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Abstract

Objective

Rheumatoid arthritis (RA) is a complex autoimmune disease. Using a gene-based associa-

tion research strategy, the present study aims to detect unknown susceptibility to RA and to

address the ethnic differences in genetic susceptibility to RA between European and Asian

populations.

Methods

Gene-based association analyses were performed with KGG 2.5 by using publicly available

large RA datasets (14,361 RA cases and 43,923 controls of European subjects, 4,873 RA

cases and 17,642 controls of Asian Subjects). For the newly identified RA-associated

genes, gene set enrichment analyses and protein-protein interactions analyses were carried

out with DAVID and STRING version 10.0, respectively. Differential expression verification

was conducted using 4 GEO datasets. The expression levels of three selected ‘highly veri-

fied’ genes were measured by ELISA among our in-house RA cases and controls.

Results

A total of 221 RA-associated genes were newly identified by gene-based association study,

including 71‘overlapped’, 76 ‘European-specific’ and 74 ‘Asian-specific’ genes. Among

them, 105 genes had significant differential expressions between RA patients and health

controls at least in one dataset, especially for 20 genes including 11 ‘overlapped’ (ABCF1,

FLOT1, HLA-F, IER3, TUBB, ZKSCAN4, BTN3A3, HSP90AB1, CUTA, BRD2, HLA-DMA),

5 ‘European-specific’ (PHTF1, RPS18, BAK1, TNFRSF14, SUOX) and 4 ‘Asian-specific’

(RNASET2, HFE, BTN2A2, MAPK13) genes whose differential expressions were significant

at least in three datasets. The protein expressions of two selected genes FLOT1 (P value =
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1.70E-02) and HLA-DMA (P value = 4.70E-02) in plasma were significantly different in our

in-house samples.

Conclusion

Our study identified 221 novel RA-associated genes and especially highlighted the impor-

tance of 20 candidate genes on RA. The results addressed ethnic genetic background differ-

ences for RA susceptibility between European and Asian populations and detected a long

list of overlapped or ethnic specific RA genes. The study not only greatly increases our

understanding of genetic susceptibility to RA, but also provides important insights into the

ethno-genetic homogeneity and heterogeneity of RA in both ethnicities.

Introduction

Rheumatoid arthritis (RA) is a complex autoimmune disease characterized by chronic inflam-

mation of multiple joints, leading to progressive destruction to articular cartilage and bone.

RA is strongly tied to the patients’ genetic makeup. The heritability of RA approaches 65% [1].

Extensive efforts including numerous genome-wide association studies (GWASs) so far have

dramatically escalated the rate of discovery of RA-associated variants [2–4]. Recently, a

genome-wide association study meta-analysis in a total of>100,000 subjects of European and

Asian discovered 101 RA risk loci [5]. The SNPs identified to date, however, collectively only

explain a modest proportion of the total heritability. One of possible reasons is that the tradi-

tional SNP-based GWAS used stringent thresholds of significance to control errors for the

multiple testing, which resulted in a large number of SNPs with potential effects being filtered

out and ignored. To help address this issue, several methods of combining P values to guide

gene-level association studies were established [6–8]. Among these methods, GATES, a Simes

test extension, is considerably efficient but faster and more convenient [9]. Indeed, recent

studies have supported the high efficiency of gene-based association analysis in detecting dis-

ease-susceptibility genes [10–14], but currently no gene-based association study was per-

formed to detect more novel genes for RA.

Obvious evidence has supported that substantial genetic heterogeneity exists in underlying

autoimmunity among different ethnic populations. For example, the prevalence of RA is esti-

mated to be 0.5–1.0% worldwide. However, a higher prevalence exists in populations of Euro-

pean ancestry than those of Asian ancestry. Among the genetic predisposition factors

identified to date, HLA-DRB1 gene is the most major determinant of RA genetic predisposi-

tion among multiple ethnic studies. But in more often situations the genes identified contrib-

uted to RA with an ethnic-specific pattern, especially for the non-HLA susceptibility genes, for

example, PTPN22 gene in European populations [15,16] and PADI4 gene in Asian popula-

tions [17,18]. The detected ethnic-specific pattern may come from the inherent genetic specific

differences across different ethnic populations [19,20] and also probably come from sampling

biases or a lack of statistical power in the association analyses. In the era of GWASs, integrating

original research results from multiethnic studies greatly improve the statistical power to

uncover unknown genetic predispositions and clarify their differences in genetic background

among ethnicities [21].

Therefore, based on the publicly available large RA datasets [5], this study performed high

powerful gene-based association analysis to detect unknown susceptibility to RA and
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addressed the ethnic differences in genetic susceptibility to RA between European and Asian

populations.

Materials and Methods

Download of the Available P Values from Previous GWASs

We first downloaded the raw P value of the genome-wide SNP-based GWAS from the publicly

available Web resource http://plaza.umin.ac.jp/~yokada/datasource/software.htm[5]. The sub-

jects in the downloaded data were enrolled from 22 GWASs (14,361 RA cases and 43,923 con-

trols from 18 studies of Europeans, 4,873 RA cases and 17,642 controls from 4 studies of

Asians). Genotyping, data-quality filter, genotype imputation of GWASs data and SNP-based

association analysis were detailed in the original publication [5].

Gene-Based Association Analysis

European-specific and Asian-specific multivariate gene-based association tests were conducted

separately by using extended Simes procedure (GATES) [9].The method can use linkage dis-

equilibrium (LD) information from a known reference population (e.g., HapMap) and there-

fore rapidly combine the P values of SNPs within a gene to produce valid gene-based P values

without relying on raw, individual phenotype and genotype data. The standard GWAS can

thus be considered a GATES preprocessing step. GATES is implemented in a systematic bio-

logical Knowledge-based mining system for Genome-wide Genetic studies (KGG 2.5) and is

freely available at http://statgenpro.psychiatry.hku.hk/limx/kgg/download.php).

Steps involved in the gene-based association test were described as below: 1) Generating

intermediate datasets which integrate original GWAS P values, rsID, position and chromo-

some column for each SNP. A total of 6,559,815 European-specific and 5,351,262 Asian-spe-

cific autosomal SNPs were used for subsequent analysis after excluding the SNPs that could

not be recognized by KGG and that located in sex chromosomes (X or Y); 2) Defining a set of

candidate genes of RA for the knowledge-based weighting analysis. The candidate genes here

refer to genes with suggestive evidences being involved in the development of RA. We selected

the 101 RA risk loci [5] corresponding genes as candidate genes. The defined length of the

extended gene region is from 2-kb upstream to 2-kb downstream of each gene; 3) Conducting

gene-based association test. Here, HapMap linkage disequilibrium (LD) SNP coefficients

(CEU for European-specific analysis and CHB for Asian-specific analysis, downloaded from

HapMap ftp:http://hapmap.ncbi.nlm.nih.gov/downloads/ld_data/2009-04_rel27/) were inte-

grated; 4) Performing Bonferroni correction for multiple testing. According to the number of

unique genes, the significant level was2.25E-06 (P = 0.05/22211) for Europeans and 2.31E-06

(P = 0.05/21609) for Asians.

To find ‘novel’ genes, we firstly excluded those genes that were also detected by the SNP-

based analyses (P = 6.25E-09 for Europeans and 8.33E-09 for Asians). Then, we searched the

RA-associated genes in the Phenotype-Genotype Integrator (PheGenI; http://www.ncbi.nlm.

nih.gov/gap/phegeni/) by controlling P value < 1.0E-09. After excluding the genes previously

identified as RA associated genes in PheGenI, the ‘novel’ genes detected by current gene-based

association study were determined.

Gene Set Enrichment Analysis and Network Pathway Analysis

To explore functional similarity of the novel RA-associated genes, we tested the probability of

these genes clustering into a specific gene ontology (GO) terms and functional pathways that

were defined by the Gene Ontology project and the Kyoto Encyclopedia of Genes and
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Genomes (KEGG) database. Specifically, the Database for Annotation, Visualization and Inte-

grated Discovery (DAVID) integrated database query tools (http://david.d.ncifcrf.gov/) [22]

was used to functionally annotate the significantly associated genes. The significance of enrich-

ment was measured by P value according to the Fisher’s exact test and the Bonferroni correc-

tion was adopted for multiple testing. Protein-protein Interactions (PPI) among the RA-

associated genes identified by gene-based association analyses were investigated by using

STRING version 10.0 [23] that was freely available at http://string.embl.de.

Differential Expression Verification of RA Associated Genes

We performed differential expression analyses for the ‘novel’ RA-associated genes identified by

gene-based association study. First, we downloaded four publicly available expression datasets

from GEO Datasets (www.ncbi.nlm.nih.gov/geo). These data were released in RA-related stud-

ies conducted in Caucasian subjects (GSE55235, GSE55457 and GSE15573) [24,25] and in

Asian subjects (GSE17755) [26], respectively. Details on sample quality control, experiment

procedures and data analyses including normalization of raw data were described in the original

publications. Second, the means of the interested gene expression signals were singled out from

the four datasets. Third, comparisons of mean gene expression signals between RA cases and

controls were conducted separately in the four datasets through Independent-Samples T Test. P

value< 0.05 was considered as significant. If the significant differential expression of one gene

was verified in at least three GEO datasets, it would be determined as a ‘highly verified’ gene.

Next, the secretory genes were selected from the ‘highly verified’ ‘overlapped’ RA-associated

genes for ELISA testing in our in-house sample (plasma of 25 RA patients and 13 age- and sex-

matched health controls) using commercially available ELISA kits (Enzyme-linked Biotechnol-

ogy Co., Ltd., Shanghai, China) according to the manufacturers’ protocols. Comparison of

plasma concentrations between RA patients and controls was performed using a Mann-Whit-

ney test. P value < 0.05 was considered significant. All patients fulfilled the American College

of Rheumatology 1987/2010 revised criteria for diagnosis of RA, the average disease activity

score (DAS28) of whom was 5.71. The study was approved by the Scientific Ethical Committee

of the First Affiliated Hospital, Soochow University and followed the tenets of the Declaration

of Helsinki. Participants in this study all provided their written informed consent.

The flow chart of data analysis is shown below in Fig 1.

Results

Detection of Novel Genes Associated with RA in Asians and Europeans

A total of 21,609 genes (2,562,510 SNPs inside of gene and 2,788,752 SNPs outside of gene)

and 22,211 genes (3,171,781 SNPs inside of gene and 3,388,034 SNPs outside of gene) were

observed in the Asian and European GWAS datasets, respectively. By comparing quantile-

quantile plots (S1 Fig) for gene-based P value, SNP-based P value inside genes and SNP-based

P value outside genes, we observed that the tail of distribution for gene-based P value was the

most significant deviation both in Asian and European subjects, which suggested a relatively

higher power for gene-based association analysis. The Manhattan plots of gene-level P value

across chromosomes in both ethnicities were shown in S2 Fig.

After Bonferroni correction, 326 genes in Europeans and 298 genes in Asians were identi-

fied as RA-associated genes. Among them, 222 unique genes were overlapped in both ethnici-

ties, 104 genes were European-specific and 76 genes were Asian-specific. To find ‘novel’ genes,

we firstly excluded 144 genes that were also detected by SNP-based analyses (P = 6.25E-09 for

Europeans and 8.33E-09 for Asians) (data not shown). By comparing with the RA risk genes

archived in PheGenI with significant SNP-based P value < 1.0E-09, 7 ‘overlapped’ genes, 28

Gene-Based GWAS Study in Rheumatoid Arthritis
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‘European-specific’ genes and 2 ‘Asian-specific’ genes were excluded. Thus the remainders of

221 genes including 71 ‘overlapped’ (S1 Table), 76 ‘European-specific’ (S2 Table) and 74

‘Asian-specific’ (S3 Table) genes were regarded as the newly detected genes for RA by the pres-

ent study. These novel genes were not overlapped with the101 RA risk loci corresponding

genes [5] that were used in defining a set of candidate genes of RA for the knowledge-based

weighting analysis.

We found the ‘overlapped’ and ‘Asian-specific’ RA-associated genes were clustered within

chromosome 6 (6p21, 6p22 and 6q27) while the ‘European-specific’ RA-associated genes were

scattered across chromosome 1, 2, 6, 7, 9, 10,12, 17, 19, 20 and 21.Another interesting finding

was that the histone 1H family genes accounted for more than one half of the ‘Asian-specific’

genes but less than one-tenth in ‘overlapped’ genes and ‘European-specific’ genes.

Differential Expression Analyses of ‘Novel’ Detected RA Associated

Genes

In the peripheral blood mononuclear cells (PBMCs) and synovial tissue of European or Asian

RA patients, t-test showed that a total of 105 genes including the 37 ‘overlapped’ genes, 41

Fig 1. The flow chart of data analysis. European-specific and Asian-specific multivariate gene-based association tests were conducted separately by using

extended Simes procedure (GATES) [9], KGG 2.5, using raw data of 18 European GWASs and 4 Asian GWASs. The 221novel genes were screened from

402gene-based detected genes. Among the 221genes, the differential expression of 105 genes was verified at least in one of four GEO datasets. The

differential expressions of 20 genes were verified at least in three of four GEO datasets. Three genes encoding secretory proteins were selected from the 11

‘highly’ verified ‘overlapped’ genes. GWASs: genome-wide association studies; PheGenI: Phenotype-Genotype Integratorhttp://www.ncbi.nlm.nih.gov/gap/

phegeni/;GEO: gene expression omnibus.

doi:10.1371/journal.pone.0167212.g001
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‘European-specific’ genes and 27 ‘Asian-specific’ genes have differential expression signals

(P value < 0.05) in at least one of the four functional studies (S4 Table). Especially, 20 genes

including 11 ‘overlapped’ (ABCF1, FLOT1, HLA-F, IER3, TUBB, ZKSCAN4,BTN3A3,

HSP90AB1,CUTA, BRD2, HLA-DMA), 5 ‘European-specific’ (PHTF1, RPS18, BAK1,

TNFRSF14, SUOX) and 4 ‘Asian-specific’ (RNASET2, HFE, BTN2A2, MAPK13) genes were dif-

ferentially expressed between RA patients and health controls in three studies or four studies

(Table 1 and S4 Table), and these genes were regarded as ‘highly verified’ RA-associated

genes.

Further, we selected three genes (FLOT1, HLA-DMA and TUBB) that encode secretory pro-

teins from the above 11 ‘highly verified’ ‘overlapped’ genes to test if there are differential

Table 1. The 20 ‘highly verified’ RA-associated genes newly identified by gene-based association study.

Gene

symbol

Group ID Chr Start Stop Map OMIM Description Gene-based P value

European Asian

ABCF1 Overlapped 23 6 30571392 30591531 6p21.33 603429 ATP-binding cassette, sub-family F

(GCN20), member 1

1.18E-29 1.55E-14

BTN3A3* Overlapped 10384 6 26440471 26453414 6p21.3 613595 butyrophilin, subfamily 3, member

A3

5.34E-08 2.67E-10

FLOT1 Overlapped 10211 6 30742909 30727733 6p21.3 606998 flotillin 1 5.89E-20 3.87E-15

HLA-F Overlapped 3134 6 29723339 29727295 6p21.3 143110 major histocompatibility complex,

class I, F

1.03E-31 1.80E-19

IER3 Overlapped 8870 6 30744549 30743198 6p21.3 602996 immediate early response 3 3.51E-17 1.14E-15

TUBB Overlapped 203068 6 30720379 30725421 6p21.33 191130 tubulin, beta class I 3.00E-20 4.54E-08

ZKSCAN4 Overlapped 387032 6 28259251 28244625 6p21 611643 zinc finger with KRAB and SCAN

domains 4

1.71E-12 2.52E-13

BRD2* Overlapped 6046 6 32968659 32981504 6p21.32 601540 bromodomain containing 2 1.53E-133 6.33E-07

HLA-DMA* Overlapped 3108 6 32953121 32948613 6p21.32 142855 major histocompatibility complex,

class II, DM alpha

2.75E-133 1.25E-07

HLA-G Overlapped 3135 6 29826966 29831129 6p22.1 142871 major histocompatibility complex,

class I, G

3.34E-34 1.98E-13

HSP90AB1 Overlapped 3326 6 44246165 44253887 6p21.1 140572 heat shock protein 90 alpha family

class B member 1

1.87E-06 3.90E-12

PHTF1* European-

specific

10745 1 113759537 113697201 1p13 604950 putative homeodomain transcription

factor 1

1.74E-147

RPS18 European-

specific

6222 6 33272074 33276503 6p21.3 180473 ribosomal protein S18 9.49E-37

BAK1 European-

specific

578 6 33580295 33572545 6p21.3 600516 BCL2-antagonist/killer 1 1.78E-10

TNFRSF14* European-

specific

8764 1 2555766 2565621 1p36.32 602746 TNF receptor superfamily member

14

1.98E-07

SUOX European-

specific

6821 12 55996775 56005524 12q13.2 606887 sulfite oxidase 7.10E-07

RNASET2 Asian-specific 8635 6 167000000 167000000 6q27 612944 ribonuclease T2 6.73E-12

HFE Asian-specific 3077 6 26087280 26096116 6p21.3 613609 hemochromatosis 2.92E-10

BTN2A2 Asian-specific 10385 6 26382869 26394873 6p22.1 613591 butyrophilin, subfamily 2, member

A2

3.76E-10

MAPK13 Asian-specific 5603 6 36130483 36144523 6p21.31 602899 mitogen-activated protein kinase 13 1.40E-06

Note: Chr: chromosome; ‘highly verified’: the differential expression was verified at least in three of the four GEO datasets (GSE55235,GSE457,GSE15573

and GSE17755)

* the differential expressions of five genes (BRD2, BTN3A3, HLA-DMA, PHTF1 and TNFRSF14) were all verified in the four GEO datasets.

doi:10.1371/journal.pone.0167212.t001
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expressions in protein level by using ELISA testing in plasma. As we expected, protein levels of

FLOT1 and HLA-DMA were significantly lower in RA patients compared with health con-

trols, but not significant for TUBB (Table 2).

Gene Set Enrichment Analysis and Network Pathway Analysis

For the 221 newly identified RA-associated genes, 23 GO terms and three KEGG pathways

(hsa05322: Systemic lupus erythematosus, hsa05034: Alcoholism and hsa05203: Viral carcino-

genesis) were significantly enriched after Bonferroni correction (S5 and S6 Tables). Most of

the significant GO terms and pathways were related to the histone gene cluster on chromo-

some 6 which were enriched in ‘Asian-specific’ genes. The PPI among the newly identified

RA-associated genes were showed in Fig 2. The most visible gene set is mainly composed by

histone 1H family both in 221 total novel genes and 74 ‘Asian-specific’ genes. Most of the

‘highly verified’ RA-associated genes such as TUBB,HSP90AB1, RPS18, BRD2, PHTF1,

MAPK13, BAK1, HLA-F, IER3, RNASET2, HLA-G, ZKSCAN4 and HFE were showed in the

STRING Network Visualization.

Discussion

In this study we performed the gene-based GWASs association tests using the publicly avail-

able datasets of the largest combining GWASs. The gene-based analysis has the following

advantages: 1) genes, not SNPs, are thought to be the functional units in the genome; 2) genes

rather than SNPs are highly consistent across diverse populations; 3) gene-based analyses

rather than SNP-based analyses in GWASs can alleviate the multiple testing burden and thus

improves the statistical power to detect significant genes; 4) candidate genes identified by

gene-based association study are directly suitable for further pathway and network-based anal-

ysis. When doing SNP-based study, KGG prioritizes SNPs through a knowledge-based weight-

ing method which can maximize the potential power of association tests while controlling false

positive discoveries rate and thus could detect more candidate genes. The gene-based associa-

tion study identified 402 RA-susceptibility genes even after very strict Bonferroni corrections.

More importantly, after excluding the known RA-associated genes, the present study discov-

ered 221 ‘novel’ RA genes. Near half of the 221 novel genes (105 genes) had significant differ-

ential expression signals between RA patients and health controls in the next functional

Table 2. Clinical characteristics and ELISA test results of all patients and controls.

RA patients Controls Mann-Whitney U P value

Clinical characteristics

Number of individuals (female: male) 25 (19:6) 13 (11:2)

Average age (years) (range) 45.2 (21–78) 43.0 (27–67)

DAS28 (range) 5.71 (4.87–7.20) -

Average ESR (mm/h) 40.76 -

CCP antibody positive (%) 40 -

Average CRP (mg/L) (range) 33.27 (1.5–84.7) -

Course of disease (year) 5.32 (0–20) -

ELISA test

FLOT1 (pg/ml) (X ± SD) 333.72 ± 280.39 508.13 ± 301.41 85.0 0.017

HLA-DMA (ng/L) (X ± SD) 4.92 ± 5.64 7.64 ± 6.55 98.0 0.047

TUBB (ng/L) (X ± SD) 567.06 ± 396.37 713.72 ± 409.70 113.0 0.128

doi:10.1371/journal.pone.0167212.t002
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validation tests, among which twenty genes were highly verified. All these evidences

highlighted the relatively higher power for the gene-based association analysis.

An important topic of this study is the ethnogenetic homogeneity and heterogeneity in RA

etiology. We provide evidence of 71 ‘overlapped’ RA risk genes in Asian and European indi-

viduals. Among them, 37 genes have differential expression signals (P value < 0.05) in synovial

tissues or PBMCs of RA patients of Asian and European, and,11 genes (ABCF1, FLOT1,

HLA-F, IER3, TUBB, ZKSCAN4,BTN3A3,HSP90AB1, BRD2,HLA-G and HLA-DMA) are

highly verified in three or four functional studies. These observations support the view that the

genetic risk of RA is shared, in general, among Asians and Europeans [5,27]. We also highlight

apparent differences across ethnic groups. First, there are 74 ‘Asian-specific’ and 76 ‘Euro-

pean-specific’ RA risk genes detected by our gene-based association study, suggesting that eth-

nic variation should be considered in RA etiology. Second, the ‘Asian-specific’ RA risk genes

are clustered together within chromosome 6 while the ‘European-specific’ RA risk genes are

scattered across multiple chromosomes, which means that multiple risk genes scatted in the

genome may contribute RA pathogenesis even if they are not the primary causes, and,

Fig 2. PPI network analysis for the 221‘novel’RA-associated genes. This is the confidence view of protein-

protein interactions produced by STRING for(A) 221 total, (B) 71 overlapped, (C) 76 European-specific and (D)74

Asian-specific gene-based RA-associated genes whose integrated scores are bigger than 0.4. The disconnected

nodes are not shown in the figure. Stronger associations are represented by thicker lines. The most visible gene set

is mainly composed by histone 1H family both in (A) and (D).

doi:10.1371/journal.pone.0167212.g002
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Europeans may have more diverse genetic heterogeneity in RA etiology. Third, more than half

of the newly identified ‘Asian-specific’ genes are histone 1H family genes, which accounts for

less than one-tenth in ‘European-specific’ genes. It is commonly known that histones play a

central role in transcription regulation, DNA repair, DNA replication and chromosomal sta-

bility. However, there are few reports about the relationship of histone family and RA. It is a

novel finding that the histone 1H family is associated with RA in Asian population. Fourth,

although a total of 27 ‘Asian-specific’ and 41 ‘European-specific’ newly identified genes are dif-

ferentially expressed between RA patients and controls, only two ‘European-specific’ genes,

PHTF1 and TNFRSF14, are validated by all the four functional studies, and, only PHTF1

shows an opposite RA/control ratios of mean expression value between Europeans and Asians.

This hints that we might need to consider both the tissue specificity and race specificity when

making functional verification tests.

Another interesting finding is that most of the ‘highly verified’ RA-associated genes might

have potential connections with RA pathogenesis. For instance, BRD2, the ‘European-specific’

RA-associated gene, is directly connected with the histone 1H cluster in the confidence view of

STRING. Although the functional relationship of BRD2 and RA is unclear till now, it is

reported that Bromodomains (BRDs) are protein interaction modules that exclusively recog-

nize acetylation motifs [28] and there is a structural basis for deciphering the histone code by

BRD2 through the binding with a long segment of the histone H4 tail and then presumably

prevent erasure of the histone code during the cell cycle [29]. As for HLA-DMA, it is another

highly verified RA risk gene both in European and Asian populations. It plays a critical role in

catalyzing the release of class II HLA-associated invariant chain-derived peptides from newly

synthesized class II HLA molecules and freeing the peptide binding site for acquisition of anti-

genic peptides [30]. Given that a striking association is found between RA and particular

HLA-DRB1, it seems to be a good candidate allele involved in RA pathogenesis [31]. However,

it is previously reported that the HLA-DM (DMA and DMB) genes do not have any influences

on their own to genetic susceptibility to RA [32,33]. More in-depth work is necessary to deter-

mine whether HLA-DMA is indeed associated with RA. With regard to PHTF1and BTN3A3,

the highly verified ‘European-specific’ and ‘overlapped’ RA risk gene, no direct evidence has

been reported till now that they are involved in RA etiology. PHTF1 (putative homeodomain

transcriptional factor), a putative homeobox gene located at band 1p11-p13 of the human

genome, may play a role in transcription regulation. It encodes a membrane protein abun-

dantly expressed in male germinal cells [34]. The rs6679677 (PHTF1-PTPN22) is reported as a

susceptibility factor for autoimmunity in diabetes type 1 [35,36] while PTPN22 is a well-

known RA risk gene. BTN3A3 (Butyrophilin, Subfamily 3, Member A3), also called CD277,

belongs to the B7 family members and is expressed in various immune cells such as T and NK

cells [37]. BTN3A3may act as one of the inhibitors of co-stimulation for T lymphocyte prim-

ing, similar to CTLA-4 [38]. It also found that SNPs near the butyrophilin genes (BTN3A3/
BTN2A1) are associated with variations in IFN-γ secretion [39]. As for FLOT1 (flotillin-1),

another gene verified by our ELISA test, its important roles in promoting tumorigenesis and

progression of several cancers like non-small cell lung cancer, breast cancer and hepatocellular

carcinoma have been recently reported [40,41]. The function of flotillin 1 in RA development

has not been determined. However it is found that FLOT1 can activate tumor necrosis factor-

alpha (TNF-α) receptor signaling and sustain activation of NF-kappa B in esophageal squa-

mous cell carcinoma cells [42]. Taken together, the above evidence mentioned supports that

the ‘highly verified’ RA-associated genes are worth in-depth study. Further studies are needed

on a number of issues including how histone 1H genes relate to RA, whether the newly identi-

fied candidate genes especially those highly verified genes truly relate to RA etiology, and, if

any, what functional relationships are between these genes and RA.
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Our study has several limitations. The gene-based association analyses of combining

GWASs did not include the SNPs in X/Y chromosomes or that could not be recognized by

KGG, thus the significant genes might not be fully detected. The sample size of our functional

differential expression analyses was relatively small. Since only plasma for the subjects is avail-

able for us and our budget is limited, we could only select three secretory genes from the eleven

‘highly verified ‘‘overlapped’ RA-associated genes for ELISA test and left a long list of candi-

date genes to be tested in protein level.

In conclusion, using the gene-based association research strategy, our study identified a

long list of novel RA associated genes and also addressed their ethno-genetic homogeneity and

heterogeneity in European and Asian populations. Our findings point to the involvement of

novel genes and pathways in the pathogenesis of RA, and provide more insights into ethnic

differences in genetic susceptibility to RA between European and Asian populations.
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