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RNA-protein interactions (RPIs) are crucial for accurately operating various processes in and between organisms 
across kingdoms of life. Mutual detection of RPI partner molecules depends on distinct sequential, structural, 
or thermodynamic features, which can be determined via experimental and bioinformatic methods. Still, the 
underlying molecular mechanisms of many RPIs are poorly understood. It is further hypothesized that many 
RPIs are not even described yet. Computational RPI prediction is continuously challenged by the lack of data 
and detailed research of very specific examples. With the discovery of novel RPI complexes in all kingdoms 
of life, adaptations of existing RPI prediction methods are necessary. Continuously improving computational 
RPI prediction is key in advancing the understanding of RPIs in detail and supplementing experimental RPI 
determination. The growing amount of data covering more species and detailed mechanisms support the accuracy 
of prediction tools, which in turn support specific experimental research on RPIs. Here, we give an overview of 
RPI prediction tools that do not use high-throughput data as the user’s input. We review the tools according to 
their input, usability, and output. We then apply the tools to known RPI examples across different kingdoms of 
life. Our comparison shows that the investigated prediction tools do not favor a certain species and equip the 
user with results varying in degree of information, from an overall RPI score to detailed interacting residues. 
Furthermore, we provide a guide tree to assist users which RPI prediction tool is appropriate for their available 
input data and desired output.
1. Introduction

Interactions between RNAs and proteins (RPIs) are essential for mul-

tiple molecular processes in biological entities. Key players for RPIs are 
RNA-binding proteins (RBPs), which are involved in gene expression, 
RNA processing, modification, and degradation of RNA [1–3]. Inter-

action of mRNAs with RBPs can initiate or regulate protein synthesis 
[4–6]. The function of microRNAs (miRNAs) (for the regulation of gene 
expression) depends on RBPs [7,8], same as for long non-coding RNAs 
(lncRNAs) [9,10]. Due to the vast variety of processes in which RBPs 
are involved, their functionalities are also linked to diseases [11–13].

Most knowledge on RBPs originates from eukaryotic systems, es-

pecially the human organism [14], for which around 1,500 RBPs are 
annotated [15]. However, data for bacteria and viruses is sparse, as for 
a typical bacterium, around 180 RBPs are known [16]. For viruses, most 
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RPI research focuses on host-virus rather than intra-viral RPIs, which 
started to set off only a decade ago [17].

RPIs are realized dynamically with a one-sided or mutual confor-

mational change of the RNA and protein partner [18–20]. Addition-

ally to this conformational change, many residues may not be part of 
the interaction directly but are still crucial for binding site flexibility 
and correctly positioning functional residues in RPIs [21,22]. The in-

teracting protein binds RNA molecules either specifically (e.g. based 
on RNA modifications [23], sequential or structural motifs [24,25]) or 
non-specifically (e.g. dsRNA or ssRNA in general [24,26,27]). Within 
the protein, aromatic and positively charged amino acids are often in-

volved in contacting the RNA partner, especially since they can form 
specific and strong interactions like salt bridges and 𝜋-stacking with the 
nucleobases [24,28]. However, the backbone of the RNA is associated 
more often with the protein than the bases in RPIs [29]. Solvent ac-
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cessibility and structural positions of the amino acids are decisive for 
interaction as well [21]. Usually, RNA binding domains are the main 
interaction area. Single amino acids outside of such domains can take 
further action toward contacting the RNA [1,28].

Experimental detection (in vitro and in vivo) of RPIs [30,31] can focus 
on an RNA molecule of interest to characterize potential proteins bind-

ing to it (e.g. RAT/TRAP, RNA affinity in tandem / tagged RNA affinity 
purification [32,33]) or on a known RBP to identify interacting RNAs 
(RIP-Chip, RNA immunoprecipitation chip [34]; CLIP, cross-linking im-

munoprecipitation [35]). When implemented accurately, in vitro meth-

ods can effectively predict in vivo RPIs and expand the landscape of RPI 
knowledge, e.g., by distinguishing binding specificity and defining con-

text [36–38]. Still, in vitro methods may result in RPIs that are not phys-

iologically relevant [1], which can be complemented by utilizing in vivo

approaches. Non-crosslinking in vivo methods like RIP-Chip [34], which 
combines immunoprecipitation with RT-PCR and microarrays, can come 
along with noise issues, co-immunoprecipitation of unwanted additional 
proteins, false positives from re-associated proteins and RNAs after 
cell lysis [39,40], or no possibility to identify the binding site specif-

ically because of mild conditions for preserving the non-covalent RPIs 
[41]. Instead of microarrays, RIP-Seq combines RNA immunoprecipita-

tion with high-throughput sequencing [42]. Alternatives are CLIP-based 
(crosslinking and immunoprecipitation) methods (e.g. HITS-CLIP, iCLIP, 
Par-CLIP), which solve some of the former issues and carry other disad-

vantages. For example, HITS-CLIP (high-throughput sequencing CLIP) 
enables large-scale RPI detection [43], but the UV radiation from the 
UV-crosslinking step prior to immunoprecipitation may lead to mutage-

nesis [44], or specificity issues during crosslinking (biased for ssRNA, 
pyrimidines, certain amino acids) [41,45]. Par-CLIP (Photoactivatable-

Ribonucleoside-Enhanced CLIP) [46] and iCLIP (individual nucleotide 
resolution CLIP) [47] both provide specific resolutions of interaction-

involved nucleotides and binding sites but require long technical pro-

cedures (Par-CLIP [48]) and demanding set-ups (iCLIP [49]), involving 
numerous reaction steps. In general, in vivo techniques grant biolog-

ically more specific (e.g. regarding tissue/cell lines) interaction data, 
which is beneficial for specific training of computational RPI prediction 
algorithms. The potentially high false negative [50,51] and false posi-

tive [52,53] rate of these experiments however could lead to biases in 
training of such algorithms.

The above problems of experimental RPI detection are continuously 
being tackled with modern and up-to-date experimental workflows, 
identifying and revising the validity and interpretation of the methods 
[54]. Still, they can be expensive, time-consuming, or require challeng-

ing set-ups [30]. Furthermore, meeting the exact conditions for the RPIs 
to happen and be detectable in vivo (e.g. tissue-specificity, cell-cycle 
specificity, time-dependency, robustness of interaction) can prove dif-

ficult [55]. Therefore, experimental approaches can be supplemented 
with bioinformatics methods. Algorithms help analyze existing experi-

mental data sets in more detail [56,57], investigate available sequences 
and structures for motifs and properties [58], predict binding sites of 
RNA-protein partners based on similar known interactions [59], or clas-

sify whether an RPI is probable [60]. Input for the algorithms is mostly 
the sequence or PDB (Protein Data Bank) [61] 3D structure of either or 
both RPI partners. The output ranges widely between tools, e.g., getting 
an overall interaction score for an RNA and protein pairing [62,63], se-

quence motifs contributing to an RPI [56,64], a potential binding site 
area highlighted in a protein structure [65–67], or specific interacting 
residues between an RNA-protein complex [68].

Many RPI prediction tools are available, varying in aspects like back-

ground data, feature selection, machine-learning algorithm, or output 
extent. In recent years, several tools and workflows have been pro-

posed that utilize experimental data from, e.g., CLIP-Seq experiments. 
While these resources are valuable and often used to determine specific 
binding motifs or residues of a protein of interest, there are scientific 
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questions or use cases where such data is unavailable. For an overview 
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of tools available that use high-throughput sequencing (HTS) data, we 
refer to [69–71].

Here, we present a comparative analysis of RPI prediction tools that 
do not need experimental HTS data as input. First, we provide a compre-

hensive overview of available tools grouped by their input requirements. 
With many RPI prediction tools being developed in recent years, users 
might lose the overview of accessible tools fitting their needs. To assist 
potential users, we propose a guide tree covering available RPI predic-

tion algorithms to identify tools of interest for different applications and 
use cases.

Furthermore, many RPI prediction tools are often benchmarked or 
usable only with HTS data sets. However, since such data is rarely 
available for non-model organisms or users might only be interested 
in a specific RNA-protein complex, we focus on tools that allow such a 
single-RNA-protein-complex as input. We apply the 30 collected avail-

able algorithms on four selected RPI examples across different kingdoms 
to assess a potential bias towards specific taxonomic clades. Thus, we 
focus on (i) the human protein LARP7 binding to the 7SK snRNA; (ii) the 
MS2 phage coat protein interacting with an RNA hairpin in the phage’s 
genome; (iii) the Ebola virus VP30 protein binding to the viral RNA 
leader region; and (iv) the bacterial toxin-antitoxin system ToxIN. Using 
this small subset of known RPI examples and their respective “ground 
truth” of interactions from literature, our evaluation provides a more 
detailed insight into the capabilities and applicabilities of the RPI pre-

diction algorithms.

2. Results

De novo RPI prediction tools need sequence or structure input of the 
potentially interacting RNA or protein molecules. Predicted results vary 
in the degree of information, e.g., some tools only report interaction 
scores, whereas others report motifs, energies, binding sites, or interact-

ing residues. To assist users in deciding what tool to use for their RPI 
prediction analysis, we compiled an extensive overview of available RPI 
prediction tools at GitHub. We further summarized this overview in a 
guide tree shown in Fig. 1. The tree covers currently (at the time of 
writing) accessible RPI prediction tools, categorized into necessary in-

put data, computed output, and whether a web server or stand-alone 
version is available. This overview also contains prediction tools rely-

ing on experimental HTS data (see Fig. 1, input data: “experimental 
dataset”), which were not part of our evaluation. In the following, we 
review the collected 30 de novo RPI prediction tools (see Fig. 1, input 
data: “RNA”, “protein”, “RNA and protein”) and subsequently present 
the evaluation results for the available algorithms.

2.1. Overview of de novo RPI prediction tools

RNA sequence input In general, tools using the RNA sequence alone, 
such as MEME [73], GraphProt [74], and iDeepS [75], report putative 
sequence motifs of the RNA involved in the interaction. It should be 
noted that these three tools also have further input options (protein se-

quence for MEME, HTS datasets for GraphProt and iDeepS). MEME is 
a motif discovery tool, requiring any kind of biological sequences as 
input, and calculating (de novo) sequence motifs therein, which are dis-

played and listed for the user. Although not specifically targeted for 
RPIs, MEME can still serve as an initial step in analyzing potential RNA 
and protein partners [73]. While both GraphProt and iDeepS work with 
RNA sequence input, usage still depends on an own HTS dataset to train 
or the availability of a matching pre-trained model (24 human RBPs 
for GraphProt, 31 for iDeepS), which was not the case for our chosen 
biological examples. Therefore, we excluded these two tools from our 
evaluation. DeepCLIP [76] is a deep neural network trained on CLIP 
datasets, however, it expects RNA sequence(s) as input, if the user seeks 
to work with one of the pre-trained models. DeepCLIP calculates RBP 
binding probabilities for the positions of the given input [76]. RBPmap 

[64] requires RNA sequence(s) as input as well. Additionally, RBPmap 
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least accessible at the time of writing. Additionally to the 
so given at GitHub. All tools within the gray-framed box 
Fig. 1. Guide tree for available RPI prediction tools given specific input data. We provide a (non-exhaustive) list of tools that are still maintained or are at 
input, tools are categorized based on web server or stand-alone versions. The respective output type is color-indicated. A comprehensive tabular overview is al

are part of our evaluation in this study. Figure created with InkScape [72].
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is able to search for protein-binding motifs in the query RNA(s), which 
the user has to provide. The motifs are restricted to RBPs in human and 
two model organisms (Mus musculus, Drosophila melanogaster).

Protein sequence input If only protein data is available, users can refer 
to hybridNAP [77], DRNAPred [78], or aaRNA [79]. These tools expect 
the sequence of the protein and report individual interaction probabil-

ities or scores per amino acid. hybridNAP considers potential binding 
residues by their relevant sequential properties, relative solvent acces-

sibility in the structure, and their evolutionary conservation, which are 
assessed based on their test data [77]. These features are covered by DR-

NAPred as well, in addition to putative intrinsic disorder and secondary 
structure [78]. The algorithm of aaRNA furthermore includes homology 
[79]. Similarly, aPRBind [80] annotates residues potentially involved in 
an interaction using features from protein structure models additionally 
to the protein sequence, thus trying to incorporate dynamic properties 
relevant for the potential interaction [80].

Aside from an RNA sequence, MEME can also process protein se-

quences and reports motifs of interest on the protein. RBPPred [81]

allows for the rapid scanning of many proteins by utilizing an SVM clas-

sifier to predict whether a protein can bind to an RNA by considering 
evolutionary information and physicochemical properties of the primary 
sequence. For each input sequence, the algorithm predicts whether it can 
bind RNA or not [81].

Protein structure input Given the structure of a protein (most commonly 
in PDB-like format), GraphBind [82], NucleicNet [67], and KYG [83]

are available to predict the binding sites for RNA partners in the protein 
structure. Users can choose GraphBind to calculate interactions specific 
for different kinds of ligands. For the prediction, graphs are constructed 
to reflect the structure context and important features, which are then 
fed into hierarchical graph neural networks (HGNNs) [82]. NucleicNet 
predicts and visualizes whether RNA can be bound across the grid of 
the protein surface given the physicochemical environment, specifically 
the interaction modes for the different parts of RNA molecules [67]. 
Furthermore, general binding potential of RNA sequences can be eval-

uated using logo diagrams. The algorithm is based on the FEATURE 
vector framework [84], with feature vectors encoding the physicochem-

ical properties. KYG calculates interface residue propensities for each 
amino acid and residue pairing preferences between the protein and 
RNA, using data of representative RNA-protein complexes from the PDB 
[83].

Furthermore, aaRNA can work with a protein structure as well, 
which results in a structural visualization additionally to the per-

residue-probability prediction [79].

RNA and protein sequence input The highest prediction accuracy is pos-

sible when RNA and protein information is available. On sequence level, 
tools such as XRPI [63], RPISeq [62], and IPMiner [85] provide an over-

all interaction probability, whereas PRIdictor [59] and catRAPID [86]

report individual probabilities for residues potentially involved in the 
interaction. XRPI is a machine-learning method, calculating the inter-

action probability via a gradient boosting classifier (XGBoost) based 
on features, such as smallest structural unit and amino acid interac-

tion propensities, from RNA-protein structures in the PDB [63]. The 
predicted interaction score ranges from 0 to 1. Similarly, RPIseq [62]

provides two such scores for a potential RNA and protein sequence pair, 
calculated by classical machine-learning approaches as well. These two 
respective classifiers (Support Vector Machine (SVM) and Random For-

est (RF)) are trained on non-redundant datasets from the Protein-RNA 
Interface Database (PRIDB) [87]. The deep learning tool IPMiner ex-

tracts features by a stacked autoencoder and uses those for prediction 
via stacked ensembling of three random forest classifiers [85].

PRIdictor calculates the mutual binding site residues using global 
and local features of the sequences, as well as partner features, encoded 
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in feature vectors. The predictions consider hydrogen bonds, water 
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bridges, and hydrophobic interactions as potential RPIs [59]. Based on 
the contributions of hydrogen bonding, van der Waals contacts, and pre-

dicted secondary structure of the RNA and protein domains, catRAPID 
calculates interaction propensities for RNA and protein [86]. With its 
training data, the algorithm of catRAPID computes and visualizes the 
pairwise interaction scores for all residues of a given RNA-protein pair 
and the corresponding discriminative power in a heatmap.

The model of beRBP [88] predicts protein-binding site motifs in 
given input RNA sequence(s). The user additionally has to provide or 
choose a pre-trained position weight matrix (PWM) model for an RBP, 
or an RBP sequence, in which case beRBP tries to predict a correspond-

ing PWM based on similarity of potential RNA binding domains. The 
‘General model’ is trained with a Random Forest approach based on a 
matrix considering four features of a putative binding site: the match 
of a motif, sequence environment, spatial accessibility and evolutionary 
conservation [88].

RNA and protein structure input PredRBR [89], COACH [65], PRIME-

3D2D [90], RsiteDB [91,92], and DeepSite [66] use structural informa-

tion to report binding sites. The accuracy of NucleicNet can be improved 
(compared to protein structure only) if structural information of both in-

teraction partners is provided.

Although PredRBR [89] works with PDB structures, users depend 
on the pre-trained model or need to train their own with a respec-

tive dataset of structures [89], which is why we excluded this tool 
from our evaluation. COACH combines multiple algorithms into one ap-

proach with a trained SVM classifier to determine consensus binding site 
residues of a given protein [65]. The tool also allows for a sequence-only 
input instead of a PDB structure, in which case a 3D model of the protein 
will be generated prior to the binding site residue prediction. The out-

put lists and visualizes the results of the individual algorithms as well 
as the combined template-based COACH approach, with the top-ranked 
models and their calculated confidence score (ranging from 0 to 1) and 
binding residues [65]. PRIME3D2D refers to structure templates for pre-

diction as well, using TMAlign [93] for protein and LocARNA [94] for 
RNA alignment to a template to build a RNA-protein complex model, 
followed by scoring of the potential binding site [90]. RSiteDB [91] fo-

cuses on extruded RNA nucleotides not involved in RNA base pairing, 
which could interact with protein binding pockets. It stores known nu-

cleotide binding sites in RNA-protein structures, as well as provides a 
prediction service based on the data [92]. The algorithm predicts po-

tential binding sites by determining atomic contacts between the PDB 
chains, dinucleotide patterns of the RNA, and (geometric) properties of 
a binding site [92]. DeepSite [66] is a knowledge-based deep convolu-

tional neural network (DCNN) approach that predicts binding sites in 
proteins for different ligands and includes features such as atom types 
and chemical properties. The structures are treated like 3D images and 
ideally cover both the protein and ligands (RNA in our study). The po-

tential residues are calculated and visualized in so-called ‘binding site 
centers’ which are supported by a score between 0 and 1.

Our literature search uniquely found PredPRBA [95] to predict the 
released energy after binding as a measure of possible interaction. The 
method uses multiple gradient boosted regression tree models for dif-

ferent classes of RNA-protein complexes in the dataset, with features 
extracted from both sequence and structure [95].

3dRPC [96] is specifically focused on performing docking analyses of 
RNA and protein molecules into a scored complex. Docking is an alterna-

tive computational approach, which was expanded from protein-protein 
interactions to deal with RPIs only recently [97]. The challenge here lies 
mostly in the folding flexibility of RNA sequences and the implementa-

tion of a scoring function for RNA-protein interactions [97,98].

PRince [99] reports the binding residues of both RNA and protein 
and produces an output in PDB format that can be used to visualize 
and explore the structural specificity of the RPI, focused on the acces-

sible surface areas and the highlighted interface region. PRIHotscore 

[100] and OPRA [101] use the structural information from their respec-
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tive PDB-derived datasets to report individual interaction probabilities 
per residue. PRIHotscore approaches the prediction via in silico alanine-

scanning, which allows to identify interface amino acids as hotspots for 
RNA binding with assigned interaction scores [100]. OPRA on the other 
hand assigns interaction propensities based on the ratio of residue com-

position at RPI interfaces compared to that in the structures’ surface 
using statistical potentials [101].

PLIP [68] finds non-covalent interactions in binding sites between 
macromolecules or proteins and other biomolecules, like nucleic acids 
and ligands. Predictions are rule-based on the interaction geometry 
(i.e., distances and angles) between the residues in a given structure 
complex, and the physicochemical properties of the amino acids and nu-

cleobases. PLIP reports a detailed list and visualizes the complex with 
probable interactions, their types, and involved residues and atoms.

2.2. Evaluation of de novo RPI prediction tools

Unfortunately, not all of the 30 described RPI prediction tools could 
be evaluated to their full extent. As mentioned, GraphProt, iDeepS, and 
PredRBR depend on pre-trained models or user’s HTS datasets (to train 
a desired model), which is why they were excluded from our evaluation 
completely (no matching models available). We covered the remaining 
27 algorithms, of which multiple ones provided no results to evaluate, 
due to different individual reasons: (i) not applicable to our exam-

ples (no matching data available): RBPmap; (ii) not installable/usable: 
aPRBind, IPMiner; (iii) computations did not finish or web server did 
not provide feedback about the status: GraphBind, PRIME3D2D, 3dRPC; 
(iv) no results are displayed or downloadable: PRince; (v) non-solvable 
error during input submission: beRBP, RsiteDB.

We introduce an evaluation score for our study, ranging from 0 (no 
evaluation criterion fulfilled) to 4 (all criteria fulfilled). Since the predic-

tion tools vary widely in their amount and format of output, we decided 
on four criteria to capture the tool’s usefulness for users as best as pos-

sible. (I) Did the algorithm predict any interaction for the given input?, i.e., 
depending on the tool, a point is given if the results provide an above-

threshold probability of interaction or predict at least one region or 
residue to interact. (II) Does the prediction cover the correct region (in pro-

tein and/or RNA)? and (III) Does the prediction cover the correct interacting 
residues?, i.e., if the majority of the literature-based true-positive inter-

acting regions or residues (respectively) are predicted as interacting, a 
point per criterion is added to the evaluation score. (IV) Does the tool 
report a trustable confidence score (>=70%, if applicable)?, i.e., a point 
is granted if a confidence score of the tool itself reaches the threshold, 
or if the amount of true-positive hits outweigh the false-positive and 
false-negative hits accordingly. During evaluation, these criteria were 
checked in the mentioned order, with each fulfilled criterion adding 
1 point to the score of the respective tool. The nine algorithms with 
no results to evaluate (listed above) received no assigned evaluation 
score, leading to 16 tools getting an evaluation score assigned. The 
full evaluation table and detailed information is deposited at GitHub

(tool_evaluation.xlsx and tool_evaluation-score.md) and 
includes input, parameters, runtime, output and further information for 
all tools for our analysis.

2.3. Evaluation dataset: prediction results for four different biological RPIs

The interaction between the LARP7 protein and 7SK RNA is well-

described [102] and functions for 7SK stability in vivo and assists in a 
stable association of the 7SK ribonucleoprotein (RNP) complex [110]. 
The xRRM domain at the C-terminus of LARP7 specifically binds the 3’-

terminal U-rich stretch in the 7SK RNA and the top of stem-loop 4 (SL4) 
[102]. The base G312 and amino acids Y483 and R496 constitute the 
core interface (Fig. 2A). Additionally, the residues in the three struc-

tural elements 𝛽2 (RNP3 motif), 𝛽3, and 𝛼3 of LARP7 are important for 
the interaction. The main interaction types are hydrogen bonding and 
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The relevant interacting regions for LARP7 and 7SK were predicted 
most detailed by PLIP and PRIHotscore (evaluation score of 4 and 3, re-

spectively, Fig. 3). Both managed to positively predict the RPI involved 
residues while correctly excluding non-interacting ones. Since the avail-

able PDB complex represents the specific RPI region well, other tools 
considering structure also performed well with scores of 2: COACH, Nu-

cleicNet, and OPRA, as well as MEME using sequence only. The most 
important residues are predicted by multiple tools, but rarely the RPI is 
covered exhaustively or in full detail. For the protein residues, we ob-

served multiple false positive predictions, i.e., amino acids predicted as 
interacting although not explicitly being mentioned as such in the cor-

responding literature [102]. This can be seen for example with aaRNA, 
hybridNAP, KYG, and catRAPID. For the latter, interactions are focused 
at the 5’-end of the 7SK RNA and across the complete LARP7 sequence, 
with an overall high interaction propensity of 84. As LARP7 binds to 
the UUU-3’OH and the SL4 stem-loop [111], the prediction at the 5’-

end is not supported by the literature. Moreover, in vivo, the 5’-end of 
7SK RNA is bound by the methylphosphate capping enzyme (MePCE) 
[102], denying the opportunity for interaction with LARP7 in this re-

gion. Another crucial aspect in prediction for structure-based tools is the 
presence of the RNA molecule in the 3D complex. Exemplarily, since the 
LARP7 PDB entry does not include the 7SK RNA structure, the results of 
DeepSite are less reliable than if the RNA was present, i.e., the predic-

tion of true positive amino acids for interaction is restricted (here: only 
the helix and C-terminal end of 𝛼3 is predicted correctly). In the case 
of a model-based approach like COACH, the prediction is highly depen-

dent on the availability of adequate models for the example at hand. The 
top-ranked model for LARP7 is based on a Polypyrimidine tract-binding 
protein PTB (PDB:2ADC, covers an RRM domain) with a CUCUCU-RNA 
strand as a ligand. Since the interacting stem-loop of 7SK consists of the 
motif AUGAUG, the U-richness might be reflected in the model but only 
allows limited conclusions to the interaction of LARP7 with 7SK RNA. 
PRIdictor only predicted a few interacting residues (1 amino acid, 10 
nucleobases) with its web application and none with the web server, 
therefore getting a score of 0.5.

Another well-studied RPI example is the coat protein of the RNA 
phage MS2. As a dimer, it interacts with a 19-nucleotide-long RNA re-

gion in the phage genome, which folds into a hairpin structure and 
contains the initiation code for the replicase gene (Fig. 2B). The inter-

action of RNA and protein leads to a switch from replication to virion 
assembly in the viral life cycle [103,112].

The interaction was detected most reliably and correctly by COACH, 
hybridNAP, PRIHotscore, and PLIP (Fig. 3). All of them correctly pre-

dict the majority of the RPI-involved amino acids [104] in the protein 
with high probability. However, they also predict false positive residues, 
which cannot be distinguished without knowing the ‘ground truth’ (hy-

bridNAP, COACH), or miss important interaction partners (PRIHotscore, 
PLIP). With a score of 2, aaRNA, RPISeq, and XRPI respectively perform 
better for this RPI compared to the other biological examples. aaRNA 
predicts binary binding propensities above threshold for some but not all 
interacting amino acids, and both RPISeq and XRPI confidently deliver 
high interaction probabilities with both classifiers (SVM: 0.96, RF: 1.0) 
or models (RPI2825: 0.9969, RPI390: 0.9191), respectively.

Our third RPI is the N-terminal region of VP30 in Ebola virus binding 
to a stem-loop structure in the 3’-leader region of the single-stranded, 
negative-oriented RNA genome at nucleotides 80-54 and the comple-

mentary antigenomic strand (Fig. 2C). The RPI is focused on an arginine-

rich region in the protein and regulates the transcription of the virus 
[106,107].

The best ranking tools here, with a score of 2, were COACH, OPRA, 
and PRIdictor (Fig. 3). The latter does predict a subset of important 
interacting residues, but no regions as a whole, and also covers mul-

tiple false positive hits. COACH and OPRA mostly do not provide RPI 
residues, which is in line with the input structure not including the main 

interacting region and was therefore the expected outcome.

https://github.com/skrautwurst/Supplement-RPI_prediction_tools
https://github.com/skrautwurst/Supplement-RPI_prediction_tools/blob/main/tool_evaluation.xlsx
https://github.com/skrautwurst/Supplement-RPI_prediction_tools/blob/main/tool_evaluation-score.md
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Fig. 2. Known interactions for the four investigated RPI examples based on the respective literature. (A) The C-terminus of LARP7 (xRRM domain) binds the 
RNA with key amino acids in three structural elements (𝛽2, 𝛽3, 𝛼3). The 7SK RNA is bound at the stem-loop 4 (SL4) and a U-rich region at the 3’-end. Interacting 
residues are shown as a stick representation, colored by structure (protein) or element (RNA). Figure from Eichhorn et al. (2018) [102]. (B) A 19-nucleotide-long 
RNA region in the MS2 phage genome folds into a hairpin structure bound at exposed positions by a dimer of the MS2 phage coat protein. The contacting amino 
acids (different binding pockets depicted here) are primarily conserved within the 𝛽-strands of the protein structure [103]. Figures from Valegård et al. (1997) [104].

(C) The N-terminal region of the Ebola virus VP30 protein binds the 3’-leader region of the RNA genome strand at nucleotides 80-54 with an arginine-rich region 
(highlighted in white) [105] (top left). The optimal RNA substrate is single-stranded, of 40nt length and mixed base composition [106] (bottom left). Further single 
amino acids contribute to the RPI indicated in pink and green [107] right. Figures from Biedenkopf et al. (2016), Schlereth et al. (2016) (adapted), John et al. (2007) 
[105–107]. (D) The RPIs in the bacterial ToxIN system assist in assembling the heterohexameric complex of three toxI RNA pseudoknots and three ToxN monomers. 
The interactions are described to be focused around a few key nucleobases bound by various amino acids of the protein in multiple pockets. Shown are a hydrophobic 
binding pocket of ToxN (left) and the active site of the complex. Figures from Blower et al. (2011), Short et al. (2012) [108,109]. For full details, please refer to the 
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The algorithms of catRAPID, hybridNAP, MEME, RBPPred, RPISeq, 
and XRPI all predict some kind of interaction or motif (depending on 
their output type) based on the input sequence(s), however it does not 
represent the literature-known residues [106,107] (score 1).

Multiple structure-based tools cannot predict the RPI due to the 
disadvantageous PDB complex. This leads to the algorithms either re-

porting interactions despite the PDB entry not covering the interaction-

important N-terminal region of the protein (score of 0: KYG, aaRNA, 
NucleicNet, DeepSite) or not being able to start their computations at 
all because of the lacking RNA molecule in the structure (no score: PLIP, 
PredPRBA, PRIHotscore).

As a fourth example, we investigated the bacterial toxin-antitoxin 
system ToxIN, which encodes an ABI (abortive infection) system in mul-

tiple, especially enteric bacteria [113]. To neutralize the toxin protein 
(ToxN), three ToxI RNA pseudoknots form a heterohexameric complex 
with three ToxN monomers mediated by RPIs in different binding pock-

ets [108]. The interactions are focused around multiple amino acids, 
which group together to bind a few nucleobases, respectively (Fig. 2D).

Here, DeepSite, and again PRIHotscore and PLIP perform the best 
with scores of 3 and 4 (Fig. 3). PLIP correctly identifies nearly all 
interaction-involved residues for both RNA and protein and their re-

spective relations. DeepSite and PRIHotscore perform similarly, but are 
missing a few relevant amino acids. Both COACH and OPRA provide 
multiple false positive or false negative matches, respectively, in ad-

dition to some of the literature-known amino acids [108]. The two 
classifiers of RPISeq as well as the two models of XRPI come to differ-

ent interaction probabilities each, which led us to assign half a point for 
both tools. RBPPred did predict the ToxN sequence as non-interacting, 
as opposed to its results for the three other examples.

3. Discussion

3.1. Quality (and quantity) of predictions differs greatly between different 
tools

The investigated RPI prediction tools work with different algorithms 
and on different data. Thus, their results vary vastly in their informa-

tive value and level of detail. Working with sequence input, the results 
of RBPPred, XRPI, and RPISeq provide a general single score or probabil-

ity with no information on specific residues or regions. This might prove 
useful in case the user just needs this distinction of how likely an inter-

action is, e.g., for an “all-against-all” approach to compare multiple RNA 
and protein sequences. For RPISeq no obvious relation between the two 
classifiers is stated, complicating the interpretation whether an RPI can 
be trusted in the case of two diverging predicted probabilities. In such 
instances, the user cannot know if the RNA and protein are likely to in-

teract, especially if there is no ground truth available. The motif finder 
MEME overall covers interacting regions in our evaluation, however the 
motifs are distributed across the sequences in general, challenging the 
motif’s specificity. Although MEME does not predict RPIs directly, it 
might prove useful if a motif of interest is known before analysis or to 
narrow down a potential amount of possible interaction sites for further 
experiments [73]. For probabilities or scores of individual residues in 
the sequence users can refer to DeepCLIP, hybridNAP, DRNApred, PRI-

dictor, or catRAPID. The latter additionally correlates every residue of 
both the RNA and protein sequence against each other. DRNApred does 
not predict any interactions for any of our examples and should there-

fore be used with caution.

Since spatial factors play crucial roles in RPIs [24,25], structure-

based tools generally produce more detailed results. The binding free 
energy calculated by PredPRBA provides an overall tendency for the RPI 
complex of interest. For per-residue-information, users can apply KYG, 
aaRNA, PRIHotscore, or OPRA, all of which supplement this with visu-

alization in the structural complex. Specific binding sites are reported 
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with NucleicNet, DeepSite, and COACH. The former highlights binding 
Computational and Structural Biotechnology Journal 23 (2024) 4036–4046

Fig. 3. Evaluation heatmap. Based on the criteria listed in the Methods, we 
evaluated the RPI prediction tools for all four biological examples. The score 
therefore can range from 0 (lowest/worst) to 4 (highest/best) (color scale), or 
not assigned (gray) because of the reasons listed in section “Evaluation of de novo

RPI prediction tools”. For each tool and example combination, the cross notation 
indicates which of the criteria are fulfilled respectively. Gray crosses indicate 0.5 
points. Tools marked with a circle require sequence input and the star indicates 
a structure input. For an overview of installation and running accessibility, we 

kindly refer to Table tool_evaluation.xlsx (GitHub repository).

https://github.com/skrautwurst/Supplement-RPI_prediction_tools/blob/main/tool_evaluation.xlsx
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areas of potential interaction, whereas the latter two further indicate 
the respective amino acids involved. The multiple result models pro-

vided by COACH give the user the option to consider predictions with 
(potentially) low confidence scores, which may still prove useful for dis-

covering “hidden” RPI-relevant amino acids. Without a ground truth, the 
manual evaluation of multiple models might be prone to errors. PLIP is 
the only one with information on both RNA and protein residues in its 
output, and also shows the types of interactions and therefore grants the 
most detailed predictions for all examples.

For all tools, data availability is essential. While sequence data is 
far more abundant than structural data for RPI complexes, the latter is 
mandatory for structure-dependent tools. A general problem in struc-

ture determination is the flexibility of the RPI complex [22], which is 
typically captured in one state only and thus might not reflect all as-

pects of the interaction. Working with datasets of bound and unbound 
states of the proteins could support RPI prediction in this aspect. Addi-

tionally, only the protein structure of an RPI complex without the RNA 
partner is commonly determined, which impedes the structure-based 
algorithms to predict the RPI accurately. Furthermore, as seen in the 
Ebola virus VP30 example, similar issues arise when the protein struc-

ture is incomplete, especially when domains or regions important for 
the interactions are missing. This underlines the need for more struc-

tural data from experimental determination methods and continuous 
improvement of computational tools to predict as much accurate infor-

mation as possible with as little data as necessary.

Here, we focused on de novo prediction tools instead of tools using or 
analyzing experimental RPI datasets (e.g. CLIP-based). The latter usually 
requires an additional training before the actual prediction to fit the 
model to the organism of interest. Especially for non-bioinformaticians, 
building and training a model on robust data sets is a challenging task 
and thus hinders the usage of such tools. Accessibility and usability are 
key factors in providing interpretable in silico RPI predictions.

3.2. No tool is more accurate across all kingdoms

We examined the RPI prediction tools with RPI examples from dif-

ferent species: LARP7 and 7SK RNA acting in humans, MS2 phage coat 
protein and an RNA hairpin in the MS2 phage genome, VP30 protein 
and viral RNA leader region of Ebola virus, and the bacterial toxin-

antitoxin system ToxIN. We did not observe drastic accuracy differences 
between the investigated tools in one of the examples. Some algorithms 
seemed to perform better (according to the evaluation score) for the 
MS2 phage coat protein RPI, namely hybridNAP, aaRNA, XRPI, and 
COACH, while others were challenged by the VP30 RPI, as seen for 
KYG, aaRNA, NucleicNet, PredPRBA, and DeepSite. Problems with the 
structure-based prediction for VP30 most likely stem from the PDB en-

tries covering only parts of the protein and no RNA at all. Furthermore, 
the structure-based tools PLIP, PredPRBA, and PRIHotscore depend on 
the RNA structure in the PDB complex for their predictions. Including all 
structural components of the RPI generally grants more sound predic-

tions, but is hindered if there is no adequate data available for the user 
to apply. Overall, in this investigation, prediction accuracies depended 
more on the functionality and input of tools (sequence versus structure) 
than the origin of biological examples. However, due to the restricted 
availability of training data, some tools, such as the proposed framework 
by Shulman-Peleg et al. [91], might be biased towards human or model 
organism RPIs or RPIs that are easier to investigate with the standard 
experimental methods. Consequently, these tools might perform more 
reliably for such RPIs, but might not generalize on non-model organ-

isms and underrepresented RPIs. Even predictions within the organisms 
used for training models may fail to generalize for RPI instances, as with 
catRAPID (trained on human RPIs) and the human LARP7 and 7SK RNA 
example. RBPmap, RsiteDB, and beRBP are trained on human data as 
well, but since we could not evaluate results from those tools, we can-

not deduce whether they would have been biased in favor of the human 
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example. Similarly, algorithms providing pre-trained models for predic-
Computational and Structural Biotechnology Journal 23 (2024) 4036–4046

tion are based on the available data and therefore focused on human 
data as well. For example, in our evaluation DeepCLIP only performs for 
the 7SK RNA, since LARP7 is the only protein available as a pre-trained 
model. Furthermore, the restricted data availability extends also to the 
input for the tools, as mentioned above. The higher quality and amount 
of information the input data has, the more accurate the prediction tools 
can calculate potential RPIs, regardless of the species or kingdom.

3.3. Post-processing potential of RPI prediction tools

Besides the prediction results themselves, the tools differ regarding 
how well their output can be used for further downstream analyses. 
Only displaying the results at the web server without the possibility 
for download of important output data hinders the user from meaning-

fully integrating a prediction tool into a self-build pipeline. We ranked 
NucleicNet, PRIdictor, catRAPID, and DeepSite as tools with a low post-

processing potential. The annotated PyMol [114] session file provided 
by NucleicNet and the heatmap plot by catRAPID are downloadable, but 
only represent the predictions visually without the potential to parse the 
data. Besides the plot visualizations, PRIdictor only provides a text file 
for the protein predictions, not the RNA partner, which does not rep-

resent the result data in a well-retrievable way. DeepSite lets the user 
download the spatial coordinates of the ‘interaction centers’, not the in-

teracting residues themselves.

Many tools provide their RPI prediction results in one or multiple 
parsable file formats, in addition to visual representations, depending 
on the respective tool. This includes DeepCLIP, MEME, hybridNAP, DR-

NAPred, aaRNA, COACH, KYG, PLIP, PRIHotscore, and OPRA. RBPPred, 
RPISeq, XRPI, and PredPRBA result in just a score value, which is down-

loadable as a text file for the latter two.

We cannot make statements regarding the post-processing potential 
for RBPmap, aPRBind, GraphBind, IPMiner, beRBP, PRIME3D2D, Rsit-

eDB, PRince, and 3dRPC, as these tools either did not complete their 
calculations, did not process the input, or it was not possible to get them 
running (see Results).

4. Conclusion

RPIs are ubiquitous in all life forms and can be studied with ex-

perimental detection methods and bioinformatic prediction algorithms 
based on their interaction features. With the growing amount of avail-

able data, current models and approaches can be improved on or ex-

panded with this data to support RPI research and understanding fur-

ther. In recent years, many tools and workflows have been proposed to 
predict RPIs with and without the requirement of HTS data. While this 
is a positive development for the field, users might lose the overview of 
accessible tools fitting their needs.

In this study, we provide an overview of RPI prediction tools and 
proposed a guide tree. We structured this overview and tree according 
to the tools’ required input and the degree of detail produced by their 
output. With this evaluation, we provide a guide for users to support the 
identification of appropriate tools for their research.

To assess the reliability of tools utilizing machine- and deep-learning 
techniques, we investigated the algorithms in more detail using four 
known RPI examples covering different kingdoms of life. The tools re-

port varying amounts of detail and information about the specifics of the 
respective interaction. By having a ground truth at hand, this study gives 
insights into the reliability and interpretability of the tools. Computa-

tional predictions always have to be evaluated carefully, and this study 
is not exhaustive in terms of possible RPI examples and the performance 
of tested tools. Without prior knowledge, not all tools are valuable for 
de novo prediction use cases. Low confidence of the algorithms compli-

cates interpretation of results or separation of false positives and false 
negatives from true predictions. The structure-based tools overall pro-

vided more details on the interactions, but rely on the availability of 

RNA-protein structure complexes.
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Table 1

Overview of RPI examples and respective input for the tools. The table lists the RPI examples used in this study and the 
literature describing known interacting residues. Furthermore, it shows which data (sequence/structure) was used for the pre-

diction tool evaluation.

Examples Organism RPI ref. Input sequence Input structure

7SK RNA

human [102]

NCBI Gene ID 125050 (NC_000006.12: 
52995620-52995951)

PDB 6D12

PDB 5KNW (DeepSite only)
LARP7 UniProt Q4G0J3

MS2 phage operator RNA

MS2 phage [104]

PDB 1ZDH sequence

GenBank MK213795.1, 
nt 1730-1779 (catRAPID only)

PDB 1ZDH

MS2 phage coat protein UniProt P03612

Ebola genomic RNA
Ebola virus [106,107]

Schlereth et al. [106], nt 153-4
PDB 5DVW

VP30 UniProt Q05323

ToxI (RNA)
Pectobacterium

atrosepticum
[108,109]

PDB 2XD0 sequence (repeated to be 
50nt long for catRAPID only)

PDB 2XD0

PDB 4ATO (KYG, NucleicNet)
ToxN (protein) UniProt B8X8Z0
Due to limited RPI data, predictions might be biased toward the 
interaction mechanisms of the organisms used for training and bench-

marking. Many available tools rely on training data originating from 
human or model organism data. To overcome these issues, homology-

based approaches, including evolutionary information, as intended in 
COACH or aaRNA, may be suited. However, additional and continuous 
refinement of such models is needed when new data is available. Thus, 
to deepen our understanding of RPIs and their exact mechanisms, we 
expect to see a continuing close exchange between experimental detec-

tion and in silico prediction models in the future, i.e., experimental data 
being fed into existing or new algorithms, while in silico prediction re-

sults reduce the space of potential RPI interactions to investigate in the 
lab and thus the necessary time and costs.

5. Materials and methods

5.1. RPI data selection

We used four cross-species examples for the RPI tool evaluation: 
(i) human protein LARP7 with the 7SK snRNA, (ii) MS2 phage coat 
protein with an RNA hairpin in the phage’s genome, (iii) Ebola virus 
VP30 protein with the viral RNA leader region, and (iv) bacterial toxin-

antitoxin system ToxIN. The examples are based on how well they are 
researched, whether there is available data to use for the tools, and to 
cover species from different kingdoms.

For algorithms requiring a 3D structural complex, we provided a 
corresponding PDB entry structure for each example (see Table 1). For 
the 7SK RNA-LARP7-complex, we chose the PDB:6D12 structure en-

try because it specifically contains the interacting regions of RNA and 
protein. However, DeepSite could not resolve the necessary features of 
this structure (error for protonation of amino acids), which is why we 
used PDB:5KNW (same as PDB:6D12 but without RNA) for this tool in-

stead. Both structures only represent the relevant RNA-interacting xRRM 
domain of LARP7 and not the whole protein structure. Determined struc-

tures for VP30, unfortunately, currently only cover the protein partially 
(5DVW starts with position 139 compared to the UniProt sequence), 
and lack RNA molecules. The preferred PDB entry for the ToxIN com-

plex was 2XD0 which comprises the full heterohexameric molecule, but 
for KYG and NucleicNet, we had to choose PDB:4ATO (only one protein 
and RNA monomer each) due to complications of these tools with the 
former structure.

For the sequence-based tools, we downloaded the protein sequences 
from the respective UniProt entries (see Table 1). The sequence of the 
7SK RNA corresponds to NCBI Gene ID:125050. For the MS2 opera-

tor RNA, we used the sequence from PDB:1ZDH (the wild-type U/T at 
position 11 has been substituted with C for improved interaction and 
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crystallization process [104]). Since catRAPID needs at least 50nt for 
input, we used the corresponding GenBank entry (MK213795.1) to add 
16 upstream and 15 downstream nucleotides to the sequence. We re-

trieved the interacting genomic, negative-oriented RNA strand of Ebola 
virus from the supplementary of Schlereth et al., covering nucleotides 
153-4 [106], which contains the most important positions for the RPI. 
We picked the RNA sequence of ToxI from entry PDB:2XD0. We ex-

tended this entry for catRAPID by appending the first 14 nucleotides of 
the sequence to the 3’-end to reach 50nt total. We justify this with the 
biological function: The RNA sequence is present as multiple repeats in 
the bacterium before being cut into the interacting monomers [113].

5.2. Evaluation of tool results

The details regarding web server or stand alone usage, as well as 
version number, parameters, runtime, input, output, are listed in Table 
tool_evaluation.xlsx (GitHub repository). We evaluated the re-

sults with the support of information about the respective RPIs described 
in the literature, gained in experiments. The knowledge originates from 
introducing point substitutions in connection with the determination 
of the equilibrium dissociation constant (𝐾𝑑 ) using ITC (isothermal 
titration calorimetry) [102], crystallization experiments and structure 
determination [102,104,108,109], deletion mutants and site-directed 
mutations [106,107], or EMSA analysis [106].

We decided on the following evaluation criteria:

• Did the algorithm predict any interaction for the given input?

• Does the prediction cover the correct region (in protein and/or 
RNA)?

• Does the prediction cover the correct interacting residues?

• Does the tool report a trustable confidence score (>=70%, if appli-

cable)?

Because of the great differences of format and amount of output pro-

vided by the algorithms, selection of these criteria proved difficult. 
Fulfillment of each criterion leads to 4 points total maximum. A score 
of zero implies that the tool did provide prediction results, but none 
of the evaluation criteria were fulfilled. No score implies that the tool 
was not applicable to the respective example, did not complete its com-

putations, or could not be installed. Table tool_evaluation.xlsx
(GitHub repository) gives an overview of the tool evaluation and rele-

vant information, and detailed evaluation score distribution for each 
tool and example is noted in Table tool_evaluation-score.md
(GitHub repository). The evaluation heatmap was plotted with an in-

house python script and finalized with InkScape v.1.1.2 [72].

Furthermore, we assessed the potential for post-processing the re-

sults of each tool, e.g., for downstream analysis after the RPI prediction. 

(+) denotes parsable, downloadable results the user can potentially in-

https://github.com/skrautwurst/Supplement-RPI_prediction_tools/blob/main/tool_evaluation.xlsx
https://github.com/skrautwurst/Supplement-RPI_prediction_tools/blob/main/tool_evaluation.xlsx
https://github.com/skrautwurst/Supplement-RPI_prediction_tools/blob/main/tool_evaluation-score.md
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corporate into a computational pipeline. Tools with a (-) provide view-

able content on their web server, but no option for download or potential 
to incorporate the results directly into downstream analyses of the user. 
(n/a) marks the tools which were not applicable (no evaluation score) 
and we thus could not assess those regarding their post-processing po-

tential.
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