabolism
through effects on glucose and lipid metabolism.

Mitochondria play an important role in estrogen’s effects on
energy metabolism (31, 107). In preclinical and clinical studies,
reduction in mitochondrial mass and impairment in
mitochondrial structure and ATP production are observed in
the skeletal muscle of ovariectomized animals or menopausal
women (31). Those changes were reversed by the administration
of exogenous estrogen. Estrogens affect mitochondria in multiple
aspects including protein content and activity, phospholipid
content of membranes, oxidant and antioxidant capacities,
oxidative phosphorylation, and calcium retention capacities
(31). Inactivation of ERa by gene deletion leads to
mitochondrial dysfunction and impaired fission–fusion
dynamics of mitochondria in females (103). Thus, it is obvious
that estrogen has a broad impact on mitochondrial structure
and function.

Although less clear than that of ERa in the regulation of
energy metabolism, ERb has also been reported to regulate
mitochondrial function (108). ERb-selective ligands prevented
high fat diet-induced lipid accumulation and promoted the
expression of mitochondrial biogenesis-related indicators in
brown adipose tissue (BAT) and WAT in male and female
mice (109, 110). The estrogen-regulated mitochondrial
biogenesis markers include PGC-1a (111, 112) and NRFs.
Although no ERE has been identified in the PGC-1a gene
promoter, it is available in the promoter DNA of NRF-1 gene
(113). Estrogen deficiency leads to decreased expression of genes
involved in the mitochondrial respiratory chain, oxidative
phosphorylation, and metabolic pathways of glucose and lipid
in the ovariectomized rats (114–116). This reduction is observed
in the transcription factors including NRF-1, TFAM, and PGC-
1a in the skeletal muscle of estrogen-deficient female rats (117).
These alterations are reversed by the administration of estrogen
Frontiers in Endocrinology | www.frontiersin.org 6
in ovariectomized rats (118, 119). In addition, estrogen regulates
the expression of the COX subunit 7a-related polypeptide
(COX7RP), which acts as an assembly-promoting factor for the
mitochondrial respiratory chain super complex in the muscle
cells (120). COX activity and mitochondrial ATP content are
reduced by COX7RP gene knockdown (121). These results
suggest that estrogen stimulates mitochondrial biogenesis
through the promotion of NRF-1, TFAM, and PGC-1a gene
expression, and assembly of the mitochondrial respiratory chain
through COX7RP.

Like testosterones, estrogens may act through ERs in
mitochondria. The presence of ERs in mitochondria was
reported in various cell types by multiple methods, including
proteomics analysis of human heart mitochondria, fluorescence
probe analysis of human tumor cells, immunoprecipitation of
mtDNA, and Western blotting in MCF-7 cells, as recently
reviewed (122, 123). ERb seems to be the main ER present in
mitochondria. ERb exerts several functions by increasing key
regulators of mitochondrial function and respiratory chain
proteins in cardiomyocytes of female mice, as well as
increasing anti-apoptosis effects after pressure overload in the
heart tissue of female mice (31).

Activation of ERs may trigger several signaling pathways
including extracellular signal-regulated kinase 1 and 2 (ERK1/
2), p38 mitogen-activated protein kinases (MAPKs),
phosphoinositide 3-kinase (PI3K), c-Jun-NH2-terminal protein
kinase (JNK), protein kinase B (PKB), glycogen synthase kinase
3b (GSK3b), b-catenin, calcineurin, and mTOR (124, 125).
These activities are reported in the study of ischemia–
reperfusion of cardiac remodulating models (126). The ERK,
p38 MAPK, and PI3K/Akt signaling pathways are reported to
protect mitochondria from H2O2-induced damage in C2C12
myoblasts (127). In ovariectomized mice, estrogen therapy
improved mitochondrial function in the skeletal muscle by
correcting membrane viscosity, bioenergetic function,
respiration (complex I, III activities), and antioxidant activities
(128). Taken together, estrogen plays vital roles in the regulation
of energy metabolism through its positive impacts on
mitochondrial biogenesis and function. The presence of ERs in
mitochondria also makes the effects possible. AR and ERs share
location and activities in the mitochondria and nucleus, which
suggests a synergy between estrogens and androgens in the
regulation of mitochondria (Figure 1).
EXCESSIVE ANDROGEN INDUCES
METABOLIC DISORDERS IN FEMALE

Androgen and estrogen both promote mitochondrial functions
according to the discussion above. Therefore, one may predict
that the two hormones may synergize in the regulation of
mitochondrial function to control obesity and insulin
resistance. However, the fact is opposite to the prediction.
Androgen excess is a feature of PCOS in female patients, in
which androgen increases the risk for insulin resistance and
metabolic syndrome (129, 130). Androgen is elevated in the
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blood of PCOS patients, which is coupled with higher
susceptibility to muscle insulin resistance and obesity (129–
131). The mechanism of androgen-related insulin resistance is
related to a decrease in expression of adipokines, including
adiponectin and omentin-1, which are beneficial to insulin
sensitivity in the mouse model of PCOS (132, 133). Other
changes associated with androgen excess include an increase in
visceral adiposity, reduction of BAT function, and impairment of
glucose-stimulated insulin secretion by pancreatic b-cells in
PCOS models (61). These factors may partly explain insulin
resistance in PCOS, but the basis of those factors remains
unknown. We propose that through hormone synergy,
androgen may overactivate mitochondria in the presence of
estrogen in the female body, leading to insulin resistance.
ANDROGEN AND ESTROGEN SYNERGY
IN MITOCHONDRIAL OVERACTIVATION

ATP production is a primary indicator of mitochondrial
function. This function is induced by substrates, hormones,
and energy demand as discussed above. In a recent review,
excessive substrate availability in obesity has been proposed as
a major factor contributing to mitochondrial overproduction of
ATP in the mechanism of insulin resistance (134). The insulin
resistance occurs following ATP surplus in multiple tissues, in
which ATP production exceeds demand (134). ATP surplus in
the pancreatic b-cells leads to more secretion of insulin for
hyperinsulinemia. ATP surplus in the pancreatic a-cells leads
to excessive secretion of glucagon for hyperglucagonemia. These
hormone disorders are well-known risk factors for insulin
resistance in the muscle, liver, and adipose tissues in obesity.
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In insulin-sensitive tissues, ATP surplus inhibits the AMPK
signaling pathway and activates the mTOR signaling pathway
to directly inhibit insulin sensitivity. Additionally, the fall in
AMPK activity contributes to mitochondrial degeneration and
dysfunction through suppression of mitophagy, which also
contributes to insulin resistance. The insulin-sensitizing
medicine, metformin, inhibits mitochondrial ATP production
in the liver, thereby pharmacologically inducing insulin
sensitization. Therefore, ATP surplus due to mitochondrial
overactivation is a promising mechanism for insulin resistance.
In PCOS, excessive androgen levels may synergize with estrogen
to cause mitochondrial overactivation, which in turn leads to
mitochondrial dysfunction through the mechanisms discussed
above. This possibility is supported by mitochondrial changes in
the skeletal muscle, BAT, and b-cells in PCOS models (Figure 2).

Mitochondrial dysfunction is a mechanism for muscle insulin
resistance in the PCOS models. Mitochondrial dysfunction is
associated with insulin resistance in the skeletal muscle in PCOS
(135) and in the mouse model of hyperandrogenemia induced by
dehydroepiandrosterone (DHEA) injection (136). Mitochondrial
dysfunction is reflected by a significant increase in the NAD+/
NADH ratio and decrease in ATP contents in the PCOS mouse
model (137). In patients with PCOS, mitochondrial dysfunction
was reported by a reduction in superoxide dismutase levels,
mtDNA copy number, mitochondrial membrane potential, and
ATP levels (138). However, mitochondrial dysfunction was not
observed in the study of PCOS patients using the primary
myotubes (139). This dysfunction is likely the result of
mitochondrial overactivation by androgens in the presence
of estrogens.

The mitochondrial dysfunction is reported in BAT of PCOS
models. BAT mitochondria produce heat through UCP1 (140),
FIGURE 1 | Sex hormones improve insulin sensitivity through regulation of mitochondria. Note: downward arrowheads stand for downregulation, while the upward
arrowheads indicate upregulation. Some elements of this figure were produced using Servier Medical Art, https://smart.servier.com.
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whose activity is induced by cold temperatures or adrenergic
stimulation mimics. Interestingly, BAT mass and function are
both decreased in PCOS patients with elevated circulating
androgen levels (141). In cellular models, differentiation of
brown adipocytes is inhibited by androgen in a dose-
dependent manner, leading to decreased expression of UCP1.
These changes correspond to a reduction in the mitochondrial
number and “whitening” of the interscapular BAT in androgen-
induced PCOS models (140). This mitochondrial dysfunction is
supported by a decrease in other mitochondrial proteins
including PGC-1a and Cidea (cell death-inducing DNA
fragmentation factor-like effector A). In addition to direct
Frontiers in Endocrinology | www.frontiersin.org 8
effects on adipocytes, androgens may affect BAT through
rewiring neurons in the central nervous system, which is a
proposed mechanism for the central obesity seen in PCOS
patients (142).

Androgen effect on b-cells supports that mitochondrion
overactivation precedes mitochondrial dysfunction. In a study
of the acute effect of androgen on b-cells, androgen was found to
induce hypersecretion of insulin through activation of the
cAMP/PKA pathway, which was followed by b-cell
dysfunction in the female mice (13). In DHT-treated female
rats, androgen induced mitochondrial dysfunction in pancreatic
b-cells by inhibiting oxygen consumption and ATP production
FIGURE 2 | The excessive androgens in the presence of estrogens induce mitochondrial dysfunction in polycystic ovary syndrome (PCOS) patients. Note:
downward arrowheads indicate a decrease, upward arrowheads mean an increase. Some elements of this figure were produced using Servier Medical Art, https://
smart.servier.com.
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and reducing mtDNA copy number (143). Expression of
transcription factors for mitochondrial biogenesis (TFAM,
NRF-1, and PGC-1a) was all decreased in the model as well.
These observations were confirmed in a later study where higher
ADP/ATP ratio, decreased mtDNA copy number, increased ROS
production, and downregulation of mitochondrial biogenesis
were seen in the b-cells of rat models (144). The exact
mechanism behind mitochondrial dysfunction remains
unknown. However, overproduction of ROS by mitochondria
is a promising theory, as studies have shown that DHT can
induce mitochondrial ROS production by altering the balance
between oxidative and anti-oxidative arms of mitochondria in
PCOS rats (145). As a consequence of ROS elevation, mutations
in mtDNA, decreases in mitochondrial membrane potential, and
abnormal expression of the respiratory chain complexes were
reported in the PCOS rats (146). ROS elevation is associated with
a rise in ATP production.
MITOCHONDRIAL DYSFUNCTION
EXPLAINS CENTRAL OBESITY IN
POLYCYSTIC OVARY SYNDROME
PATIENTS

PCOS patients have a high prevalence of central obesity due to
increased visceral fat. Accumulation of visceral fat raises the risk
of insulin resistance in both men and women (147), especially in
postmenopausal female subjects (148–150). Androgen excess is a
risk factor for central obesity in females. Inhibition of androgen
effects with the receptor antagonist flutamide decreases visceral
fat in PCOS patients (151), suggesting a significant role of
androgens in central obesity. There are several hypotheses for
the effects of androgens on central obesity in literature.

The first is the failure of leptin actions. In PCOS patients,
central obesity is associated with a failure of leptin signaling
within the central nervous system (142). Leptin conveys the
signal of the body’s energy reserves to the central nervous system
in the control of food intake and the promotion of energy
expenditure. Defects in leptin action may promote central
obesity by increasing energy intake and decreasing energy
expenditure (152). Exogenous testosterone treatment was
reported to reduce serum leptin in humans (153), confirming
the regulatory effects of androgen on leptin.

The second is the impairmentofnewadipocyte generation in the
subcutaneous fat. Adipose tissue expansion involves adipogenesis
and adipocyte hypertrophy (154). In PCOS patients, subcutaneous
fat pads produce androgen, leading to androgen excess (147).
Androgens inhibit differentiation of the mesenchymal stem cells
into preadipocytes in the subcutaneous fat. This contributes to fat
deposition into the visceral fat pads (147).

The third is inhibition of adipocyte lipolysis, thereby
promoting hypertrophy of mature adipocytes by androgen.
Androgen downregulates signaling pathway proteins important
for lipolysis, such as expression of catecholamine receptor and
hormone-sensitive lipase (HSL), in white adipocytes (155–157).
This decreases fatty acid release from the adipocytes and causes
Frontiers in Endocrinology | www.frontiersin.org 9
adipocyte hypertrophy. Adipocyte hypertrophy is a risk factor
for adipose tissue hypoxia, adipocyte dysfunction, adipose
inflammation, and insulin resistance (158, 159).

The fourth is whitening of beige or brown adipocytes
following mitochondrial dysfunction to reduce energy
expenditure by thermogenesis as discussed above. These
studies suggest that androgen excess may promote visceral
adiposity through several mechanisms in PCOS patients.
Mitochondrial dysfunction appears to be a common player in
all four of these mechanisms.
CONCLUSION AND PERSPECTIVES

Sex hormones play a key role in the regulation of energy
metabolism. Androgens are required for the maintenance of
energy balance in male subjects through the promotion of
mitochondrial function. Estrogens have a similar activity in
females in the control of energy metabolism through their
effects on mitochondria. The activities of these two sex
hormones overlap in mitochondria, which suggests a
possibility of synergy to induce mitochondrial overactivation in
PCOS. These two hormones work through their receptors to
induce the expression of nuclear DNA and mitochondrial DNA
to promote mitochondrial biogenesis, which lay the foundation
for the synergy concept in the induction of mitochondrial
function. When the synergistic effect leads to ATP
overproduction in cells, it can cause insulin resistance through
multiple mechanisms, such as excess secretion of insulin in b-
cells and excess glucagon secretion in a-cells. In addition to the
endocrine disorders, ATP surplus inhibits AMPK, activates
mTOR, and induces ROS production, which contribute to
insulin resistance in the skeletal muscle and liver.
Mitochondrial overactivation may lead to mitochondrial
dysfunction through the alterations of these signaling
molecules. Mitochondrial dysfunction in b-cells impairs insulin
secretion, which contributes to hyperglycemia in type 2 diabetes.
Therefore, mitochondrial overactivation from androgen and
estrogen synergism may be a cause of insulin resistance in PCOS.

In the molecular mechanism, the androgen and estrogen
synergy may super-induce the activity of PGC-1a because they
both upregulate the activity and expression of PGC-1a.
Overexpression of PGC-1a is known to induce insulin resistance
and impair glucose metabolism in the liver (160). Overexpression
of PGC-1a also inhibits glucose-induced insulin secretion in b-
cells (161). In addition, the overexpression of PGC-1a induces
insulin resistance in the skeletal muscle through the expression of
mammalian tribbles homolog (TRB-3) (162), a direct negative
regulator of Akt activity in the insulin signaling pathway (163). In
type 2 diabetes, chronic hyperglycemia also contributes to the
overactivation of mitochondria through the substrate effects (164).
This hormone synergy-based view is supported by existing
literature on PCOS models and is perfect to fill the gap in the
mechanism of metabolic disorder in the PCOS syndrome.
However, the possibility remains to be verified by studies in vivo.
This view represents a unifying mechanism for the distinct roles of
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androgens in the control of insulin sensitivity in hypogonadal men
and PCOS women, which may shed light on a mitochondrion-
targeted strategy for the treatment of PCOS in the future.
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