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Influenza vaccine effectiveness (VE) varies seasonally due to host, virus and vaccine characteristics. To 
investigate how antigenic matching and dosage impact VE, we developed a mechanistic knowledge-
based mathematical model. Immunization with a split vaccine is modeled for exposure to A/H1N1 or 
A/H3N2 virus strains. The model accounts for cross-reactivity of immune cells elicited during previous 
immunizations with new antigens. We simulated vaccine effectiveness (sVE) of high dose (HD) versus 
standard dose (SD) vaccines in the older population, from 2011 to 2022. We find that sVE is highly 
dependent on antigenic matching and that higher dosage improves immunogenicity, activation and 
memory formation of immune cells. In alignment with clinical observations, the HD vaccine performs 
better than the SD vaccine in all simulations, supporting the use of the HD vaccine in the older 
population. This model could be adapted to predict the impact of alternative virus strain selection on 
clinical outcomes in future influenza seasons.

Measuring the full impact of influenza is difficult due to its varied clinical manifestations1. In the U.S., influenza 
is estimated to have caused 9–41 million illnesses, 140,000–710,000 hospitalizations, and 12,000–52,000 deaths 
annually from 2010 to 20202. Seasonal disease burden and severity vary, influenced by population immunity and 
how well vaccine strains match circulating viruses3,4.

The immune system is split into an innate component, responding quickly but non-specifically to pathogens, 
and an adaptive component, responding slowly but specifically5. The adaptive immune system includes B and 
T cells (mediating respectively humoral and cellular responses), targeting short peptide fragments (epitopes of 
antigens) presented by infected cells and antigen-presenting cells (APCs). The antibodies produced by B cells 
neutralize viruses while T cells destroy infected cells via cytolysis. Only specific B and T cells are stimulated, 
clonally expanded and maintained long-term.

Influenza vaccines aim to elicit antibodies, mainly against hemagglutinin (HA), but also neuraminidase 
(NA)5. Antigenic drift arises from mutations in these immunodominant epitopes creating new strains which can 
evade previously established immunity3,6. Seasonal vaccine effectiveness (VE) can vary widely due to antigenic 
mismatches between vaccine and circulating strains3,5,7–9, as defined qualitatively by the Centers of Disease 
Control and Prevention (CDC), by comparing the antigenic similarity of circulating and reference viruses from 
end of season influenza activity in the US. Predicting which strains will dominate in the next season remains 
a challenge, complicating decisions on vaccine strain selection4. Additionally, interpreting serological data is 
difficult due to unknown patient exposure histories to antigenically related cross-reactive strains4.

We focus on the widely-used inactivated split vaccines, whose antigens are produced by viruses multiplicated 
on eggs. This process can lead to egg adaptation where the vaccine strain acquires key mutations that improve 
proliferation in eggs, but can decrease the match to the circulating viral strain9–12. Systematic reviews and meta-
analyses on efficacy and effectiveness of split vaccines in preventing influenza-associated clinical outcomes found 
that the high-dose (HD) split vaccine performs consistently better than the standard dose (SD) vaccine in adults 
aged 65+8. However, the relative vaccine effectiveness (RVE) was found to depend on the dominant circulating 
viral subtype (A/H3N2 or A/H1N1), as well as on the antigenic match of the vaccine to the predominant 
circulating strains within one subtype (antigenic and egg adaptation)9.
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Quantitative modeling is essential to understand the fluctuating VE due to the complex interaction 
between viral subtype, antigenic drift and patient immunity. Within-host models, especially for influenza 
A, have been crucial for simulating immune responses to viral infections13–20. Few models address vaccine 
immunogenicity20–23, particularly for influenza24,25. To our knowledge, this multi-strain model is unique in 
predicting population-level VE against two influenza A subtypes, from within-host models for virtual patients 
with varied immune backgrounds. After describing the literature-derived assumptions, the model is calibrated 
on a particular season where both subtypes circulated, using a virtual population of patients older than 50 years 
old (control versus SD). Then, by varying seasonal antigenic matches of predominant subtypes, simulations over 
a decade demonstrate our model capacity to reproduce observed VE (pooled vaccines). Finally, predictions 
comparing the VE of HD relative to SD in the 65 + population, support an improved immunogenicity with the 
higher dose, regardless of antigenic match.
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Results
Our model is built from literature-derived knowledge
The main model assumptions about viral dynamics, vaccine pharmacokinetics and interactions between 
antigens and cellular behaviors are illustrated in Fig. 1. One key mechanism is that specific memory cells and 
antibodies elicited against one viral strain during previous infection or vaccination cross-react with a newly 
encountered strain, as long as the two strains are antigenically similar7,26–28. Immunization leads to the 
formation, maturation and maintenance of strain-specific antibodies and immune cells in response to antigen 
exposure. The immunization process resulting from infection or vaccination starts when APCs are exposed 
to antigen in tissues (muscle, lung or lymph nodes) and present phagocytosed antigens to other cells (Fig. 1A, 
D). APCs then migrate to secondary lymphoid tissues, where they prime and activate naïve B and T cells29. 
CD4 + T cells further enhance the activation of primed B cells, which differentiate into B cells producing non-
specific antibodies, and later differentiate into memory B cells secreting strain-specific antibodies (Fig. 1C, E). 
In parallel, APCs and CD4 + cells also activate naïve CD8 + T cells which can migrate to the infection site and 
induce cytolysis of infected cells (Fig. 1D). Later, both CD4 + and CD8 + cells differentiate into memory T Cells 
(Fig. 1C, E). Affinity matg serological data is difficult duration for B and T cells takes several weeks30,31, meaning 
that a typical primary infection is mostly resolved by the innate immune system (non-strain-specific cells and 
antibodies). However, any subsequent exposures to the same or antigenically similar antigens will result in a 
recall and boost of strain-specific memory cells leading to faster and better adaptive immune response4,32.

Cross-reactivity in adaptive immune response was previously described by a model based on statistical 
mechanics26, where the antigenic drift in the main epitopes of the viral surface proteins HA and NA resulted 
in a non-linear antibody response. A new measure of antigenic distance, defined as the number of epitope 
mutations between the vaccine and the circulating strain, correlated well with VE against A/H3N2 from 1971 to 
200427. It was estimated that the antibody affinity constant decreases non-linearly with this measure of antigenic 
distance26–28 and we assumed a similar relationship in our model. However, rather than using the number 
of epitope mutations, we define the antigenic distance (AgD) as the output of the antigenic advance model 
described in Neher et al. (2016)33, normalized over the last 10 seasons (see Methods). This model, based on the 
relationship between strain genetic differences and their antigenicity, quantified by hemagglutination inhibition 
assays (HI titers), interprets antigenic data in a phylogenetic context33. Importantly, this model predicts the 
antigenic properties of strain pairs that have not been characterized experimentally33. Moreover, the AgD given 
by this model are well correlated to the number of epitope mutations33, as in27.

To account for strains encountered by a virtual patient before or during a simulation, we consider strain-
specific antibodies and strain-specific adaptive effector and memory cell populations co-existing in a patient 
(Fig.  1, Supplementary Fig. S1, Supplementary Table S1). The neutralization rate of cross-reactive specific 
antibodies and the proliferation of memory B cells depends strongly on AgD, whereas most of the cytolysis and 
proliferation of CD8 + cells does not, since a little more than half of the total CD8 + cells are targeted against 
internal viral proteins34,35.

We simulate the pharmocokinetics of intramuscular injection of split vaccines by partitioning the initial 
HA and NA dose into direct lymphatic drainage and APC cell uptake36. The HD vaccine contains four times 
the antigens of the SD vaccine37. Given lack of data, our null hypothesis is that the number of primed APCs is 
linearly dependent on the dose.

To model infection severity, we consider the upper respiratory tract (URT) and the lower respiratory tract 
(LRT), the latter involving the airways below the larynx. We use a target cell limited within-host model13–15,17,19, 
where the virus enters the body through the URT, infects lung epithelial cells, replicates inside them and can 
spread to the LRT. After activation, the immune system clears infected cells and viral particles located in the 
extracellular space (Fig. 1D). Outcomes at the patient level include symptoms and severity of infection38,39, and 
seroprotection40, and are further defined in Table 1.

Fig. 1.  Overview of multi-strain model. (A) Vaccine antigen uptake by antigen-presenting cells (APCs). (B) 
Once loaded, APCs migrate from the injection site to the lymph nodes. Antigens (HA, NA) can also reach the 
lymph nodes by passive lymphatic drainage. (C) Immunization in the lymph nodes results in a back-boost 
of prior immunity (historical strains, H) as well as the formation of new immunity specific to the vaccine 
strain (V). In the lymph nodes, several cell-cell interactions amplify the proliferation of specific immune cells, 
notably, the interaction between APCs and naïve B and CD4 + cells. Activated CD4 + cells also interact with 
B and CD8 + cells which differentiate into effector cells, with neutralizing and cytolytic functions respectively. 
(D) Upon exposure to a seasonal circulating strain (C), specific immune cells migrate from the lymph nodes 
to the lungs. The different populations of immune cells interact with the new antigen C according to a cross-
reactivity curve relating binding avidity constants to AgD between the new antigens and the old ones that 
elicited each strain-specific population. The rates of neutralization of specific antibodies elicited against H and 
V respectively depend on the AgD in HA and NA between H and C and V and C, weighted by the relative 
abundance of HA (90%) and NA (10%). 60% of pre-existing CD8 + cells have a rate of cytolysis which is 
independent of the AgD in HA and NA between previously encountered antigens (H, V) and C. If the specific 
immunity raised against H and V strains is sufficient to suppress the replication of the circulating strain or to 
control it without symptoms, the infection is respectively considered prevented or sub-clinical. (E) In case of 
viral replication and appearance of symptoms corresponding to a vaccine breakthrough infection, there is an 
immunization against strain C, with a back-boost of the specific immunity against V and H. In case of severe 
infection lasting more than a few weeks, this new immunity against strain C can help resolve the infection.

◂
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Our model calibration process
Iterative calibration—We estimated the values of the parameters that could not be derived from literature 
via calibration with constraints defined by relevant data, based on in vitro and in vivo studies (Supplementary 
Methods on calibration). Using a covariance matrix adaptation evolution strategy41, this step-by-step approach 
allowed the calibration of a reference vaccine (split SD), two reference A viral subtypes (A/(H1N1) pdm09 
and A/H3N2/Perth) and 5 reference patients exhibiting various degrees of disease severity and response to 
vaccination (Fig. 2, Supplementary Methods on calibration). By joining the parameter distributions of these 
reference patients (Fig. 2), we refined the distributions of patient descriptors and generated new sets of plausible 
patients. Using published methods42,43, we iteratively selected patients that allowed for the best reproduction of 
the distribution of population outcomes (Table 2) in the control and vaccine arms in 50 + patients against both 
viral subtypes (Supplementary Fig. S2, vaccine arm against control arm without vaccine, both with independent 
exposure to A/H1N1 and A/H3N2). Below, we describe how we calibrated the immune system dynamics in 
response to primary infection (control arm, reference patients 1 to 3, Fig. 2) and then vaccine immunogenicity 
(vaccine arm, Fig. 2, reference patients 4 to 5) at the population level.

Control arm—To calibrate pathogenesis in a population of non-naïve unvaccinated humans, we defined 
three reference patients exhibiting respectively an asymptomatic, a mild symptomatic and a severe symptomatic 
infection when exposed to A/H1N1 or A/H3N2 (Fig.  2). These reference patients, with typical duration of 
symptoms according to viral subtype44, were used to define the initial distributions of patient descriptors from 
which we simulated a large set of plausible patients (Supplementary Fig. S2, blue). Rare or implausible patients 
who failed to clear the virus in the lungs within one month after infection in the control arm were not sampled.
To calibrate immunosenescence, we aimed at generating a positive correlation between age and epithelial lung 
damage induced by infection in the virtual population (Supplementary Fig. S2, blue) aiming at reproducing the 
higher rate of hospitalization in older adults reported by CDC. Mechanistically, we assumed a decrease in the 
number of naïve cells, an increase in pro-inflammatory cytokine autocatalysis (i.e. interleukin 6) and a decrease 
in antiviral cytokine autocatalysis (i.e. interferon type III) with age45–47. The neutralization rate of antibodies was 
also assumed to decrease with age48.

Vaccine arm—To calibrate the clinical effect of the SD vaccine at population level (Supplementary Fig. S2, 
orange), we simulated two additional reference patients - one succeeding and one failing to reach seroprotection 
levels post-vaccination (Fig. 2, reference patients 4 to 5) and extended further the distribution of parameters 
to simulate new plausible patients. At the population level, we defined two primary clinical endpoints to allow 
comparison with randomized clinical trials (RCT) and real-world data (RWD, Table 2): the seroprotection rate40 
and the simulated vaccine effectiveness (sVE, defined in Table 2), defined as the percentage of patients avoiding 
a symptomatic infection in the vaccine arm relative to the same patients exhibiting a symptomatic infection in 
the control arm (Table 2). This definition of sVE differs from the VE quantified by surveillance centers in test-
negative design studies using PCR-confirmed laboratory influenza virus infection: in our virtual clinical trial, 
each patient is his own control, while in real data, control patients are tested negative to influenza A but seek 
care at the same facilities as those who are tested positive. Nevertheless, although not perfect, the comparison 
between simulated VE and observed VE should be indicative.

This calibration was performed in the season 2010–2011 in the US because both A/H1N1 and A/H3N2 
circulated this season, allowing good VE estimates49. The strains used in the 2010 vaccine were also well matched 
to the circulating viruses50 and the AgD between these and the circulating strains reported on Nextstrain51 
were small for HA and NA in both subtypes (Table  3, H1N1 norm. AgD (HA:0,NA:0); H3N2 norm. AgD 
(HA:0.008,NA:0.002).

We aimed at reproducing simultaneously a reported VE of 47% (95% CI, 24-63%) in 50 + adults49 and at 
least 70% of patients being seroprotected against A/H1N1 and A/H3N2 at 28 days post-vaccination in the SD 
vaccine arm52,53 (Table 2, Supplementary Fig. S2). Calibration result - In the final calibrated virtual population 
(VP), sVE is higher in the 50–64 group than in the 65 + group against both subtypes (Table 2). The estimated 

Definition of outcomes Reference

Infection

Patients are exposed at a variable time during the season to a single strain corresponding to the dominating strain of the main circulating clade of 
the season. However, each patient is exposed at the same time in the control and the treated (vaccinated) arm. The patient exposure dose is defined 
as the number of total viral particles per lung epithelial cells, also called multiplicity of infection. The dose to which a patient is exposed contains a 
variable percentage of infectious virions relative to non-infectious particles to mimic community transmission from individuals who are at variable 
stages of disease. If the maximum of total viral load exceeds the patient exposure dose, a patient is considered (subclinically or clinically) infected, as 
the viral replication exceeds its degradation by the immune system.

Jones 
et al. 
(2020)38

Seroprotection If the hemagglutinin inhibition (HI) titer is superior to 40 (log2 (HI titer) > = 4), the patient is considered seroprotected. This threshold has been 
historically considered as the 50% decreased risk in influenza infection.

Hobson 
et al. 
(1972)40

Presence/ 
absence of 
symptoms

As the range of nasal pro-inflammatory cytokines in symptomatic patients was reported as 2-130 pg/mL, in mild symptomatic young patients, we 
define the occurrence of symptoms as a simple threshold. If the pro-inflammatory cytokines in the URT remain below 2 pg/mL, the patient has no 
symptoms and the infection is considered asymptomatic (subclinical). Above this threshold, the infection is considered symptomatic (clinical).

Kaiser 
et al. 
(2001)39

URT/LRT 
infection

If the viral concentration in the URT exceeds a calibrated threshold, the virus can spread to the LRT. The same threshold is used in infections by 
H1N1 and H3N2 for all patients.

Calibrated 
threshold

Disease severity Symptomatic infections can be mild or severe. If the cumulative cellular damage exceeds a calibrated threshold in LRT infections, the infection is 
considered severe (requiring hospitalization), otherwise it is considered mild (only requiring a doctor visit).

Calibrated 
threshold

Time to viral 
clearance

Number of days necessary for the total infectious and non-infectious viruses to drop below a calibrated threshold in the URT and LRT. Used as a 
proxy for infection duration.

Calibrated 
threshold

Table 1.  Patient level outcome definitions used in the model.
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geometric mean titers (GMT) against the vaccine strains pre-vaccination (t = 0) and post-vaccination (at 28 
days) are within the range reported in RCTs (Table 2). The average seroconversion rate is 44% against both 
subtypes, which is in concordance with RCTs. The percentage of severe infections relative to symptomatic cases 
in the 65 + population is consistent with the data reported before54. The proportion of LRT infections which are 
severe and require hospitalization in 65 + are within the ranges reported worldwide55.

Simulations over consecutive seasons confirm the importance of vaccine match
Inputs
As the calibration used US estimations of the VE in 2010–2011 on 50 + adults, we performed seasonal 
simulations using the main circulating A subtype in the US between 2011 and 2021 reported by the CDC and 
the predominant clade that circulated mid-season in the USA as reported on Nextstrain51 (Table 3). The input 
of each seasonal simulation is a set of normalized AgD in HA and NA between a sampled strain from the 
predominant clade and the corresponding seasonal vaccine strain.

Using the calibrated VP, we investigate how sVE depends on seasonal variation in AgD between the vaccine 
strain and the main circulating strain. Despite variable patient history, the VP is assumed to exhibit a constant 
level of prior immunity to the seasonal vaccine strain in every simulated season (See Methods). The model is 
also used to estimate how much RVE between the two doses depends on AgD in HA and NA when virtual 
populations from season to season are perfectly comparable in all their immune characteristics, including prior 
immunity.

Outputs
Our primary model outcome is simulated VE (sVE, defined in Table 2) against symptomatic infections. Each 
patient, represented by a unique set of 60 descriptors, is simultaneously included in 3 different arms: control, 
splitSD and splitHD. This outcome is not perfectly comparable to observed VE based on RWD (Table 4) because 
in test-negative design studies on laboratory confirmed influenza cases (CDC Vaccine Effectiveness Studies), 
VE is stratified by viral subtype and by age, but not by vaccine type. However, among US Medicare beneficiaries 
aged 65+, the proportion of individuals receiving HD increased considerably over the last decade9. Moreover, an 
increasing proportion of vaccinees received other vaccines (cell-based, recombinant or egg-based adjuvanted) 
in recent years56. Based on the market share of the vaccine manufacturer of split HD vaccine (Sanofi), we 
can estimate the percentage of vaccinees aged 65 + who received SD relative to HD57 and derive a weighted 
sVE (wsVE, Table 4 with equation) accounting for the percentage of vaccinees receiving SD each season. This 
improves the comparison with VE based on RWD but still does not account for all vaccine types. In addition, 
other factors could limit the perfect comparison between simulated and adjusted VE as the controls are not the 
same patients in RWD and thus VE needs to be adjusted statistically for confounding factors like study site, age, 
sex or underlying medical conditions.

Sources of variation in vaccine effectiveness
VE for A/H3N2 is usually lower than that of A/H1N158. This is also reproduced in our predictions, with A/
H3N2 dominated seasons exhibiting the lowest sVE (Fig. 3A). This difference is mainly due to the more frequent 
vaccine mismatch in A/H3N2 dominated seasons used as inputs.

Figure 3B shows that the sVE against symptomatic infections, disregarding vaccine types, is lower in the 
65 + than in the 50–64 group, illustrating the simulated immunosenescence. Our wsVE against symptomatic 
infections, considering only split vaccines, falls within CDC confidence intervals in all seasons in 65+. Most of 
the predicted wsVE in the 50–64 group also falls within these confidence intervals, except in seasons where VE 
is estimated to be equal or lower in this age group than in the 65 + group (2014–2015, 2015–2016, 2018–2019, 
Table 4). Indeed, 65 + patients most often exhibit the lowest VE58, but not always, plausibly due to confounding 
factors of prior immunity. As we used exactly the same populations in all simulated seasons and calibrated our 
model to simulate a decreased sVE with age (Fig. 3B), failure is expected when the relationships between age and 
VE are inconsistent across seasons.

There is evidence suggesting that the level of protection of HD would be similar to that seen with SD in 
younger adults59, which is also observed with our model (Table 4; Fig. 3C). Of note, sVE in HD arm has not been 
calibrated, and is the result of the assumed linear dose-response. Figure 3D1 compares the simulated wsVE from 
2011 to 2021 to the adjusted VE estimated from CDC.

To compare seasons, we use the classification between match, mismatch or egg-adaptation reported by CDC 
(Fig. 3D1-3D2). Across seasons, our model predicts a smaller range of variation in sVE compared to adjusted VE 
(Fig. 3D1). This is expected since our model assumes a constant level of prior immunity against each seasonal 
vaccine strain while prior immunity is an important confounding factor4 hardly controlled for in RWD. As 
we disregarded egg-adaptation, the sVE for those seasons is overestimated (Fig. 3D1-3D2). Disregarding these 
extra-sources of variation in VE, one can still see that both the adjusted VE and the sVE decrease with increasing 
vaccine mismatch as described by CDC9,58, although the trend of sVE looks less noisy than that of adjusted VE 
(Fig. 3D2). The sVE over the whole combination of observed AgD in HA and NA follows this trend with a strong 
negative dependence of sVE on the input AgD in HA and a slighter dependence in NA (Fig. 3E).

Dependence of RVE on AgD
Importantly, the simulated relative vaccine effectiveness (sRVE) follows a similar decrease with AgD (Fig. 3E), 
ranging from 42 to 2.5% depending on season and age class. A double-blind RCT59 reported a RVE against 
symptomatic infections of 24.2% (95% confidence interval [CI], 9.7 to 36.5) in 65+. It was noted also that the 
RVE estimates were higher in analyses restricted to cases caused by vaccine-similar strains, suggesting that RVE 
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depends on AgD59. The sRVE quantified against hospitalization are listed for each season in Supplementary 
Table S3.

Improved immunogenicity with HD vaccine
The contribution analysis illustrates the patient descriptors correlated with a difference between the two vaccine 
arms, quantified with `markers` of response to vaccination (Fig. 4A-E). This sensitivity analysis is global, using 
the distributions and correlations of patient descriptors rather than varying each parameter independently60. 
Unsurprisingly, the dose-induced difference in seroprotection duration and blood IgGs is increased when 
antibody production rate is increased or antibody decay rate is decreased (Fig.  4A-B). Unexpectedly, these 
differences are decreased when increasing age and the rate of B cell priming by APCs (Fig. 4C). Similarly, dose-
induced differences in cellular immunity are increased when the production rate of T cells is increased and 
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decreased with age (Fig. 4D-E). For antibody production rate, the tornado plot is asymmetrical, meaning that 
the relationship is non-linear: low antibody production rates result in 50% less dose-induced differences in 
seroprotection duration, while high rates result in 15% higher differences. Seroprotection duration is on average 
increased by 30% with HD vaccine compared to SD vaccine (Fig. 4F). This is attributable to the better priming of 
B and CD4 cells by APCs (Fig. 4G-J) which results in HI titers remaining above the 50% protection threshold for 
a longer time. As we assumed that the adaptive response partially depends on presentation of viral antigens by 
APCs to B and T cells, changes in parameters affecting APCs have a strong influence on seroprotection duration, 
which is consistent with a previous model61.

Discussion
The multi-strain influenza disease model presented here captures the complexities of the human immune 
response to influenza virus and vaccination such as innate, adaptive and inflammatory immune responses, cross-
reactivity, immunosenescence and infection severity. A step by step calibration process was done to generate 
a population with variable patient profiles (e.g. level of seroprotection, immunosenescence) in the correct 

Fig. 2.  Calibration of reference patients. Time-courses of 7 main variables (rows) in 5 reference patients (RP) 
(columns) in control arm (blue) and split vaccine arm (orange, vaccination at day 1) with exposure to H3N2 
at the indicated time points (arrows, between 80 and 120 days after vaccination) in both clinical arms over 
180 days. All patients are aged between 70 and 80. First row: log2 HI titers raised against the vaccine strain. 
Second row: concentration of IgG specific to the vaccine strain in blood in nanomol/L. Third row: total viral 
load in the URT in mRNA/mL. Fourth row: concentration of pro-inflammatory cytokines (IL6) in the URT 
in nanomol/mL. Fifth row: instantaneous damage expressed as the fraction of infected lung epithelial cells 
compared to healthy lungs. Sixth row: total viral load in the LRT in mRNA/mL. Seventh row: concentration 
of pro-inflammatory cytokines (IL6) in the LRT in nanomol/mL. RP1: control asymptomatic infection and 
no vaccine breakthrough infection. RP2: control mild symptomatic infection and no vaccine breakthrough 
infection. RP3: control severe symptomatic infection and no vaccine breakthrough infection. RP4: control 
severe symptomatic infection and mild symptomatic vaccine breakthrough infection. RP5: control mild 
symptomatic infection and mild symptomatic vaccine breakthrough infection. All patients except RP5 reach 
seroprotective levels less than one month after vaccination (comparison of orange curve and black line in first 
row corresponding to log2 HI titers equals to 4). Vaccine breakthrough infections are identified as rebound of 
the HI titers after exposure in the vaccine arm (orange curve in RP4-5).

◂

Definition References

Calibration output 
(2010–2011 season)

95% 
confidence 
interval *

Mean 
calibration 
output

Seroprotection rate (%) Percentage of patients in the virtual population exhibiting a HI titer superior to the 50% 
protection threshold (1:40) against the vaccine strain 28 days after vaccination. Cox et al., 2008 (RCT: 

PSC03: NCT00395174, 
65 + yo;
PSC06 : 
NCT00539864, 50–64 
yo)52, Falsey et al., 
2009 (RCT, 65 + yo)53

70–98 68$

Pre-vaccination HI titers Geometric mean of HI titers (GMT) in the virtual population against the vaccine strain 0 days 
before vaccination. 16–82 20

Post-vaccination HI 
titers

Geometric mean of HI titers (GMT) in the virtual population against the vaccine strain 28 days 
after vaccination. 53–356 160

Seroconversion rate (%) Percentage of patients in the virtual population exhibiting a fourfold increase in HI titers against 
the vaccine strain 28 days after vaccination compared to pre-vaccination. 20–72 44

Simulated vaccine 
effectiveness (sVE, %)

Percentage of prevented symptomatic infections, quantified as relative to the percentage of the 
same patients who did not develop a symptomatic infection in the vaccine arm but did in the 
control arm during the season

Treanor et al. 2012 
(RWD, 50 + yo, 
inactivated vaccines)49

24–63

39 overall, 
50 in 
50–64 
yo, 35 in 
65–96 yo

Weighted simulated 
vaccine effectiveness 
(wsVE, %)

The simulated vaccine effectiveness obtained in two independently simulated vaccine arms is 
pooled and weighted according to the proportion of vaccinees receiving split standard dose (SD) 
rather than split high dose (HD) over consecutive seasons. Equation in legend of Table 4

CDC MMWR

Symptomatic disease 
severity (%)

Percentage of severe infections relative to symptomatic infections requiring medical visits in 
65 + in the control arm.

Reed et al., 2009 
(RWD)53, Centers for 
Disease Control and 
Prevention2

10–25# 18

LRT disease severity (%) Percentage of LRT infections which are severe in 65 + in the control arm. Troeger et al. 2018 
(RWD)54 20–80 44

Table 2.  Population-level outcome definitions used in the model, reference data 95% confidence intervals 
reported in the literature and mean calibration output of the 2010–2011 season (normalized AgD: H1N1 (0/0), 
H3N2 (HA:0.008/NA:0.002), control arm versus split SD vaccination. *: min - max of 95% confidence interval. 
# i.e. in 2010–2011, 359.2- 540.8 hospitalized per 100 ‘000 inhabitants for 2’114.9-3’436.3 medical visits per 
100 ‘000 inhabitants. $ : Seroprotection calibrated value falls outside of reference range. Because of the large 
number of constraints, a perfect match could not be found and the difference between the simulation and 
reference was deemed acceptable.
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proportion to reproduce RWD observations of vaccine effectiveness in 2010. Model performance was evaluated 
through the comparison of simulated and observed vaccine effectiveness from 2011 to 2021. It should be noted 
that this model is based on the scientific community’s still incomplete understanding of immune correlates of 
protection against influenza which could explain some discrepancies between simulation and observations.

Our model is highly sensitive to humoral and cellular immunity levels against historical strains, aligning with 
empirical and theoretical studies4,24,32,62. In our seasonal simulations, we kept prior immunity constant, focusing 
on variations in the main circulating subtype and its AgD from the vaccine strain. This approach isolates the 
AgD’s impact on seasonal vaccine effectiveness (sVE). The sVE range may seem narrower than in real-world 
data (RWD) because we used the existing prediction of antibody cross-reactivity against an antigenic distance 
which is based on mutation counts and disregards phylogenetic relationships among strains7,26–28. To refine our 
model, new data with recent strains (post-2010) is necessary for better calibration of cross-reactivity and newer 
definitions of AgD.

On one hand, our sRVE against hospitalization averages 43% for A/H1N1 and 46% for A/H3N2 
(Supplementary Table S3), higher than RWD estimates of 5–30% depending on studies and seasons56,63–66. On 
the other hand, our sRVE against symptomatic infections aligns with the lower range of randomized control 
trials (RCTs)59. Our method potentially deflates RVE estimates: using identical patients in different simulation 
arms avoids biases present in real-world clinical settings, like the at-risk vaccinee bias where HD vaccines are 
given to frailer adults64,65. Additionally, RVE against hospitalization can increase from negligible to 30% by 
precisely matching patients receiving SD and HD vaccines by age and residence64. Our model’s predictions are in 
line with existing knowledge, validating it qualitatively as it accurately reflects immunosenescence, viral subtype, 
vaccine dose, and match effects.

Our model, however, does not account for egg-adaptation during vaccine production. In seasons where 
egg-adaptation was significant (2012, 2016, 20179–11), our model expectedly overestimates sVE based solely on 
AgD (Fig. 3D1). Future iterations could differentiate the impact of strain selection and egg-adaptation on VE 
reduction.

Reducing seasonal influenza severity and preventing infection hinges on immune recognition of both HA and 
NA7. However, vaccination induces fewer anti-NA antibodies67, and the quantity of NA in current vaccines is not 
standardized68, with neuraminidase inhibition titers rarely measured. HA facilitates viral entry, while NA aids in 

Season Age class Size of VP Main circulating subtype #1 Clade of main circulating subtype #2

Normalized 
AgD between 
vaccine and 
main circulating 
strain #2

HA NA

2010–2011
(calibration)

50–90 1031 H1N1 NA 0 0

50–90 1031 H3N2 NA 0.008 0.002

2011–2012
50–64 409

H3N2 3B 0.077 0
65–96 622

2012–2013
50–64 409

H3N2 3 C 0.00458 0.00702
65–96 622

2013–2014
50–64 409

H1N1 6 C 0 0.0123
65–96 622

2014–2015
50–64 409

H3N2 3 C.3 0.116 0
65–96 622

2015–2016
50–64 409

H1N1 6B 0 0.0141
65–96 622

2016–2017
50–64 409

H3N2 3 C.2a 0 0.109
65–96 622

2017–2018
50–64 409

H3N2 3 C.2a1 0.0466 0.223
65–96 622

2018–2019

50–64 409
H1N1 6B.1 A.1 0.0127 0

65–96 622

50–64 409
H3N2 3 C.2a2 0.15 0.0573

65–96 622

2019–2020
50–64 409

H1N1 6B.1 A.5b 0.0892 0
65–96 622

2021–2022 65–96 1031 H3N2 3 C.2a.1a 0.461 0.113

Table 3.  Model inputs used to calibrate the model in 2010 and to simulate seasons, from 2011 to 2021, USA. 
#1: CDC MMWR reports: https://www.​cdc.gov/flu/​season/past-​flu-seasons​.htm. #2: Nextstrain webapp49. 
Consulted on the 2022/11/08; https:​​​//nextstra​in.​org​/flu/sea​sona​l/​h3n2/​ha/​12​y@2022-11-08. Normalization 
with A/Darwin/6/2021, 3 C. 2a1b.2a.2 HA: 13.1.
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viral release from cells5. Infection and vaccination result in varying ratios of anti-HA and anti-NA antibodies69, 
but the underlying mechanisms of immunodominance are unclear. Therefore, our model assumes that the 
adaptive humoral response targets HA and NA based on their relative presence in infection and vaccination69,70, 
overlooking other potential factors like immune cell hypermutation, selection, clonal expansion, or a difference 
in roles, not explicitly modeled here.

Our model does not consider cross-reactivity among subtypes, specifically the rare broadly neutralizing 
antibodies against the HA stalk24,67. While childhood imprinting with a subtype reduces susceptibility to that 
subtype later, our model does not account for age-based prior immunity. Consequently, it predicts lower VE 
against A/H3N2 than A/H1N1 (Fig. 3A) due to A/H3N2’s faster antigenic drift. Without considering anti-HA-
stalk antibodies, the model is not equipped to predict age-based differential incidence by subtypes. Its application 
is confined to seasonal fluctuations over short time spans, not over a lifetime.

Most evidence suggests that antibodies play a crucial role in the sterilizing immunity induced by vaccination, 
but T cell responses are also commonly stimulated71. Unlike humoral immunity, the cellular adaptive immune 
response primarily targets immunodominant epitopes in internal viral proteins, which are more conserved 
across A subtypes35. Therefore, long-term T cell immunity, especially from memory CD8 + cells, is likely to 
guard against reinfection by strains with different surface but identical internal proteins. In our model, we used 
the proportion of total T cell response attributable to internal versus surface viral proteins34,35. Consequently, 
AgD mainly impacts the humoral response, particularly to antigenic drift in HA, the primary antibody target 
(Fig. 3). However, the role of T cells in protection is poorly characterized, apart from CD4 + helper cells71.”

Our model predicts that high-dose (HD) vaccines enhance seroprotection duration by more effectively 
priming APCs and activating CD4 + cells because of the linear dose-response relationship we assumed for APC 
priming (Fig. 4C). Only one study, an exploratory model in mice, examined APC priming’s dose-dependence25. 
It predicted a quasi-monotonic increase in seroprotection with higher influenza A inactivated vaccine doses25. 
However, protection can also decrease as vaccine dose exceeds a certain threshold, leading to rapid antigen 
clearance by the innate immune system, preventing an effective adaptive response25. While our model’s 
predictions align with reported RVE over a decade using a linear dose-effect curve, further research is needed to 
clarify how different dosages impact APCs and T cells on a wider dose range.

The relationship between antibody titers and AgD has been investigated more thoroughly. For instance, it 
was demonstrated that the increase in antibody titers is greatest to the most recently encountered strain (as 
opposed to historical strains) but that antibody titers still spread over multiple antigenic clusters4. This broad 
subtype-specific back-boost and its relation to antigenic differences among strains was quantified in the form of 
antigenic landscapes4. Although the mechanism behind this back-boost is currently unknown, it appears more 
consistent with memory cell stimulation and antibody recall than a result of the production of novel antibodies 
with extensive cross-reactivity4. In our model, the back-boost is qualitatively consistent with this and other 

Season Age class sVE of SD arm sVE of HD arm % of SD/HD #1 Weighted sVE Adjusted VE CDC all vaccine types (95% CI)#2 Season category #2

2011–2012
50–64 38 51 100 38 39 (-13, 67) Match

65–96 32 37 87 33 42 (-37, 76) Match

2012–2013
50–64 45 61 100 45 52 (33, 65) Egg

65–96 34 44 78 36 11 (-41,43) Egg

2013–2014
50–64 51 71 100 51 64 (48,74) Match

65–96 37 49 75 40 59 (25,77) Match

2014–2015
50–64 35 46 100 35 12 (-19, 34) Mismatch

65–96 29 34 63 31 12 (-29, 40) Mismatch

2015–2016
50–64 50 71 100 50 10 (-26, 36) Match

65–96 37 49 47 43 66 (36, 81) Match

2016–2017
50–64 45 61 100 45 40 (24, 53) Egg

65–96 35 44 37 41 21 (-15, 45) Egg

2017–2018
50–64 37 52 100 37 21 (-5, 41) Egg

65–96 31 37 30 35 10 (-32, 39) Egg

2018–2019 H1N1
50–64 51 68 100 51 30 (6, 48) Match

65–96 35 48 26 45 16 (-41, 51) Match

2018–2019 H2N3
50–64 36 43 100 36 -20 (-74, 18) Mismatch

65–96 28 31 26 30 13 (-46, 48) Mismatch

2019–2020
50–64 46 56 100 46 40 (20, 56) Match

65–96 28 38 20 36 42 (9, 64) Match

2021–2022 65–96 19 21 15 21 32 (-79, 74) Mismatch

Table 4.  Outputs of simulated vaccine effectiveness (sVE) against symptomatic infections in vaccine arms 
and weighted sVE using the proportion of vaccinees receiving split standard dose (SD) rather than split high 
dose (HD) over consecutive seasons. #1: Net et al., 202158. #2: CDC MMWR reports, with estimates typically 
adjusted for study site, age, sex, underlying medical conditions, and days from illness onset to enrollment. 
WeightedsV E = sV ESDarm ·%splitSD + sV EHDarm · (100−%splitSD).
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antibody landscape data62. By increasing the number of strains considered in this multi-strain model, it is now 
feasible to derive virtual quantitative antibody landscapes directly comparable to real patient-level antibody 
landscapes. Antibody landscapes thus appear as the most convenient high level descriptor of intra-population 
variation in humoral immunity both theoretically and in RCT/RWD. Despite substantial heterogeneity among 
the antibody landscapes of different individuals and highly variable individual response to vaccination, it was 
observed that each landscape shape was typically stable from one year to the next and had distinctive individual 
features4,62. These observations suggest that most of the inter-patient variation in HI titers is due to variation 
in immune system and immunization history of patients. Our model further suggests that priming of APCs 
is important to account for inter-patient variability in HI titers. Moreover, it is often presumed that response 
to infection is broader or stronger than response to vaccination. Although a fair comparison of the antibody 
response to infection and vaccination is challenging62, it seemed that the strength and breadth of the back-boost 
in response to infection and to vaccination were similar. Our model is compatible with such observations and 
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could be pivotal in comparing further the mechanistic causes underlying the differential humoral responses to 
vaccination and infection in the future.

High-dose (HD) vaccines are licensed for people over 65 years to overcome pre-existing antibodies and 
immunosenescence. This enhanced vaccine has shown an increased capability of driving seroconversion and 
protection from influenza72. One hypothesis is that the increased antigen amount in HD vaccines prevents pre-
existing antibodies from sequestering all antigens, enabling free antigens to activate memory B cells and thus 
promoting seroconversion against protective HA epitopes59,67.

In our model, a similar dose-effect mechanism is underlying the superiority of the HD vaccine in increasing 
seroprotective titers. However, this superiority depends on antigenic distance. If vaccine-induced antibodies 
poorly cross-react with the circulating strain due to a mismatch, the low cross-reacting antibodies might delay 
the production of better-matched antibodies. Particularly in seasons with significant antigenic mismatches in 
H3N2 dominant strains (2014, 2018, 2021), a small percentage (2–5%) of the virtual patients (VP) show a slightly 
longer viral clearance time than what is observed without vaccination. This aligns with the above hypothesis 
that binding of antigens by preexisting cross-reactive antibodies and memory cells sequesters antigens available 
for prime naïve B cells. While vaccine effectiveness is improved by increasing the match between vaccine and 
circulating strains, vaccine effectiveness is also boosted by reducing the match between vaccine strains and a 
patient’s pre-existing antibodies. In the context of SARS-CoV-2, it has been suggested that vaccine boosters 
using the beta-variant spike protein could provide better cross-neutralization against omicron variants than 
boosters based on recent omicron variant spike proteins, which built up herd immunity73.

Our model confirms that HD consistently performs better than SD, against both subtypes, regardless of 
vaccine match, supporting the use of the HD vaccine in the older population. Research on antigen design 
concentrates on shifting natural immunodominance towards more broadly cross-reactive epitopes (i.e. headless 
antigens, HA-stalk) or prediction of the likely circulating strains based on pressure of selection. Besides the 
selection of vaccine strains, other active areas of research to improve effectiveness concentrate on vaccine designs 
which avoid egg-adaptation (i.e. cell-based and recombinant vaccines), but also glycosylation patterns (mRNA 
vaccines). Modeling and simulation is helping research in all these aspects, as well as supporting the choice of 
the optimal antigen dosage, especially in the susceptible populations.

Methods
Multi-strain model description
The multi-strain model is described by a system of ordinary differential equations (ODEs) and uses a virtual 
population approach where parameters are described by statistical distributions rather than scalar values, in 
order to represent different sources of variability74. Each virtual patient corresponds to a vector of parameter 
values drawn from the corresponding statistical distribution.

The multi-strain model is based on 4 independent submodels, which can run independently or in combination 
(Supplementary Fig. S1; Supplementary Methods):

	1.	� The Immunization submodel describes building of a fast innate response and a slow adaptive response in 
lymph nodes and blood after antigen encounter with a time scale of days and weeks respectively (Fig. 1C and 
E),

	2.	� The Vaccine Immunogenicity submodel describes the vaccine antigen-uptake by APCs at injection site (mus-
cle) with a time-scale of hours to days (Fig. 1A),

Fig. 3.  Model results. (A) Comparison of sVE in 65 + in seasons dominated by A/H1N1 (4 seasons) and A/
H3N2 (7 seasons) using pooled vaccine arms. Most seasons dominated by A/H3N2 exhibit a lower sVE than in 
A/H1N1 dominated seasons. (B) Comparison of wsVE in younger and older age classes. 100% of patients aged 
50–64 yo are vaccinated with splitSD as splitHD is not recommended in patients younger than 65 yo while the 
percentage of splitSD vaccinees relative to splitHD vaccinees in 65 + varies across seasons (Table 4). In those 
realistic conditions, the sVE in the 65 + is almost 10% lower than in the younger adults. (C) Comparison of 
sVE in younger and older age classes if 100% of 65 + received the HD vaccine. The effect of immunosenescence 
would be almost canceled with respect to the younger adults receiving exclusively the SD vaccine. D1. 
Timeline of wsVE against symptomatic infection (triangles) plotted over adjusted VE from CDC (dots) in 
65 + between 2011 and 2022. The confidence intervals of adjusted VE are colored according to the antigenic 
characterization of main circulating seasonal strains with regards to the seasonal vaccine strains reported 
by the CDC as matched (green), mismatched (orange) and egg-adapted (blue) seasons. D2. Adjusted VE 
(top) and simulated VE (bottom) vs. the sum and HA and NA antigenic distance with regards to the seasonal 
vaccine strains reported by the CDC as matched (green), mismatched (orange) and egg-adapted (blue) seasons. 
E. Heatmaps of predicted sVE against symptomatic infections as a function of AgD in HA and NA between the 
seasonal vaccine strain and the main seasonal vaccine strain, in 65+. The surface corresponds to theoretical 
seasons where combinations of AgD in HA and NA have been simulated to evenly sample the theoretical 
space of variation in antigenic distances observed over the last decade. The sVE of splitSD decreases with AgD 
in HA and NA, but the decrease is much faster with antigenic drift in HA than in NA. Although the sVE of 
splitHD is much higher than that of the splitSD, it decreases faster with antigenic drift, in particular in HA. F. 
Heatmaps of predicted sRVE against symptomatic infections as a function of AgD in HA. The effectiveness of 
splitHD relative to splitSD (sRVE) decreases strongly with antigenic drift in HA and marginally in NA, but is 
nevertheless consistently different from 0, even at very large (and exceptional) combinations of AgD in HA and 
NA. All figures are generated with R version 4.3.2 (2023-10-31) - https://www.r-project.org/.
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	3.	� The Viral Life Cycle describes the within-host infection and replication in lung epithelial cells with a time 
scale of hours to days (Fig. 1D) and.

	4.	� The Pathogenesis model describes the effector response to viral exposure (neutralization, cytolysis, inflam-
mation) in the URT and LRT with a time scale of hours to days (Fig. 1D).

Once connected, these submodels allow the simulation of a variety of scenarios and conditions (Supplementary 
Fig. S1). The assumptions of these submodels are presented in Supplementary Methods.

In the multi-strain model, the different populations of strain-specific immune cells, antibodies and antigens 
have been multiplied according to the number of strains considered in a simulation (Fig. 1). Here, we consider 
3 strains: (1) one historical strain (H) corresponding to a former circulating strain that a patient encountered 5 
to 10 years before the start of the simulation (with remaining specific memory cells) ; (2) one vaccine strain (V) 
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corresponding to a vaccine administered at the start of the simulation ; (3) one seasonal circulating strain (C) 
which can be encountered at a different time for each patient. This strain is used to test the vaccine effectiveness 
at the population level at the end of the season.

Cross-reactions
The intensity of cross-reactions between a strain and adaptive immunity elicited against another strain depends 
on the antigenic distance among strains. AgD between two strains is defined in this model according to the 
Nextstrain platform33,51 - a web browser-based application - that visualizes antigenic data on a continuously 
updated phylogeny, allowing to make their model outputs readily available. We used the antigenic distances 
between our reference virus of 2009 (A/H1N1/California/2009 and A/H3N2/Perth/2009) and the vaccine 
strains used in a particular season (after 2009), using the so-called antigenic advance submodel. We normalized 
all antigenic distances for HA and NA in A/H3N2 and A/H1N1 using the antigenic distance between A/H3N2/
Wisconsin/67/2005 and A/H3N2/Darwin/6/2021 (clade 3 C. 2a1b.2a.2).

Cross-reactivity is related to the avidity constant between the antigens of a viral strain and the adaptive 
immune response produced against the antigens of another strain encountered previously. The exponential 
decrease of the avidity constant with the antigenic distance of those two strains is qualitatively derived from 
Deem and Lee (2003)26. For simplicity, we simulate only the cross-reactivity at the main epitope of HA and NA 
proteins, as other authors did previously7,26–28. However, the equation of26 was meant for antibodies only, but we 
generalize it to also simulate cross-reactivity in CD8 + cells and in particular to take into account the fact that 
CD8 + majoritarily target internal antigens. In order to simulate cross-reactivity of antibodies and CD8 + cells 
simultaneously, we further assume that the exponential decrease in avidity constant with normalized antigenic 
distance between strain pairs is ponderated by the proportion of immune response targeted at surface antigens 
(HA and NA) relative to internal antigens (propAntigenHA with propAntigenNA = 1-propAntigenHA).

In our model, the neutralization rate of cross-reactive specific antibodies as well as the proliferation of 
memory B cells depend strongly on antigenic distance in accordance with the relative abundance of HA and NA 
(where propAntigenHA equals 0.9) in a virion or split vaccine69,70. However, the cytolysis rate of CD8 + cells and 
their proliferation depend less strongly on antigenic distance, since only 40% of the total CD8 + cells are targeted 
against viral surface protein epitope34,35. We thus assume that 36% of CD8 + cells response is targeted against 
HA (propAntigenHA = 0.9*0.4 = 0.36), while 4% is targeted against NA. Similarly to26, we assume a threshold of 
antigenic distance at which the avidity constant is that of non-specific immune response. If the antigenic distance 
in HA main epitope is below 0.626, the antibodies/CD8 + cells can cross-react with those antigens. Above this 
threshold, the antibodies/CD8 + cells do not cross-react with antigens and are assumed to have the same avidity 
as non-specific antibodies/CD8 + cells (kAvidityHAnonspec, kAvidityNAnonspec). Given that the definition of 
antigenic distance of26 is not strictly similar to the AgD used in the model (extracted from Nextstrain33,51), , this 
threshold is arbitrary and it has not been calibrated.

To qualitatively reproduce the exponential decrease of cross-avidity between two strains (i.e. V: vaccine 
strain, C: circulating strain) with their AgDv-c, we thus use the following equation:

if HAagD < = 0.6.

	 xAvidityHAspecV−C = 10.0−(3.3·(HAagDV−C ·propAntigenHA+NAagDV−C ·(1.0−propAntigenHA)))+log10.0(kAvidityHAspec)

else.

	 xAvidityHAspec = kAvidityHAnonspec · propAntigenHA + kAvidityNAnonspec · (1.0− propAntigenHA)

Fig. 4.  Predicted improvements with increased vaccine dose. A-E. Contribution analysis comparing, for 
each virtual patient, the difference between HD and SD arms, in seroprotection duration and vaccine-
specific immunity at 28 days post-vaccination in 65+. A positive correlation between a marker of response to 
vaccination (i.e. dose-induced difference in seroprotection duration) is signified by low (blue) to high (orange) 
values from left to right, while a negative correlation goes from high to low values. Values are expressed in 
% change of the subpopulation’s median compared to the whole population’s median. For instance, in A, the 
subpopulation with the 50% highest values for the priming rate of B cells by APCs (“high” subpopulation) 
has a median for seroprotection duration 50% lower than the median of the overall population. For humoral 
immunity (A-C), the most sensitive parameters are related to the priming rate of B cells by APCs and to 
their antibody production and decay rates. While increasing the production rate of antibodies increases the 
differences between doses, increasing B cell priming and memory B cell decay rates decrease these differences. 
Increasing age (and thus immunosenescence) also decreases the difference between doses. Decreasing the 
time of exposure to viral antigens increases the differences between doses, due to back-boost of immunity 
against the vaccine strain, contributing to decreasing the difference between doses. For cellular immunity 
(D-E), the most sensitive parameters are related to the production rate of T cells which increases the difference 
between doses, while age decreases this difference. F-K. Quantified vaccine-specific markers tend to increase 
with vaccine dose, except central memory CD8 cells which show no change with vaccine dose. Distribution 
of vaccine-specific immunity in SD (blue) and HD (orange) arms in arbitrary units (a.u.), 28 days after 
vaccination. F. Seroprotection duration quantified as the number of days elapsed since vaccination where the 
HI titers remain superior to 1:40. G. APCs in lymph nodes. H. Antibodies specific to the vaccine strain in 
blood. I. Memory B cells in blood. J. Central memory CD4 cells in lymph nodes. K. Central memory CD8 cells 
in lymph nodes.
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 with propAntigenHA being either 0.9 for antibodies or 0.36 for CD8 + cells. When AgDV-C is null, the cross-
avidity of adaptive immune response against C is then equal to kAvidityHAspec, which is the avidity between the 
first encountered strain (V) and the immune response elicited against it.

The multi-strain model disregards non-neutralizing antibodies as well as antibodies against HA-stalk 
(Supplementary Methods). It thus considers only the antibodies raised against the main epitopes of HA-head and 
NA, using the non-linear relationship between the cross-avidity constants and normalized antigenic distance (the 
cross-reactivity equation for NA is the same as for HA because specific and non-specific avidities are assumed to 
be the same regardless of the antigen, see Supplementary Table S2). This model is phenomenological in aspects 
that relate to the relationship between the affinity of T cell receptor (TCR) and the effector functions of T cells 
(cytolysis, helper function). Despite extensive experimental work on TCR affinity, we were not able to establish a 
clear correlation between affinity and T-cell response because the available data are far from conclusive and even 
contradictory75 (Supplementary Methods).

Simulation of hemagglutination inhibition (HI) assay
In clinical trials, HI assays are usually performed 28 days post-vaccination, as a correlate of protection. This assay 
quantifies a combination of quantity (concentration) and quality (avidity) of neutralizing antibodies developed 
in response to vaccination. HI titer refers to the highest serum dilution that fully inhibits hemagglutination 
due to antibody binding76. We used the theoretical model of Linnik et al. (2022)76 to predict the log2 HI titers 
from values of the concentration of specific neutralizing antibodies in serum (Blood.ig) and their avidity for HA 
(kAvidityHAspec) by fitting their phase diagram76 :

	 log2HItiter = 3.27 · log10 (propAntigenHA · Blood.ig) + 2.78 · log10 (kAvidityHAspec)− 1.1

 where propAntigenHA represents the relative proportion of HA antigens with respect to NA antigens in natural 
infection or in vaccination60–70 (0.9). This equation returns continuous non-integer values of log2 HI titers to be 
compared to integer values returned by real HI assays. This equation is valid when the patient serum contains 
only one population of specific antibodies which were generated upon one antigen encounter, like in naïve 
patients.

To derive the log2 HI titers in patients who had successive immunizations, we compute a cross-reactive log2 
HI titer. Each population of specific antibodies and new antigens are tested together using cross-reactivity and 
antigenic distances among past and new antigens. The cross-reactive HI titers against the historical (H), vaccine 
(V) and circulating strains (C) are simulated as the maximum of the HI titers simulated against each strain 
individually. We use the same equation as the HI titers described above, except that the cross-reactive equation 
xLog2HItiter uses the pairwise cross-avidity of antibodies for HA antigens rather than their avidity for HA.

	 xlog2HItiter = maxi,j in [H,V,C](3.27 · log10 (propAntigenHA · Blood.ig) + 2.78 · log10
(
xAvidityHAspecStraini,Strainj

)
− 1.1)

 with propAntigenHA = 0.9.

Initialization of a prior immunity with the historical strain
An individual’s previous antigen exposure through vaccination or infection may lead to a baseline level of 
immunity against influenza which may be highly heterogeneous across a population77. The initialized baseline 
level is assumed to be specific to a generic historical (H) strain that represents remaining immunity against 
both H1N1 and H3N2 viral subtypes (possibly from several strains within these subtypes). Strain H specific 
variables which are non-null at the beginning of the simulation are: specific antibodies in blood, memory B cells 
in lymph nodes and blood, memory T cells in lymph nodes and tissue-resident memory T cells in the upper/
lower respiratory tract. Because we calibrated the Influenza Viral Life Cycle Submodel using experimental data 
on the circulating A/H1N1/7/California/2009 and A/H3N2/Perth/2009 (Supplementary Methods), these strains 
are the oldest ones that can be encountered by a patient in our simulations. So here, we define prior immunity as 
immunization generated by strains encountered before 2009.

Multi-strain model calibration
Calibration constrains the dynamic behavior of the model by finding a set of parameter values that allows the 
model to represent biological behaviors consistent with literature. All raw data used in the study was extracted 
from scientific publications and public CDC reports, no administrative permission was required for the access. 
Our calibration process combines the use of two tools integrated in Jinko.ai, Novadiscovery’s proprietary 
platform: a covariance matrix adaptation evolution strategy (CMAE-ES) algorithm41 to reproduce various 
reference patients from which an initial virtual population is derived and a “Select and Sample” method42,43 to 
refine the model behavior at the population level. We first calibrated each submodel independently using data 
described in Supplementary Methods (Supplementary Methods steps 1 to 4). The integrated multi-strain model 
is calibrated to derive 3 reference patients exhibiting a spectrum of disease severity without treatment44 and 2 
reference patients exhibiting vaccine breakthrough infections with and without achieving seroprotective titers 
28 days after splitSD vaccination (Fig. 2, Supplementary Methods, step 5). These 5 reference patients are then 
used to define plausible distributions of patient descriptors (Supplementary Fig. S2). Following the “Select and 
Sample method”42,43, the virtual population is refined in an iterative process to match the immunosenescence, 
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seroprotection rate, and proportions of prevented symptomatic infections of splitSD described in Supplementary 
Methods (Supplementary Methods steps 6 to 8) and Supplementary Fig S2.

Multi-strain model simulations over consecutive seasons
In all seasons, we use the same VP in control and two vaccine arms. Thus, patients have the same prior immunity 
to the vaccine strain at the beginning of each season. From season to season, solely the encountered viral subtype 
and its antigenic distance with the vaccine strain changes, as reported by the CDC MMWR reports and antigenic 
characterization of viruses which circulated each season (Table 3).

We output the estimated HI titers against the historical and vaccine strains at the beginning of simulation 
(pre-vaccination, t = 0) and post-vaccination (at 28 days after the beginning of simulation). Our primary clinical 
outcome is the proportion of prevented symptomatic infections (mild and severe infections are pooled, Table 2). 
Our secondary clinical outcome is the proportion of prevented severe symptomatic infections only. In our 
model, severe symptomatic infections, mostly involving the LRT, are used as a proxy for hospitalization54. The 
proportion of prevented severe symptomatic infections is quantified as the percentage of severe symptomatic 
infections in vaccine arms, relative to the percentage of patients with severe symptomatic infections in the 
control arm.

The sRVE is defined79 as:

	
sRV E =

(
1− sV EHD

sV ESD

)
× 100

 where sVE is calculated against all symptomatic infections or severe symptomatic infections only, using the 
number of prevented events in treated arms relative to the control arm within the same time window.

Multi-strain model in Jinko
Resolution of ordinary Differential equations (ODE)
The simulations are performed in Jinko.ai, Novadiscovery’s proprietary platform that integrates the Sundials 
library78 implemented in Haskell. Our platform employs the ‘llvm-hs’ bindings for the Low Level Virtual Machine 
(LLVM) API to optimize the evaluator’s performance and the Backward Differentiation Formula (BDF) solver 
for numerical integration. These tools handle the system of ODEs as a function of time with strict relative and 
absolute tolerances set at 0.000001. All subsequent computations and visualizations are also carried out on Jinko.
ai. Submodels are available in SBML format in Supplementary Material and the system of ODEs for the multi-
strain model is available from the authors upon reasonable request.

Analysis
The visualization of time-series, boxplots and histograms comparing trials arms as well as the contribution 
analyses are done on Jinko.ai. Time-series show the evolution of the selected clinical output(s) during the trial 
duration selected during the trial’s configuration (Fig. 2).

Contour plots of sVE and sRVE
The contour plots of Fig. 3E and F correspond to theoretical seasons where combinations of AgD in HA and 
NA have been simulated to evenly sample (every 0.025 increment) the theoretical space of variation in antigenic 
distances observed over the last decade. These plots were generated with R from the data downloaded from 
Jinko.ai.

Boxplots and histograms (Fig. 4) give a statistical representation of the clinical outcomes in the population 
(i.e. value/minimum/maximum of the outcome at a given time point, area under the curve or average of the 
outcome over the simulation period).

Contribution analysis
Contribution analysis (Fig. 4) is based on the comparison of statistical properties of subgroups of the VP versus 
properties of the whole VP using a quantity of interest (QOI). To compute the contribution analysis of a model 
parameter or descriptor for a given QOI, the following process is applied:

We first compute the median of the QOI among the patients for each input descriptor.

	 medianV alue = median (QOI)

Then patients are sorted by increasing order of input parameter, and the population is split into two groups 
for which we compute the lowMedianValue and highMedianValue of the QOI. The relative contribution of the 
parameter in the two groups is defined as :

In group 1, we have:

	 lowContribution = (lowMedianV alue−medianV alue)÷ (medianV alue)

In group 2, we have:

	 highContribution = (highMedianV alue−medianV alue)÷ (medianV alue)
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We center the Tornado graph on medianValue and the bars around corresponds to lowContribution and 
highContribution.

Data availability
SBML files for each of the submodels can be found in the supplementary information (Immunization, Vaccine 
Immunogenicity, Virus and Pathogenesis). The dataset generated and analyzed during the current study, the sys-
tem of ODEs for the multi-strain model are available from the corresponding author upon reasonable request.
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