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Abstract: Extrinsic aging of the skin caused by ultraviolet (UV) light or particulate matter is often
manifested by hyperpigmentation due to increased melanogenesis in senescent skin. Ursodeoxycholic
acid (UDCA), which has been commonly used as a health remedy for liver diseases, is known to pos-
sess antioxidant properties. This study was done to investigate whether UDCA inhibits cellular aging
processes in the cells constituting human skin and it reduces melanin synthesis. ROS, intracellular
signals, IL-1α, IL-8, TNF-α, cyclooxygenase (COX)-2, type I collagen, and matrix metalloproteinases
(MMPs) levels were measured in human dermal fibroblasts treated with or without UDCA after UV
exposure. Melanin levels and mechanistic pathways for melanogenesis were investigated. UDCA
decreased ROS, senescence-associated secretory phenotype (SASP), and proinflammatory cytokines
induced by UV treatment. UDCA reduced melanogenesis in normal human melanocytes cocultured
with skin constituent cells. Our results suggest that UDCA could be a comprehensive agent for the
treatment of environmental aging-associated hyperpigmentation disorders.

Keywords: ursodeoxycholic acid; antioxidant; photoaging; environmental aging; particulate matter;
hyperpigmentation; fibroblasts; ultraviolet light

1. Introduction

Skin aging processes can be divided into intrinsic and extrinsic aging processes [1,2].
Intrinsic aging refers to aging caused only by internal factors, also called chronologic aging.
In contrast, extrinsic aging refers to aging caused by external factors, including ultraviolet
(UV) radiation, smoke, and airborne pollutants such as particulate matter (PM). Accelerated
skin aging due to these exogenous factors involve a common molecular event known as
increased oxidative stress [3]. Among other organs, the skin is highly vulnerable to aging
caused by extrinsic factors because it is constantly in direct contact with the environment.

UV-induced aging, also referred to as photoaging, is the main focus of aging studies,
because the negative effects of UV radiation on the skin have been extensively documented
at the molecular level, making the prevention of photoaging possible. In photoaged skin,
a profoundly decreased amount of dermal collagen is observed, causing more severe
wrinkles compared with intrinsic aging. UV-induced cellular senescence of the constituent
cells of the skin, including dermal fibroblasts, has a role in the mechanism of skin photoag-
ing [4,5]. In Asian skin, uneven pigmentation and skin tone darkening are particularly
troublesome aspects of photoaging, since UV radiation increases the synthesis of melanin,
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causing common hyperpigmentation disorders such as melasma, post-inflammatory hy-
perpigmentation, and solar lentigines [6]. In Asians, the first signs of photoaging are
photoaging-associated mottled pigmentation (mottling) and solar lentigines occurring as
early as 20 years of age [7].

Extrinsic aging can also be attributed to multiple factors other than UV radiation,
such as exposure to PM. As the aggravation of air pollution has become a global issue,
the detrimental effects of exposure to airborne pollutants have been actively investigated,
and recent reports have suggested that exposure to PM may result in cutaneous hyperpig-
mentation as well as skin aging [8,9]. Although the exact molecular process implicated in
PM-induced skin aging and hyperpigmentation, an increase in oxidative stress, which is
also important in UV-induced aging, has been suggested to be a key process [10].

Research on the development of skin lightening agents is still a priority of dermato-
logical, cosmeceutical, and nutraceutical investigators in darker-skinned races [11]. Nev-
ertheless, mere depigmenting agents targeting epidermal melanocytic tyrosinase activity
are far from satisfactory, because extrinsic aging-associated hyperpigmentation should be
addressed to reverse the extrinsic aging of the dermal stroma. Senescent human fibroblasts
induce melanogenesis in skin equivalents [12], and dermal fibroblasts have an active role in
the skin pigmentation system by secreting several paracrine factors to activate epidermal
melanocytes [13].

Oral administration of ursodeoxycholic acid (UDCA), a secondary bile acid, has been
commonly used for the prevention and treatment of cholestatic or toxic liver diseases.
UDCA shows anti-oxidant, anti-apoptotic, and anti-inflammatory properties, and it has
been considered safe for several decades [14,15]. The use of UDCA is extending to non-
cholestatic and non-hepatic diseases because of its multiple beneficial health-promoting
mechanisms [16–18]. Thus, we thought that UDCA might ameliorate extrinsic aging-
associated hyperpigmentation. Therefore, we investigated whether UDCA inhibits cellular
aging in fibroblasts and reduces melanin synthesis in a coculture of human melanocytes
with simulated human skin constituent cells.

2. Materials and Methods
2.1. Cell Culture

Normal human epidermal melanocytes (NHMs) (Invitrogen, Carlsbad, CA, USA)
at passage 3–5 were cultured in medium 254 supplemented with human melanocyte
growth supplement (Invitrogen, Carlsbad, CA, USA). B16F10 murine melanoma cells
were maintained in DMEM (Gibco-BRL, Bethesda, MD, USA) containing 10% fetal bovine
serum. Human dermal fibroblasts (HDFs) from adult skin were cultured at passages 2–3
in medium 106 supplemented with low serum growth supplement (Invitrogen, Carlsbad,
CA, USA). In the coculture of NHMs and HDFs, NHMs (1.5 × 105) were seeded in the
inserts of Transwell chambers (Corning, Tewksbury, MA, USA), and HDFs (3 × 105) were
seeded at the bottom of the 6-well plates. After 24 h (h) of starvation, HDFs were irradiated
with UVB 20 mJ/cm2. Then, the insert chambers were moved into the HDF-seeded 6-well
plates, and the cultures were maintained in fibroblast culture medium for 3 days to measure
the melanin content. Coculture of NHMs and normal human keratinocytes (NHKs) was
generated in keratinocyte medium, at a seeding ratio of 1:5 (for melanin assays) or 1:1 (for
melanin assays, Western blotting and intracellular signaling assays). NHMs were seeded
into a 6-well plate at a density of 6 × 104 or 3 × 105 cells per well. On the next day, NHKs
were added to each well at a density of 3 × 105 cells for the coculture. Ursodeoxycholic
acid (UDCA), dissolved in ethanol, was provided by Daewoong Pharmaceutical Company
(Seoul, Korea).

2.2. Measurement of Melanin Content

Melanin contents were measured using the method previously described by Moon,
with a slight modification [19]. In brief, B16F10 cell and NHMs were cultured in 6-well
plates at a density of 1 × 105 and 6 × 105, respectively. Then the cells were dissolved in
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1 N NaOH at 100 ◦C for 30 min (min) and centrifuged at 13,000 rpm for 5 min. The optical
densities of the supernatants were measured at an absorbance of 405 nm using a microplate
reader. The amount of protein in the sample was measured using the Bradford assay
(Bio-Rad, Hercules, CA, USA). Melanin content was normalized to the protein amount.
Kojic acid and β-arbutin (4-hydroxyphenyl-β-D-glucopyranoside) were purchased from
Sigma Aldrich Co. (St. Louis, MI, USA), and used as positive controls at concentrations of
100 µM and 50 µM, respectively. All measurements of the melanin content were performed
on the third day of incubation.

2.3. Intracellular Tyrosinase Activity Assay

The intracellular tyrosinase activity assay was performed using the method described
by Moon [19]. NHMs were cultured in 6-well plates at a density of 6 × 105. The cells were
treated with 50 and 100 µM UDCA for 5 days, and then the cells were lysed in phosphate
buffer (pH 6.8) containing 1% Triton X-100. The protein levels of the lysate were measured.
Following adjustment of the protein concentrations with lysis buffer, the lysate was treated
with 5 mM L-DOPA. After incubation at 37 ◦C, tyrosinase activity was measured with a
microplate reader at 475 nm.

2.4. Exposure to UV Radiation, Particulate Matter (PM), or Growth Factors

The cells were exposed to UVA with a PL-S 9W lamp (Philips, Eindhoven, The Nether-
lands) and a Dermalight (National Biological Corp., Twinsburg, OH, USA) or UVB with
a TL20W/12RS UV lamp (Philips, Eindhoven, The Netherlands). Similar to the previ-
ously published research on UVB exposure, the cells were starved for 24 h and washed
in phosphate-buffered saline (PBS) before exposure to UVA and UVB radiation [20–23].
Non-exposed control samples were maintained in the dark under the same conditions.
Following exposure to UVA or UVB radiation, the cells were grown in culture medium and
treated with UDCA. For the UVA irradiation, a UV Crosslinker (Ultra-Violet Products Ltd.,
Cambridge, UK) was used, with a UV spectrum of 365 nm (UV-A) and 302 nm (UV-B). After
24 h, the medium was removed, the cells were washed with PBS twice, and then the PBS
was removed. We collected and selected local PM with a particle size less than 10 µm (by
reference to the previous publication of Jin et al. [24]) outside the Asan Research Institution
building located in an urban area in Seoul, Korea from January 2019 to March 2019. The
collection site was 200 m away from a two-way street with total of eight lanes. Han River,
which is more than one kilometer wide, is located 500 m away from the collection site. For
treatment with local PM, cells were treated with 100 µg/mL PM for 24 h, then the medium
was removed and cells were washed twice with PBS. The cells were stimulated with stem
cell factor (SCF) (R&D Systems, Minneapolis, MN, USA) or endothelin-1 (ET-1) (Sigma
Aldrich Co., St. Louis, MI, USA) for 3 days.

2.5. 2′,7′-Dichlorofluorescein Diacetate (DCF-DA) Microplate Assay

Intracellular reactive oxygen species (ROS) levels were measured by the DCF-DA
(CELL BIOLABS, Inc., San Diego, CA, USA) assay, according to the manufacturer’s instruc-
tions. Briefly, HDFs were seeded in a 96-well plate at a rate of 5 × 103 cells per well and
treated with 10 or 50 µM UDCA or 50 µM vitamin C (Sigma-Aldrich Co., St. Louis, MI,
USA) for 24 h. NHKs were treated with different combinations of 100 µg/mL PM, 100 µM
UDCA, and 0.5 or 1 mM N-acetylcysteine (Sigma Aldrich Co., St. Louis, MI, USA) for 24 h.
Cells were incubated with 10 µM DCF-DA for 30 min at 37 ◦C in the dark and washed with
PBS twice. Then, the fluorescence was detected at 480 nm excitation and 530 nm emission
using a spectrofluorometer (SpectraMax i3, Molecular Devices, Sunnyvale, CA, USA).

2.6. Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR)

Total cellular RNA was extracted from the cells using a FavorPrepTM Total RNA
Purification Mini Kit according to the manufacturer’s instructions (Favorgen, Ping-Tung,
Taiwan). Following isolation, the quantity and quality of the RNA were determined using a
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NanoDrop® ND-1000 Spectrophotometer (ND-1000, NanoDrop Technologies, Wilmington,
DE, USA). Single-stranded cDNA was synthesized from 1 µg of total RNA using a Revert
Aid First Strand cDNA Synthesis Kit according to the manufacturer’s instructions (Thermo
Scientific, Rockford, IL, USA). qRT-PCR was performed using a LightCycler® 480II machine
coupled with SYBR Green chemistry (Roche Applied Science, Penzberg, Germany). In
terms of qRT-PCR settings, initial denaturation was performed at 95 ◦C for 5 min, followed
by amplification at 95 ◦C for 10 s, 60 ◦C for 10 s, and 72 ◦C for 10 s for 45 cycles. The cDNA
obtained was amplified with the primers listed in Table 1.

Table 1. List of primers used for quantitative Real-Time Polymerase Chain Reaction (qRT-PCR)

Name Accession Number Forward (5′ to 3′) Reverse (5′ to 3′)

IL-1α NM_000575.5 AGGGCGTCATTCAGGATGAA CGCCAATGACTCAGAGGAAGA

IL-8 NM_000584.4 AACCCTCTGCACCCAGTTTTC ACTGAGAGTGATTGAGAGTGGAC

TNF-α NM_000594.4 AGCTGCCCCTCAGCTTGAG CCCAGGGACCTCTCTCTAATCA

RPLP0 NM_001002.4 GGCGACCTGGAAGTCCAACT CCATCAGCACCACAGCCTTC

MITF NM_000248.4 TCTACCGTCTCTCACTGGATTGG GCTTTACCTGCTGCCGTTGG

Tyrosinase NM_000372.5 GGCCTCAATTTCCCTTCACA CAGAGCACTGGCAGGTCCTAT

MMP-1 NM_001145938.2 CTCTGGAGTAATGTCACACCTCT TGTTGGTCCACCTTTCATCTTC

MMP-3 NM_002422.5 CGGTTCCGCCTGTCTCAAG CGCCAAAAGTGCCTGTCTT

2.7. Western Blotting

Cells were lysed in protein lysis buffer (Intron Biotechnology, Seongnam, Korea) and
centrifuged at 13,000 rpm for 10 min. Protein concentrations were determined using a
bicinchoninic acid protein assay kit. Next, 20 µg of protein per lane was separated by SDS-
polyacrylamide gel electrophoresis and blotted onto nitrocellulose membranes. Blots were
incubated with the appropriate primary antibodies at a dilution of 1:1000 and then further
incubated with horseradish peroxidase-conjugated secondary antibodies. Bound antibodies
were detected using an enhanced chemiluminescence kit (Pierce Biotechnology, Rockford,
IL, USA). Image analysis was performed using Image J software (https://imagej.nih.gov/ij/
accessed on 28 December 2020) to determine the relative band densities. Antibodies specific
for type I collagen and tyrosinase were purchased from Santa Cruz Biotechnology, Inc.
(Santa Cruz, CA, USA), and antibodies specific for total extracellular signal-regulated kinase
(ERK), phospho-ERK, total p38, phospho-p38, total c-Jun N-terminal kinase (JNK), phospho-
JNK, and phospho-c-Jun were purchased from Cell Signaling Technology (Danvers, MA,
USA). Antibodies specific for cyclooxygenase-2 (COX-2) were purchased from Abcam
(Cambridge, UK). Tyrosinase and microphthalmia-associated transcription factor (MITF)
were purchased from Thermo Fisher Scientific (Cheshire, UK), and actin was purchased
from Sigma-Aldrich Co. (St. Louis, MO, USA).

2.8. MTT Assay

Cell viability was measured using MTT assays. All cells were treated with 10–200 µM
of UDCA for 3 days. MTT solution (2.5 µg/mL) was added to the culture medium and
incubated for 4 h. MTT staining was extracted with DMSO. Absorbance was determined
using a microplate reader (Molecular Devices, Sunnyvale, CA, USA) at 570 nm.

2.9. Statistical Analysis

The statistical significance of the differences between groups was assessed by ANOVA,
followed by Student’s t-test. P < 0.05 and P < 0.01 were considered statistically significant.

https://imagej.nih.gov/ij/
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3. Results
3.1. Antioxidant Property of UDCA
3.1.1. UDCA Decreases ROS Levels Induced by UVA and UVB in HDFs

Low doses of both UVA and UVB increased the ROS levels in HDFs (Figure 1A,B).
DCF fluorescence in human dermal fibroblasts (HDFs) treated with vitamin C as a positive
control was decreased compared to that of the untreated control. Increased DCF fluores-
cence after UVA exposure decreased in the HDFs treated with 10 µM UDCA compared
to the untreated control (Figure 1A). Increased DCF fluorescence after UVB exposure also
decreased in the HDFs treated with 10 µM UDCA compared to the untreated control
(Figure 1B).

3.1.2. UDCA Attenuates the Increased ROS Level Following Exposure to PM in NHKs

In the DCF assay using normal human keratinocytes (NHKs), a notable increase
in ROS level was observed 24 h after exposure to local PM (Figure 1C). However, this
increase in intracellular oxidative stress was effectively attenuated by both pretreatment
and simultaneous treatment with 100 µM UDCA. The degree of ROS downregulation did
not differ significantly between pretreatment and simultaneous treatment.

3.2. Anti-Inflammatory Property of UDCA
3.2.1. UDCA Treatment Had an Anti-Inflammatory Effect against the Inflammatory
Cellular Microenvironment Resulting from Exposure to UV or PM

The inhibitory effect of UDCA against inflammatory cytokines in HDFs was deter-
mined using RT-PCR. After treatment with UDCA (5, 50 µM) and exposure to 2 J/cm2 of
UVA for 6 h, proinflammatory cytokine levels were measured. UDCA reduced the amounts
of interleukin (IL)-8 and tumor necrosis factor-α (TNF-α) increased by UVA (Figure 2A).
Proinflammatory cytokine levels of HDFs exposed to UVB 20 mJ/cm2 and treated with
UDCA for 3 h were measured. UDCA reduced IL-1α, IL-8, and TNF-α RNA expression
increased significantly in response to UVB (Figure 2B). Then the anti-inflammatory effect
of UDCA was tested on NHKs. As shown in Figure 2C, treatment with 50 µM UDCA
reduced the level of IL-1α, which was upregulated following the exposure to low-dose
UVB. However, UVB-induced elevations in IL-8 and TNF-α levels did not drop significantly
after treatment with UDCA. Next, the effect of UDCA treatment on the expression of proin-
flammatory cytokines in a coculture of NHKs and NHMs following exposure to local PM
was assessed. As shown in Figure 2D, the expression of all three tested proinflammatory
cytokines were elevated after exposure to PM. Treatment with 100 µM UDCA resulted in
successful mitigation of this increase in proinflammatory cytokine expression.

3.2.2. UDCA Reduces the Expression of Proteins Associated with Environmental Aging
and Inflammation in HDFs While Restoring Type I Collagen Expression

The expression levels of phosphorylated proteins associated with environmental
aging and inflammation in HDFs were measured by Western blot analysis after treatment
with 50 µM UDCA for 1 h and exposure to 2 J/cm2 UVA and 20 mJ/cm2 UVB for 1 h.
UDCA treatment reduced the expression of phospho-ERK, phospho-JNK, phospho-c-Jun,
and phospho-p38, which were increased by both UVA (Figure 3A) and UVB (Figure 3B)
irradiation. The densitometric values were normalized to the expression of their total forms
or β-actin. To examine the effect of UDCA on type I collagen expression and COX-2 altered
by UVA, HDFs were treated with UDCA for 24 h after UVA irradiation. UDCA increased
the expression of type I collagen reduced by UVA irradiation and decreased COX-2 induced
by UVA irradiation (Figure 3C). We further tested the effect of UDCA on the expression of
MMP-1 and MMP-3 that were increased by UVA irradiation using RT-PCR. The expression
levels of MMP-1 and MMP-3 were evaluated 10 h and 24 h after UVA irradiation, which
were their peak expression times. UDCA treatment reduced the increase in MMP-1 and
MMP-3 expression induced by UVA (Figure 3D).
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Figure 1. The effect of ursodeoxycholic acid (UDCA) on intracellular oxidative stress. (A) Exposure of human dermal
fibroblasts (HDFs) to 250 mJ/cm2 of UVA resulted in a significant increase in intracellular oxidative stress, which was
attenuated by treatment with 10 µM UDCA. (B) Similarly, exposure of HDFs to 20 mJ/cm2 of UVB resulted in a significant
increase in intracellular oxidative stress, which was effectively mitigated by treatment with 10 µM UDCA. Treatment with
50 µM of vitamin C was used as a positive control. (C) The effect of UDCA treatment on the intracellular oxidative stress of
normal human keratinocytes following exposure to particular matter (PM). Three hours after treatment with 100 µg/mL of
local PM10, NHKs were either pretreated or treated simultaneously with UDCA. Both modes of UDCA treatment resulted
in a significant reduction of oxidative stress, measured by DCF fluorescence. Treatment with N-acetylcysteine (NAC) was
used as a positive control. * p < 0.05 and ** p < 0.01 compared with UV-exposed or PM-treated control, †† p < 0.01 compared
to control (con).
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Figure 2. Anti-inflammatory effect of UDCA treatment. HDFs were exposed to (A) UVA and (B) UVB, which both induced
incremental changes in mRNA expression of proinflammatory cytokines, including IL-1a, IL-8, and TNF-α. Downregulation
of inflammatory cytokines was more prominent when HDFs were treated with 50 µM UDCA as compared with 10 µM
UDCA. (C) Proinflammatory cytokine expression of normal human keratinocytes (NHKs) was also increased following
exposure to UVB. However, IL-8 and TNF-α were not decreased by treatment with 50 µM UDCA. (D) In a coculture
consisting of NHKs and normal human melanocytes (NHMs), treatment with 100 µM UDCA effectively downregulated the
elevated mRNA expression levels of proinflammatory cytokines following exposure to local PM10. * p < 0.05 and ** p < 0.01
compared with UV-exposed or PM-treated control. † p < 0.05 and †† p < 0.01 compared with the null control (con).
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Figure 3. Effect of UDCA treatment on the expression of phosphorylated proteins related to environmental aging-associated
inflammation following exposure to (A) UVA and (B) UVB in HDFs. For both spectrums of UV radiation, treatment with
50 µM UDCA resulted in decreased expression of p-ERK, p-JNK, p-c-Jun, and p-p-38. (C) Changes in expression levels of
type 1 collagen and COX-2, as a senescence-associated secretory phenotype, after exposure to UVA, and the effect of UDCA
treatment. Treatment with 50 µM UDCA increased the expression of type I collagen, while it decreased the expression of
COX-2. (D) Inhibitory effect of UDCA on MMP-1 and MMP-3 expression induced by UVA in HDFs. * p < 0.05 and ** p <
0.01 compared with the UV-exposed control. †† p < 0.01 compared with the null control (con).

3.3. Anti-Melanogenic Property of UDCA
3.3.1. UDCA Decreases Melanogenesis in Human Melanocytes

As the first step to determining the anti-melanogenic effects of UDCA, we observed a
significant decrease in melanin content when normal human melanocytes (NHMs) were
treated with UDCA (Figure 4A). Next, an MTT assay was carried out to demonstrate
that the cell viability of NHMs was not affected by UDCA treatment (Figure 4B). UDCA
reduced the melanin content in a dose-dependent manner (Figure 4B). Knowing that UDCA
is not toxic to NHMs, we examined the changes in tyrosinase activity induced by UDCA
treatment. As shown in Figure 4C, treatment with 50 and 100 µM both led to a decreased
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tyrosinase activity. Then the effect of UDCA treatment on the mRNA expression as well
as protein levels of MITF and tyrosinase were tested using qRT-PCR and Western blot
analysis, respectively. As demonstrated in Figure 4D,E, both mRNA expression and protein
levels of MITF and tyrosinase were downregulated by 100 µM UDCA. Finally, changes in
the expression of melanogenesis-related signaling proteins in NHMs induced by UDCA
treatment were assessed by Western blotting. Treatment with UDCA resulted in increased
levels of p-AKT, p-GSK3β, and p-β-catenin, and decreased levels of p-ERK and p-p-38
(Figure 4F).

3.3.2. UDCA Decreases the Melanin Content in B16F10 Cells and HDF-NHM Coculture
under Stimulated Conditions

First, MTT assays were performed to demonstrate that UDCA treatment does not
impact B16F10 cell viability. As shown in Figure 5A, treatment with 10 to 100 µM UDCA
did not affect B16F10 cell proliferation. Then, in order to measure the effects of UDCA
on extrinsic aging-associated hyperpigmentation, B16F10 melanoma cells were treated
with UDCA in the presence of melanogenic stimulation by α-MSH. As demonstrated
in Figure 5B, UDCA could effectively reduce the melanin content induced by α-MSH.
The NHMs were cocultured with HDFs that were exposed to UVB 20 mJ/cm2. The
melanin content of the UV-exposed coculture was higher compared with the non-irradiated
control. UDCA successfully reduced the melanin content in the coculture regardless of UV
exposure (Figure 5C). Then we checked for the effect of UDCA on the mRNA expression
of stimulatory molecules of melanin synthesis. As we have already established that UVB
treatment of NHK-NHM coculture stimulates the production of SCF and ET-1 based
on our previous studies, we have tested whether UDCA treatment can downregulate
their expression [19]. As expected, treatment with UDCA at a concentration of 50 µM
decreased the mRNA levels of both SCF and ET-1 in UVB-irradiated NHKs (Figure 5D,E,
respectively). NHMs were cocultured with NHKs under stimulation with 10 ng/mL of
SCM and 0.1 nM of ET-1. As shown in Figure 5F, treatment with both 50 and 100 µM UDCA
could significantly lower the melanin content of the coculture. In particular, treatment with
100 µM UDCA reduced the melanin content to a degree equivalent to treatment with a
well-known inhibitor of melanogenesis, arbutin.

3.3.3. UDCA Attenuates the Increase in Melanin Content Induced by Treatment with PM
in NHK-NHM Coculture

Finally, we investigated whether UDCA could mitigate the increase in melanin content
stimulated by exposure to PM. A significant increase in melanin content was observed in
NHK-NHM coculture when exposed to 100 µg/mL of local PM. However, treatment with
UDCA could effectively reduce this increase in melanin content (Figure 5G). Treatment with
local PM resulted in a notable increase in expression levels of both MITF and tyrosinase,
but simultaneous treatment with UDCA significantly reduced the mRNA expression levels
of both genes (Figure 5H).



Antioxidants 2021, 10, 267 10 of 15
Antioxidants 2021, 10, x FOR PEER REVIEW 11 of 17 
 

 

Figure 4. The effect of UDCA on normal human melanocytes (NHMs). (A) Treatment with 50 and 

100 μM UDCA resulted in decreased melanin content in NHMs. (B) NHMs were treated with dif-

ferent concentrations of UDCA from 10 μM to 200 μM. Cell proliferation was not affected by the 

Figure 4. The effect of UDCA on normal human melanocytes (NHMs). (A) Treatment with 50 and 100 µM UDCA resulted in
decreased melanin content in NHMs. (B) NHMs were treated with different concentrations of UDCA from 10 µM to 200 µM.
Cell proliferation was not affected by the tested concentrations of UDCA. (C) Treatment with 50 and 100 µM resulted in
decreased tyrosinase activity in NHMs. (D) Expression of MITF and tyrosinase in NHMs. Treatment with 100 µM UDCA
effectively lowered the mRNA expression levels of both MITF and tyrosinase starting from 3 h after treatment. By 12 h
after treatment, recovery of mRNA expression of MITF was observed whereas that of tyrosinase suppressed until 24 h
after treatment. (E) The results of Western blotting show decreased levels of both MITF and tyrosinase following UDCA
treatment at 24 h. (F) Effect of UDCA treatment on the expression of melanogenesis-related signaling proteins in NHMs.
Treatment with 100 µM UDCA resulted in increased levels of p-AKT, p-GSK3β, and p-β-catenin, and decreased levels of
p-ERK and p-p-38. ** p < 0.01 compared with the non-UDCA-treated control.
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Figure 5. The effect of UDCA treatment on B16F10 cells and coculture. (A) B16F10 cells were. treated with different
concentrations of UDCA. No change in cell proliferation was observed. (B) Treatment of B16F10 cells with UDCA could
effectively reduce the melanin content, which was induced by α-MSH. Arbutin was used as a positive control. (C) Treatment
with UDCA resulted in a significant decrease in melanin content both in the presence and absence of UVB exposure in
NHM-HDF coculture. Treatment with 50 µM UDCA downregulated the mRNA expression of both (D) SCF and (E) ET-1 in
NHKs following exposure to UVB. (F) Treatment with UDCA resulted in a significant decrease in melanin content both
in the presence and absence of UVB exposure in NHM-HDF coculture. (G) Exposure of HNK-NHM coculture to local
PM significantly increased the melanin content. However, treatment with UDCA effectively reduced the melanin content.
Kojic acid was used as a positive control. (H) Exposure of HNK-NHM coculture to local PM led to an increased expression
of MITF and tyrosinase, which was significantly attenuated by treatment with 100 µM of UDCA. * p < 0.05, ** p < 0.01
compared with the counterpart not treated with UDCA, †† p < 0.01 compared with the control (con), ## p < 0.01.
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4. Discussion

Extrinsic aging is characterized by the degradation of collagen fibers, which causes
skin wrinkling and increased melanocytic activity leading to hyperpigmentation [4,5]. A
number of environmental factors have been associated with extrinsic skin aging. Among
many others, ultraviolet (UV) light has been studied the most extensively, while the
detrimental effects of airborne pollutants such as particulate matter (PM) have recently
been highlighted. Extrinsic skin aging due to UV light is also known as photoaging, and
photoaging-associated hyperpigmentation disorders are very common and distressing in
Asians [6,7,11]. As a result, supported by solid documentation on the molecular processes
implicated in cutaneous changes induced by UV light, prevention of photoaging has long
been a major subject of study in Eastern countries.

In addition to UV light, recent research has suggested a link between airborne PM
exposure and skin aging [25]. It has been previously demonstrated that PM can penetrate
the skin barrier and initiate a series of inflammatory reactions [24,26]. This inflamma-
tory cascade induced by exposure to PM was found to be coupled with an increase in
intracellular oxidative stress [26]. Furthermore, induction of apoptosis was demonstrated
in a three-dimensional skin culture model [26], and clinically observed aggravation of
cutaneous hyperpigmentation [27] has been reported.

To date, various substances, including natural compounds, have been identified to be
efficacious in the prevention of skin aging, but the demand for additional agents able to
protect the skin from extrinsic aging is continuously increasing as a combination approach
would be far more effective [28–31]. UDCA, a natural, hydrophilic, nontoxic bile acid,
could be a highly beneficial ingredient in skin and beauty products given that natural
biomaterials are often considered appealing in terms of health and safety. In the skin,
UDCA was reported to improve psoriasis, possibly by suppressing phospholipase A2
activity [16]. Recently, in mice, the beneficial effects of UDCA on age-related adiposity by
reducing peroxisome proliferator-activated receptor-γ and inflammatory cytokines, such
as TNF-α, IL-1, and CCL-2, were reported [17]. Most importantly, UDCA is thought to
possess an antioxidant property [32]. Taken together, we hypothesized that UDCA may
protect the skin cells exposed to UV light and PM by reducing the oxidative stress.

Our results indicate that UDCA prevents cellular events in human skin caused by
the exposure to UV light or PM via the reduction of both intracellular oxidative stress
and cutaneous inflammation. It has been thoroughly demonstrated that exposure to UV
radiation produces an inflammatory response in the skin [33]. UV activates NF-κB in
human skin fibroblasts and thus induces both the expression and release of proinflam-
matory cytokines, such as IL-1α and TNF-α, subsequently leading to the production of
MMPs [34,35]. Moreover, UV irradiation is strongly associated with increased intracellular
ROS production in the skin, which induces cellular senescence [1]. Cellular senescence is a
crucial aging mechanism, and senescent cells exhibit paracrine activities on neighboring
cells and tissues through a senescence-associated secretory phenotype (SASP), including
proinflammatory factors [36,37]. Also, exposure to PM is known to increase ROS in the skin
and elicit an inflammatory reaction in a similar fashion to UV light [24,26]. In the present
study, we have demonstrated that UDCA attenuates UV- and PM-induced increases in
both intracellular ROS and SASP factors. In particular, downregulation of IL-1α, TNF-α,
IL-8, and AP-1 complex (c-Fos and c-Jun), which is a well-known transcription factor
targeting the MMP-1 promoter region, was observed [37]. UDCA could also effectively
downregulate SASPs such as COX2, MMP-1, and MMP-3, which were induced by UVA
irradiation, while it restored procollagen I, which was reduced by UVA. Moreover, the
expression of MAP kinases induced by UV was downmodulated by UDCA. These findings
indicate that UDCA can mitigate both oxidative stress and cutaneous inflammation, which
are the two main mechanisms of extrinsic aging.

We also showed that UDCA decreases melanin content in normal human melanocytes
(NHMs). It has been previously reported that three-dimensional cocultures of melanocytes
with photoaged human dermal fibroblasts (HDFs) results in increased melanogenesis [12].
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In fact, there exists strong evidence that fibroblasts play critical roles in the development
or modulation of skin hyperpigmentation disorders [13,38–43], and that UVB-irradiated
HDFs directly promote melanin synthesis in melanocytes [13,41]. Thus, we tested whether
UDCA inhibits melanogenesis in NHMs cocultured with UVB-irradiated HDFs. As ex-
pected, UDCA decreased the melanin content more profoundly in the coculture condition
compared to the monoculture of NHMs, suggesting that UDCA could mitigate extrin-
sic aging-associated disordered hyperpigmentation to a higher extent. These findings
are also supported by the observation that UV-induced release of paracrine melanogenic
cytokines by dermal fibroblasts and keratinocytes was attenuated by UDCA treatment.
Taken together, UDCA could inhibit both intrinsic melanin synthesis in melanocytes and
environmentally stimulated melanogenesis, in which fibroblasts and keratinocytes act as
mediators of cell signaling.

Although we have demonstrated that UDCA prevents hyperpigmentation associated
with extrinsic aging, there inevitably are certain obstacles to overcome before it can actually
be used for dermatologic purposes. First, the route of UDCA administration should be
established. It has to be determined whether UDCA should be consumed as a functional
food or developed as a topical formulation or cosmetic ingredient. Because it is still
unknown how much UDCA should be taken orally so that the UDCA concentration can
reach a therapeutic dose in the skin, and to minimize the potential for systemic side effects,
topical application of UDCA would be preferred. Accordingly, a topical formulation of
UDCA is currently under development for use in the market. Nevertheless, future studies
are warranted to confirm the clinical efficacy of UDCA in the prevention of extrinsic
skin aging and hyperpigmentation, and to find the right dosage in order to achieve the
desired effects.

5. Conclusions

UDCA can effectively attenuate increased intracellular oxidative stress and melanin
synthesis by exposure to UV light and PM. Given the intractable clinical course of cutaneous
hyperpigmentation caused by environmental factors in Asians, both topical and systemic
administration of UDCA could potentially be a safe therapeutic dosing approach for this
agent, which could also have other health benefits due to its antioxidant properties.
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