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Abstract

The development and continuous optimization of newborn screening (NBS)

programs remains an important and challenging task due to the low preva-

lence of screened diseases and high sensitivity requirements for screening

methods. Recently, different machine learning (ML) methods have been

applied to support NBS. However, most studies only focus on single diseases or

specific ML techniques making it difficult to draw conclusions on which

methods are best to implement. Therefore, we performed a systematic litera-

ture review of peer-reviewed publications on ML-based NBS methods. Overall,

125 related papers, published in the past two decades, were collected for the

study, and 17 met the inclusion criteria. We analyzed the opportunities and

challenges of ML methods for NBS including data preprocessing, classification

models and pattern recognition methods based on their underlying

approaches, data requirements, interpretability on a modular level, and perfor-

mance. In general, ML methods have the potential to reduce the false positive

rate and identify so far unknown metabolic patterns within NBS data. Our

analysis revealed, that, among the presented, logistic regression analysis and

support vector machines seem to be valuable candidates for NBS. However,

due to the variety of diseases and methods, a general recommendation for a

single method in NBS is not possible. Instead, these methods should be further

investigated and compared to other approaches in comprehensive studies as

they show promising results in NBS applications.
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1 | INTRODUCTION

For more than 50 years, newborn screening (NBS) pro-
grams aim at early, ideally presymptomatic, identification

of treatable rare diseases with significant health burden
to reduce morbidity and mortality. With the introduction
of tandem mass spectrometry (MS/MS)1,2 and recently
genetic methods, NBS panels expanded worldwide3,4 and
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include many inherited metabolic diseases as well as
endocrine, hematological, immune and neurological disor-
ders, and cystic fibrosis. NBS programs refer to the screen-
ing principles of Wilson and Jungner5 which demand a
very high sensitivity (ideally 100%) to avoid false negatives
and very high specificity (at least 99.5%) to keep the num-
ber of false positives low. This is especially challenging in
NBS because birth prevalences of the target diseases are
very low (1:10 000–<1:1 000 000).6 Traditional cut-off-
based approaches in NBS integrate only a fraction of the
available information and focus on the primary variables
of the metabolic pathway affected in a particular metabolic
disease. Here, laboratory physicians are needed to evaluate
these findings and workload directly depends on the num-
ber of false positives. Moreover, cut-off-based methods
cannot deal with complex relationships among metabo-
lites.7 To improve the diagnostic specificity of NBS pro-
grams an increasing number of second and multiple
tier strategies have been developed combining different
biochemical8,9 as well as biochemical and genetic
methods.10,11 In contrast to these analytical improvements,
mathematical-based methods are still rarely used to exploit
the complete information of NBS test results to improve
specificity and positive prediction of NBS. Thanks to
advances in data mining and machine learning (ML) as
well as the computing landscape in recent years, new
opportunities have been created to examine large datasets
with high dimensional feature spaces by implementing a
ML pipeline for NBS (Figure 1). ML-based NBS aims at
building a classification model, which is part of the essen-
tial classification models module to predict the outcome of
unknown test data and reduce the number of false positive
classifications. The high data imbalance caused by the low
birth prevalences of the target diseases makes this task
very challenging. Thus, often data preprocessing methods
such as data sampling, feature construction, and feature
selection are applied before classification.12 Furthermore,
pattern recognition techniques help to detect hidden

metabolic interactions within the data.13 Hence, the goal
of this systematic literature review is to present and evalu-
ate current approaches of ML-based NBS, to find an over-
all consensus on its applicability, and to provide future
research directions.

2 | METHODS

This study was conducted and reported according to the
preferred reporting items for systematic reviews and
meta-analyses (PRISMA) guidelines (www.prisma-
statement.org).

2.1 | Research questions

The primary outcome of this systematic literature review
was to assess the applicability, advantages and limitations
of ML-based NBS. Therefore, we analyzed published
studies according to the following questions:

• Which diseases were investigated in NBS?
• Which data preprocessing methods have been applied

in NBS?
• Which ML classification algorithms have been

applied in NBS and how did they perform?

Machine learning pipeline for newborn screening 

Data Preprocessing

Data sampling

Feature selection

Feature construction

Classification model

Interpretable and  

non-interpretable

classification methods

Performance optimization

Pattern recognition 

Feature importance

Biomarker discovery 

Optional modules 

Essential modules 

FIGURE 1 Illustration of machine learning pipeline in NBS. The classification model is the essential part of the ML pipeline in NBS including

the interpretable and noninterpretable classification methods and their performance optimization. Data preprocessing is an optional module applied

before the classification model. It can include data sampling, feature selection and feature construction methods. Pattern recognition is applied after

the classification method evaluating feature importance for biomarker discovery. ML, machine learning; NBS, newborn screening

SYNOPSIS

Machine learning can help to further improve
newborn screening programs by reducing the
false positive rate and hereby increasing specific-
ity and the positive predictive value as well as
identifying so far unknown metabolic patterns
within the data.
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• How were pattern recognition techniques implemented
in NBS?

2.2 | Search strategy

A two-stage search procedure was conducted to compile
relevant papers. In the initial phase, five electronic data-
bases (ScienceDirect, IEEE, ACM, Sage, and PubMed)
were searched in May 2021 and October 2021 to collect
literature. The search keywords were Newborn Screen-
ing AND (Machine Learning OR Deep Learning OR
Data Mining). In the second phase, cross-references
from eligible literature of the first phase were searched
via Google Scholar and expert advice was added to com-
pile the final literature collection.

2.3 | Inclusion and exclusion criteria for
study selection

All included studies applied an ML classification method in
advanced NBS and were published between January 2000
and September 2021. Studies were excluded if they do not
concern NBS, do not use data obtained from MS/MS, or do
not apply ML algorithms for disease classification.

2.4 | Study eligibility

Duplicates were removed before assessment. First, titles
and abstracts were screened and studies not relating to
the research question were excluded. Then, full-text arti-
cles were reviewed for inclusion. In case of exclusion, the
reason was reported.

2.5 | Data extraction and synthesis

Data from all studies, including information on authors,
data preprocessing, classification models, performance, and
pattern recognition were extracted and summarized in
Table 1. For the data analysis we consider key indicators
based on their underlying approaches, data requirements,
interpretability on a modular level, and performance. The
classification performance was evaluated based on the sen-
sitivity, specificity, and positive predictive value (PPV) as
summarized in Table 2. These were compared to reference
values and other ML methods in comparative studies. For
studies lacking sensitivity or specificity values, we calculated
these based on the published contingency tables. The stud-
ies were insufficient for a meta-analysis, hence, the findings
were synthesized into an overall narrative.

3 | RESULTS

Detailed search results of the literature identification pro-
cess based on the predefined inclusion and exclusion
criteria are presented in the PRISMA flow diagram in
Figure 2. From the 99 unique publications, we identified
14 as highly relevant. The main reasons for dismissing
papers were that they did not apply ML classification
methods,28 investigated other diseases from NBS pro-
grams such as hearing disabilities29 or did not use data
obtained from MS/MS.30 Publications from different
screening centers in Europe,12–16,19 Asia,7,17,18,20,21,23,24,26

and North America22,25,27 are reviewed in this work.

3.1 | Diversity of NBS disease panels

Studies included in the systematic literature review
focused on NBS programs for early detection of inherited
metabolic diseases and endocrine disorders in newborns,
which endanger the physical and mental development of
infected children to an extent. Some studies also included
biochemical variations nowadays known as nondiseases
benign conditions (i.e. short-chain acyl-CoA dehydroge-
nase deficiency, 3-methylcrotonyl-CoA carboxylase defi-
ciency). As they were part of the disease panels, they
were not excluded from the analysis, but marked as non-
diseases in Table 1. The number of diseases included in
NBS programs varies over time and depends on the
screening center location. In total, 21 diseases were
examined in the reviewed studies, whereby only nine
were considered in more than one publication (Table 1).
From these, phenylketonuria (PKU), methylmalonic
aciduria, and medium-chain acyl-CoA dehydrogenase
deficiency were the most frequently examined (Table 1).

3.2 | Applied data preprocessing
methods

Data preprocessing is usually the first step in the ML
pipeline (Figure 1) and deals with preparing and trans-
forming the data into a suitable form for classification
algorithms. It includes data imbalance, feature construc-
tion, and feature selection methods in NBS (Table 1). All
of the evaluated studies applied at least one preprocessing
method.

3.2.1 | Data imbalance

Common methods to overcome data imbalance are sam-
pling methods, which either increase (oversampling) or
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decrease (undersampling) the data31 (Figure 3). In NBS,
informed sampling is applied to include special subsets
of healthy patients. The inclusion is mainly based on
clinical criteria such as healthy patients with elevated
primary markers,12 particularly removing samples close
to the decision boundary,7 one-sided selection,7 or
healthy patients with varying birth weight and gesta-
tional age.27 Other inclusion criteria are based on
Tomek links and edited nearest neighbors.7 Random

sampling is applied to change the data imbalance to
ratios, for instance, between 1:418 and 1:2514 by ran-
domly excluding data points. In contrast, oversampling
methods are applied rarely and create synthetic data
samples from the minority class by applying randomness
or cluster-based methods such as synthetic minority
oversampling technique (SMOTE)7 and Borderline-
SMOTE.7 Furthermore, spiked blood samples which
are designed to resemble sick blood samples are added

TABLE 1 Summary of all reviewed studies on applied data imbalance, feature construction, feature selection and ML classification

methods

Author Disease Data imbalance
Feature
construction Feature selection

ML
classification

Baumgartner et al.13 PKU Random sampling Information gain DT, LRA

Baumgartner et al.14 MCADD, PKU Random sampling Information gain, relief-
based

LDA, DT, KNN,
LRA, NN, SVM

Baumgartner et al.15 3-MCCD*, MCADD, PKU Random sampling Diagnostic flag DT, LRA

Baumgartner et al.16 3-MCCD*, PKU, GA1,
MMA, PA, MCADD,
LCHADD

Random sampling Discriminatory threshold KNN, LRA, Naive
Bayes, NN,
SVM

Ho et al.12 MCADD Informed sampling Arithmetic ratio χ2 Rule learner

Hsieh et al.17 MMA Pearson coefficient SVM

Hsieh et al.18 MMA Random sampling Pearson coefficient SVM

Van den Bulcke et al.19 MCADD Oversampling Arithmetic ratio Variable set optimization DT, LRA, Ridge-
LRA

Chen et al.20 PKU Fisher score SVM

Chen et al.21 3-MCCD*, PKU, MET Arithmetic ratio Fisher score, Variable set
optimization

SVM

Lin et al.7 CIT1, CIT2, CPT1D, GA1,
IBDD, IVA, MADD,
MET, MMA, MSUD,
PA, PKU, PTPSD,
SCADD*, VLCADD

Random sampling,
oversampling,
informed
sampling

χ2, ANOVA, mutual
information, L1-norm,
tree-based

Bagging,
Boosting, DT,
KNN, LDA,
LRA, RF, SVM

Peng et al.22 MMA Oversampling RF

Wang et al.23 SCADD*, MCADD,
VLCADD

Arithmetic ratio Discriminatory threshold LRA

Zarin Mousavi et al.24 CH χ2, information gain,
expert consultation

Bagging,
Boosting, DT,
NN, SVM

Peng et al.25 GA1, MMA, OTCD,
VLCADD

Second tier RF

Zhu et al.26 PKU Arithmetic ratio Pearson coefficient, LVQ LRA

Lasarev et al.27 CAH Informed sampling PCA DT

Note: Diseases with * are biochemical variations nowadays known as nondiseases.

Abbreviations: CAH, congenital adrenal hyperplasia; CH, congenital hypothyroidism; CIT1, citrullinemia type I; CIT2, citrullinemia type II; CPT1D, carnitine

palmitoyltransferase I deficiency; DT, decision tree; GA1, glutaric aciduria type I; IBDD, isobutyryl-CoA dehydrogenase deficiency; IVA, isovaleric aciduria;

KNN, K-nearest neighbors; LCHADD, long-chain hydroxyacyl-CoA deficiency; LDA, linear discriminant analysis; LRA, logistic regression analysis; LVQ,

learned vector quantization; MADD, multiple acyl-CoA dehydrogenase deficiency; MCADD, medium-chain acyl-CoA dehydrogenase deficiency; 3-MCCD,

3-methylcrotonyl-CoA carboxylase deficiency; MET, hypermethioninemia; MMA, methylmalonic aciduria; MSUD, maple syrup urine disease; NN, neural

network; OTCD, ornithine transcarbamylase deficiency; PA, propionic aciduria; PCA, principal component analysis; PKU, phenylketonuria; PTPSD,

6-pyruvoyl-tetrahydrobiopterin synthetase deficiency; RF, random forest; Ridge-LRA, logistic ridge regression; SCADD, short-chain acyl-CoA dehydrogenase

deficiency; SVM, support vector machine; VLCADD, very long-chain acyl-CoA dehydrogenase deficiency.
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to enrich the datasets19 and mixed models such as
SMOTE + ENN7 were applied. For studies that applied
ML in second tier analysis, the data was less imbal-
anced since it only contained false positive screening
results from the first tier.25

3.2.2 | Feature construction

Most feature construction methods combine existing
numerical features to build new complex features. In NBS,
mostly arithmetic operators on original features are used to

TABLE 2 Sensitivity, specificity and positive predictive value (PPV) of considered ML classification methods

Disease ML classification Sensitivity (%) Specificity (%) PPV (%) Author

(A) Comparative ML classification studies

PKU LRA 100 99.793 17.41 Baumgartner et al.14

LRA 98.0 99.9 – Baumgartner et al.13

LRA 96.809 99.905 49.46 Baumgartner et al.15

MMA NN 98.0 – 98.0 Baumgartner et al.16

MCADD Ridge-LRA 100 99.987 33.90 Van den Bulcke et al.19

LRA 96.83 99.992 88.41 Baumgartner et al.14

LRA 95.238 99.992 88.24 Baumgartner et al.15

3-MCCD* LRA 95.455 99.957 33.33 Baumgartner et al.15

CH Bagging-SVM 73.33 100 – Zarin Mousavi et al.24

CIT2, MET, MMA, PKU, SCADD* SVM 91.30 36.36 19.29 Lin et al.7

(B) Single ML classification studies

PKU SVM 100 99.997 (99.971) – Chen et al.21

SVM 100 (100) 99.98 (99.96) – Chen et al.20

LRA 97.66 31.61 24.59 Zhu et al.26

MMA SVM 100 (100) 100 (99.79) – Hsieh et al.18

RF 100 (100) 89.678 (81.226) 26.40 (16.40) Peng et al.25

RF 96.117 (96.117) 65.143 (28.286) 28.9 (16.5) Peng et al.22

SVM 95.9 (81.4) 95.6 (76.2) – Hsieh et al.17

MCADD LRA 100 (100) 99.988 (99.924) 18.2 (3.4) Wang et al.23

RL 100 (100) 99.901 (98.463) 93.75 (49.18) Ho et al.12

GA1 RF 100 (100) 94.503 (50.751) 22.30 (3.10) Peng et al.25

3-MCCD* SVM 100 99.936 (99.711) – Chen et al.21

MET SVM 100 99.986 (99.958) – Chen et al.21

VLCADD LRA 100 (100) 100 (100) 100 (100) Wang et al.23

RF 100 (100) 92.786 (92.639) 23.40 (23.10) Peng et al.25

OTCD RF 100 (100) 99.601 (81.983) 62.10 (3.50) Peng et al.25

SCADD* LRA 100 (100) 99.997 (99.974) 73.3 (22.0) Wang et al.23

CAH DT 90.909 (100) 100 (87.194) 66.7 (20) Lasarev et al.27

Note: (A) Values of best performing ML classification methods with highest sensitivity and specificity in comparative studies. If presented in the study, these
are the results from largest or unknown validation datasets. (B) All results of studies applying a single classification method. If sensitivity and specificity were
not stated in the study, the results are calculated based on the published contingency table and given in italics. Results in brackets show comparison to

traditional NBS, where given. Diseases with * are biochemical variations nowadays none as nondiseases. The results from Lin et al.7 are presented in a separate
row, since they only report average evaluation results for groups diseases. Most studies applied sampling algorithms, changing the sick-to-control ratio, and
reduced datasets, such as only including false positive patients from traditional screening. Hence, the performance results and reference values of Table 2 have
to be evaluated and compared carefully.
Abbreviations: CAH, congenital adrenal hyperplasia; CH, congenital hypothyroidism; CIT2, citrullinemia type II; DT, decision tree; GA1, glutaric aciduria type

I; LRA, logistic regression analysis; MCADD, medium-chain acyl-CoA dehydrogenase deficiency; 3-MCCD, 3-methylcrotonyl-CoA carboxylase deficiency;
MET, hypermethioninemia; MMA, methylmalonic aciduria; NN, neural network; OTCD, ornithine transcarbamylase deficiency; PKU, phenylketonuria; RF,
random forest; RL, rule learner; Ridge-LRA, logistic ridge regression; SCADD, short-chain acyl-CoA dehydrogenase deficiency; SVM, support vector machine;
VLCADD, very long-chain acyl-CoA dehydrogenase deficiency.
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construct features (Table 1). A new feature x0 can be built
from two features xi,xj by calculating their ratio

19,21,23,26:

x0 ¼ xi=xj
� �

; i¼ 0,1,…,n�1; j¼ iþ1, iþ2,…,n,

or by combining several original features.12 Here, xi, i¼
1,…,n can be all original features12 or a subset of
disease-specific primary markers.19 Other approaches
applied principal component analysis,27 which com-
putes eigenvectors of the data's covariance matrix, the
principal components, which are then used as features
or applied self-developed algorithms21 to identify rele-
vant features for feature construction.

3.2.3 | Feature selection

Feature selection methods aim at identifying the most
relevant features and reducing the dimensionality of the

feature space. Either a fixed number18,21 or adaptive
approaches12 are applied to decide how many features
should be selected. They can be distinguished by their
application procedure, before (pre) or after (post) a classi-
fication algorithm and are grouped in filter, wrapper, and
embedded methods32 (Figure 4). For NBS, a fourth cate-
gory, informed methods, was added. Sometimes, several
of these methods were applied sequentially16,26 (Table 1).

In NBS, filter methods are frequently applied. They
select features based on statistical measures and proper-
ties such as analysis of variance (ANOVA),7 χ2 tests,7,12,24

mutual information,7 Pearson-like formula,17,18,26 Fisher
score,20,21 information gain,13,14,24 and relief-based
methods.14 Informed approaches apply prior knowledge
obtained from experts or literature to select relevant fea-
tures. In NBS, these are established diagnostic flags,
which are developed by biochemical and medical
experts15 or important features based on results of consul-
tation with a pediatric endocrinologist.24

Embedded methods exploit the architecture of the
classification method to understand the impact different
features have on its performance. In NBS, decision tree
splitting rules,7 the discriminatory threshold from logistic
regression analysis (LRA),16,23 learned vector quantization,26

and underlying cost functions, such as L1 norm7 were ana-
lyzed for feature selection. Wrapper methods choose differ-
ent subsets of all features19 or subsets preselected by
another method21 and iterate through the algorithm to
detect feature combinations which optimize the perfor-
mance of the classification method.

3.3 | Application and performance of ML
classification algorithms

NBS data contain individuals with confirmed diagnosis,
hence, only supervised classification methods are applied

S T U D I E S F R O M D A T A B A S E S S T U D I E S F R O M O T H E R S O U R C E S

IDENTIFICATION

INCLUSION

Records identified from
5 databases: 119

Record sought 
for retrieval: 99

Records assessed 
for eligibility: 98

Records assessed 
for eligibility: 6

Records not retrieved: 1

Records excluded:

 -  No usage of ML: 2
 -  No NBS: 1

Records excluded:

 -  No usage of ML: 32
 -  No NBS: 18

 -  No MS/MS data: 34

Records removed
before screening:

 -  Duplicate records: 20

Records identified from: 

 -  Citation searching: 4
 -  Expert consultation: 1

 -  Websites: 1

Reports for study: 14 Reports for study: 3

Studies included in systematic literature review: 17

FIGURE 2 PRISMA flow diagram

describing the two-stage search

procedure for studies identified,

screened, included, and excluded for this

review

Healthy
Specific  Healthy

Sick

Oversampling Undersampling

SAMPLING METHODS

Random Sampling
7,13,17-19,22

Informed Sampling
7,12,30

SMOTE7,28

Other7,20

FIGURE 3 Applied sampling methods. Imbalanced datasets

consist of healthy patients (• ), special subsets of healthy patients
(■ ), and sick patients (▶ ). Oversampling adds synthetically created

sick patients to the dataset. Undersampling methods reduce the number

of data points: random sampling randomly excludes healthy patients,

informed sampling excludes only specific subsets of healthy patients. In

each box the studies applying the respective method are given
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(Table 1). We grouped these methods according to their
interpretability and functionality (Figure 5). There are
various definitions of interpretability where we here
apply interpretability on a modular level, referring to
methods that can inherently explain how parts of the
model affect predictions.33

3.3.1 | Interpretable methods

LRA7,13–16,19,23,26 is based on modeling the distribution of
discrete dependent features. For instance, the LRA model
from Baumgartner et al.13 for PKU was stated as

P PKUð Þ¼ 1þ e�0:056�Pheþ8:9269
� ��1

,

where Phe is the amount of the measured phenylalanine
concentration and yields the probability of a patient suf-
fering from PKU. Ridge logistic regression analysis
(Ridge-LRA)19 extends this method by adding a penalty
term to the logistic regression function and is applied
when independent features are highly correlated. For

both methods, the weights of the resulting regression
coefficients are the interpretable part of the model.33

Decision trees7,13–15,19,24,27 are used to subsequently
divide the dataset into subsets by applying an impurity
index to minimize the impurity of the subsets. They can
be interpreted using the splitting decisions and leaf node
predictions. Rule learners12 classify patients by finding
interpretable decision rules which can be applied for clas-
sifying unseen datasets. Naive Bayes16 is a probabilistic
method based on applying Bayes' theorem with strong
independence assumptions. It can be interpreted on a
modular level by interpreting the conditional probability
through estimating how much each feature contributes
to a specific classification.

3.3.2 | Noninterpretable methods

Ensemble methods combine several weak learners to
obtain one strong classification algorithm and are non-
interpretable even if the underlying weak learner is inter-
pretable on a modular level. Random forest7,22,25

combines several randomly initialized decision trees to

FEATURE SELECTION STRATEGIES

P O S T - A L G O R I T H M

F I L T E R I N F O R M E D E M B E D D E D

P R E - A L G O R I T H M

Information Gain
13,17,27

Relief Based 
17

Pearson Coefficient
21,22,26

Test
7,12,27

Fisher Score 
23,24

Diagnostic Flags
18

Expert Consultation
27

Decision Tree Based
7

W R A P P E R

ANOVA
7

Mutual Information
7

Learned Vector

Quantization 26

L1 norm 
7

Variable Set

Optimization 20,24

Discriminatory

Threshold 19,25

FIGURE 4 Applied feature

selection strategies. Prealgorithm

strategies (left) work independent of the

ML classification method and are filter

methods, using statistical properties, or

informed methods, using clinical

knowledge. Postalgorithm methods

(right) are directly embedded within the

classification method or wrapped

around it via an iterative loop. In each

box the studies applying the respective

method are given. ML, machine learning

ENSEMBLE &

DEEP LEARNING

INTERPRETABLE

S U P E R V I S E D L E A R N I N G

Rule Learner 
12

Decision Tree
7,13,17,18,20,27,30

K Nearest Neighbor
7,17,19

Support Vector Machine
7,17,19,21-24,27

Logistic Regression
Analysis

7,13,17-20,25,26

Linear Discriminant
Analysis 

7,17

Logistic Ridge

Regression20

Boosting 
7,27

Bagging 
7,27

Random Forest
7,28,29

Neural Networks 
17,19,27

Naive Bayes
19

OTHER

on a modular level
NON-INTERPRETABLE
on a modular level

FIGURE 5 ML classification

methods applied in NBS. The methods

are distinguished according to their

interpretability and functionality.

Interpretable methods on a modular

level (left) and noninterpretable

methods on a modular level (right)

which can be split into ensemble and

deep learners or other methods. In each

box the studies applying the respective

method are given. ML, machine

learning; NBS, newborn screening
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obtain one powerful classifier. Boosting algorithms such
as adaptive boosting (ADA),7,24 extremely randomized
trees, and gradient boosting are ensemble meta-
algorithms for primarily reducing bias and variance,
where each weak learner tries to correct the model pre-
dictions of its predecessors. Furthermore, bagging
methods such as Bagging-SVM7,24 were applied as meta-
estimators to train several base-classifiers on randomly
sampled subsets and aggregate the predictions. Neural
networks14,16,24 try to mimic the signaling processes in
the human brain by leading information through multi-
layer perceptrons. Other methods such as K-nearest
neighbor7,14,16 consider the distance between data points
and identify clusters of healthy and sick patients within
the data. Support vector machines (SVMs)7,14,16–18,20,21,24

attempt to find the largest separating band between sick
and healthy patients by transforming the features into a
higher dimensional space with linear kernels,7,16 radial
basis function,16,18,20,21 or polynomial (degree 2 or 3)14,16

kernels. Linear discriminant analysis7,14 is a linear classi-
fier that aims to find a discriminant line (plane or hyper-
plane) by fitting weights of features that are optimal for
maximizing the between-class variance.

3.3.3 | Performance results

For parameter optimization, grid search is commonly
applied17,19 and iterates through a set of parameter combi-
nations returning the combination with the best perfor-
mance. To test the robustness of the methods and estimate
the performance on different subsets, cross-validation17,21

or stratified cross-validation19 and evaluation of receiver
operating characteristic curves25 is applied. The classifica-
tion performance is evaluated using classification sensitiv-
ity, specificity, and PPV, which are calculated using the
amount of true positive (TP), false positive (FP), true nega-
tive (TN), and false negative (FN) predicted patients,

sensitivity¼ TP
TPþFN

, specificity¼ TN
TNþFP

,

PPV¼ TP
TPþFP

:

Here, 100% sensitivity reflects finding all sick new-
borns and an increasing specificity implies fewer false
positive patients. PPV expresses the probability that posi-
tively predicted patients are truly suffering from a dis-
ease. Table 2 gives an overview of all published results
from (A) comparative studies, displaying only the results
of the best from several applied classification methods
and (B) single studies, applying only one classification
method.

Hence, from all 12 considered ML classification
methods only LRA, Ridge-LRA, SVM, Bagging-SVM, rule
learner, neural network, random forest, and decision tree
are included in the performance evaluation. From these,
LRA and SVM were applied most frequently. In the com-
parative studies, LRA, Ridge-LRA, SVM, Bagging-SVM,
and neural networks were the best performing algo-
rithms for different diseases. Moreover, 10 studies
reported reference values from traditional NBS on the
same datasets. In all of these studies, the ML classifica-
tion improved the PPV compared to the reference values.
Furthermore, applying SVM, random forest, LRA, or rule
learners maintained or improved the sensitivity, com-
pared to the reference value in every study. While
maintaining the high sensitivity, mostly 100%, all of these
methods improved the specificity. Overall, for 9 of the
21 evaluated diseases, ML classification methods
achieved 100% sensitivity. Lin et al.7 presented the most
comprehensive study, where SVM, LRA, and linear dis-
criminant analysis showed the best average evaluation
results on groups of 5 and 16 diseases. However, when
they evaluated single diseases, they showed that also
ADA is appropriate for NBS if the dataset includes suffi-
cient patients suffering from a specific disease.

3.4 | Implementation of pattern
recognition techniques in NBS

Pattern recognition techniques are strongly related to fea-
ture selection since they aim to recognize patterns within
the features' importances. Therefore, the results of the
feature selection methods are often compared to
established primary markers7 and analyzed by clinical
and biochemical experts.15 Furthermore, for interpretable
methods, built-in decision functions12,14,15,24 and discrim-
inatory thresholds14,16 can be used to identify the bio-
markers on which the classifier based its classification.
For noninterpretable ML methods, model agnostic
approaches such as mean decrease accuracy are applied
to identify the individual contribution of specific
metabolites.22,25

4 | DISCUSSION

Further development and optimization of NBS for
inherited metabolic diseases remains an important and
challenging task. Based on a systematic review, we identi-
fied opportunities and challenges of the whole ML pipe-
line for NBS, including the application of data
preprocessing, classification models and pattern recogni-
tion methods.
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4.1 | Opportunities

The evaluated studies showed that ML methods can be
applied for classifying NBS data and presented high clas-
sification sensitivity and specificity on several diseases.
They were able to decrease the number of false positives
compared to reference values from traditional
screening,14 to find metabolic markers without prior
assumptions which correspond to the established bio-
chemical knowledge,13,15 and to identify so far unknown
metabolic patterns within the data.14 From all included
classification methods, LRA, Ridge-LRA, SVM, Bagging-
SVM, and neural network achieved best results in com-
parative studies (Table 2A) indicating that these methods
outperform others for NBS classification. Results from
single method studies (Table 2B) are more difficult to
evaluate as a comparison on the specific dataset is miss-
ing. We analyzed the performance of the classification
methods based on their frequency of application, ability
to achieve 100% sensitivity, a comparison with other clas-
sification methods, and reference values. From the
reported results, LRA and SVM seem to be valuable can-
didate methods for NBS classification. Both algorithms
are frequently applied in NBS, achieve 100% sensitivity
for various diseases in several studies, are the best algo-
rithms in most comparative studies, and can increase the
sensitivity, specificity, and PPV compared to reference
values from traditional screening (Table 2). Also,
advanced versions of these methods such as Bagging-
SVM and Ridge-LRA achieved the best results in two
comparative studies.19,24 Furthermore, we analyzed their
interpretability on a modular level, referring to whether
they can inherently explain how parts of the model affect
the prediction.33 LRA is interpretable, as the model and
weights can be intuitively interpreted. The separating
hyperplane of SVM is difficult to interpret on a modular
level, particularly, when the original variables are embed-
ded into a higher dimensional space with a kernel
trick.14,16,18,20,21

However, the classification methods should not be
evaluated on their own, as they are usually part of a
whole ML pipeline (Figure 1) including data
preprocessing methods, which can further influence
the classification performance. Sampling methods can
be applied to decrease false positive classifications uti-
lizing expert knowledge on primary markers. Feature
construction methods enable to build complex features,
which can account for nonlinear correlations spread
over several metabolites and discover hidden interac-
tions.12,19,23 This can increase the accuracy of LRA and
other classifiers such as rule learner methods, which
do not perform well for problems requiring diagonal
partitioning.12,34

Feature selection techniques are employed to elimi-
nate irrelevant and redundant information for the classi-
fication method to reduce dimensionality and overfitting
and allow classification algorithms to operate faster and
more efficiently.14 They can reduce the number of posi-
tive NBS results and improve sensitivity and specificity in
NBS classification.13,20,26 Furthermore, pattern recogni-
tion showed great potential by confirming primary diag-
nostic markers and identifying markers without any
other a priori assumptions or conditions.15 Model agnostic
pattern recognition can be applied for noninterpretable
methods by discovering nonexplainable incidents such as
a higher percentage of false positive newborns with His-
panic ethnicity.22,35 This can be especially beneficial for
varying prevalence between racial/ethnic groups and
populations.25,26,35 Furthermore, these methods can help
to identify other risk factors such as gender, family disease
history, and chronic diseases to identify infants with poten-
tial disease risk.24

4.2 | Limitations and future work

The heterogeneity of the 17 studies, including data from
10 screening centers, investigating 21 diseases, applying
12 classification methods and 14 feature selection strate-
gies (Table 1) makes an evaluation of the results chal-
lenging, and requires a careful interpretation.

4.2.1 | Preprocessing methods

Sampling methods are a promising approach to handle
the data imbalance in NBS. However, oversampling
methods could pose a problem since it cannot be verified
whether the synthetically created samples correspond to
a positive confirmation diagnosis. Moreover, sampling
methods artificially change the sick-to-control ratio of a
patient dataset, which could change the model's accuracy
on a real population.13,19 Hence, sampling methods
should be chosen carefully and evaluated on real
populations to verify performance measures in real
settings.

Feature selection is applied to support the classifica-
tion method by identifying relevant features. When
deciding which method to choose, several criteria have to
be taken into consideration. Prealgorithm methods are
independent of the classification method and its respec-
tive computational costs. However, they do not take into
account the biases of the classifiers which can be prob-
lematic when classification methods are highly sensitive
to the feature selection procedure.36 In contrast,
postalgorithm methods depend on the specific biases and
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heuristics of the classification method. This can make
them computationally more expensive, as wrapper
methods for instance iterate through subsets of all fea-
tures. Wrapper methods such as mean decrease in accu-
racy can also be used to rank the relative importance of
individual features in a random forest model for pattern
recognition.22,25 Furthermore, the applicability for NBS
has to be evaluated based on its specific data require-
ments. NBS has numerical input and categorical output
data. However, χ2 and mutual information expect a cate-
gorical input and Pearson's correlation coefficient expects
numerical output values whereas ANOVA expects
numerical input and categorical output values, which
would be most appropriate for NBS. Informed methods
allow to include expert knowledge into the feature selec-
tion process which can be beneficial for well-studied dis-
eases but lowers the chances of discovering new
metabolic patterns.

4.2.2 | ML classification methods

Most studies applied sampling algorithms, changing the
sick-to-control ratio, and reduced datasets, such as only
including false positive patients from traditional screen-
ing. Hence, the performance results and reference values
in Table 2 have to be evaluated and compared carefully.
Classification methods require a certain minimum
amount of data to learn the underlying classification pro-
cesses depending on the task and data. NBS suffers from
data limitations due to the rare true positives which lead
to diseases being excluded for ML-based NBS.14 However,
first experimental studies showed methods trained with
more than 20 positive patients achieve stable results.7

Furthermore, in many medical ML applications, non-
interpretable methods are state-of-the-art.37 In NBS,
methods such as ensemble learners and neural networks
are applied rarely but could surpass interpretable methods
in comparative studies.16,24 Reasons for this could be that
they are not well-suited for NBS, or their lack of interpret-
ability makes them less applicable. These points could be
addressed in a comparative study including different dis-
eases, classification methods, and datasets, ideally, a
benchmark dataset. The results of the study should be ana-
lyzed with respect to large variations in parameter settings
to estimate the stability of the performance.19 The lack of
interpretability could be addressed by integrating explain-
able artificial intelligence methods such as SHAP38 and
LIME39 to explain which metabolites contributed to the
algorithm's classification results. Furthermore, the devel-
oped ML methods could be applied for future NBS condi-
tions aiming at reducing false negative classification
results. Here, feature importance and explainable artificial

intelligence methods could be implemented for pattern
recognition and could play a key role in identifying so far
unknown metabolic patterns within the data. Neverthe-
less, the proposed biomarkers require further validation
and evaluation regarding their biochemical role and
underlying biological processes in health and disease.13,16

Although ML methods showed great potential in classify-
ing NBS conditions based on screening data, their reliabil-
ity has to be proven by thorough validation studies to
adhere to regulatory and quality requirements before they
can be integrated into NBS programs. Here, explainable
AI methods, can contribute to enhance reliability of ML
methods for clinical integration.

4.3 | Conclusion

Through technical advances, ML-based NBS enables new
opportunities in reducing false positive rates and identify-
ing so far unknown metabolic patterns by relying on
complex feature combinations instead of predefined cut-
off values. These mathematical strategies should be
regarded as complementary to the combined use of bio-
chemical and genetic tests aiming at improving the diag-
nostic specificity of NBS programs through second and
multiple tier analysis. However, due to the variety of dis-
eases and methods, a general recommendation for a sin-
gle ML method in NBS is currently not possible. Instead,
a thorough analysis of different methods is necessary for
all applications. Among the presented, LRA and SVM
seem to be valuable candidates for NBS classification
since they are often applied, achieve high performance in
general and in comparative studies, and handle multi-
dimensional data. Comparing both methods, LRA is
interpretable on a modular level, whereas SVM is not
and therefore, LRA might be more applicable for NBS.
Yet, with the rise of ensemble and deep learning
methods, also noninterpretable extensions of these
methods such as Ridge-LRA and Bagging-SVM showed
promising results.19,24 In combination with explainable
artificial intelligence methods, these noninterpretable
methods could be applied more frequently, which will be
investigated in comprehensive future studies.
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