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Abstract: Soft rot disease caused by Botryosphaeria dothidea and Phomopsis sp. is the most serious
fungal disease of the kiwifruit production area in southwest China. In this work, the role of the co-
application of tetramycin and matrine in the resistance of kiwifruit fruits against soft rot disease and
its effects on development, quality and amino acids of kiwifruit fruits were investigated. The results
indicate that matrine exhibited an outstanding toxicity against B. dothidea RF-1 and Phomopsis sp.
RF-2 with EC50 values of 0.442 and 0.332 mg kg−1. The foliar co-application of 0.3% tetramycin
aqueous solutions (AS) 5000-fold liquid + 0.5% matrine AS 1000-fold liquid could effectively control
soft rot disease with a control efficacy of 82.68%, which was significantly (p < 0.05) higher than
75.19% of 0.3% tetramycin AS 5000-fold liquid and significantly (p < 0.01) higher than 68.50% of
0.5% matrine AS 500-fold liquid. Moreover, the co-application of tetramycin and matrine was more
effective than tetramycin or matrine alone in improving disease resistance, quality and amino acids
of kiwifruit fruits. This study highlights that the co-application of tetramycin and matrine can be
used as a practicable, cost-effective and environmentally friendly candidate or alternative approach
for controlling soft rot disease of kiwifruit.
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1. Introduction

As a typical third-generation fruit, kiwifruit (Actinidia chinensis) has high nutritional,
medicinal and economic value due to its richness in vitamin C, essential amino acids
and various minerals [1,2]. Recently, the kiwifruit industry in China has been rapidly
developed, especially in the Guizhou Province of Southwest China, where the planting
area has reached over 40,000 ha [2,3]. Nonetheless, soft rot disease caused by fungal
pathogens such as Botryosphaeria dothidea, Phomopsis sp., Cryptosporiopsis actinidiae, Botrytis
cinerea, Cylindrocarpon sp. and Phoma exigua, etc., is a serious disease of postharvest kiwifruit,
and affects its quality, yield and economic value [4–11]. Our previous studies found that soft
rot disease caused by B. dothidea and Phomopsis sp. was the most serious fungal disease of
kiwifruit production area in Guizhou Province, of which infection peak periods were from
May 20 to June 13 and August 2 to August 12 [9–11]. B. dothidea and Phomopsis sp. can enter
kiwifruit tissue at early growth stages and remain latent in the tissues until fruit ripeness,
thus triggering fruit rot symptoms during storage, as well as causing 30~50% economic
losses [11,12]. Consequently, the excogitation of the practicable, alternative, cost-effective
and environmentally friendly strategies for controlling soft rot disease of kiwifruit is an
eternal research hotspot.
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Considering chemical fungicide residue and pathogen resistance, natural products
that are mild and basically harmless are preferred by consumers and are increasingly used
as popular alternatives or complementary approaches for plant disease management in
agriculture [13,14]. Meanwhile, a single natural product is often less effective in controlling
plant diseases compared to chemical fungicides. Synergistic application of natural prod-
ucts not only extends their antimicrobial spectrum, reduces the amount of fungicide and
decreases control cost, it also plays a key role in overcoming and delaying the fungicide
resistance of pathogens [15]. For instance, Li et al. [16] reported that co-application of
allicin and chitosan increased resistance of Rosa roxburghii against powdery mildew and
enhanced its yield and quality. Wang et al. [17] reported that chitosan used together with
isopyrazam–azoxystrobin could effectively control leaf spot disease of kiwifruit and reduce
isopyrazam–azoxystrobin application. In our previous study, we found that chitosan is a
practicable adjuvant of tetramycin for controlling leaf spot disease of kiwifruit, enhancing
resistance and photosynthesis of kiwifruit leaves, and improving quality and amino acids
of kiwifruit fruits [3]. Accordingly, synergistic application of appropriate natural products
against soft rot disease of kiwifruit is worth further exploration and development.

Tetramycin (Figure 1a), the metabolites of Streptomyces hygrospinosus var. beijingensis,
is a novel medical, agricultural and natural antibiotic that contains two active components
(tetramycin A and tetramycin B) [18,19]. In agriculture, tetramycin had been demonstrated
to possess outstanding bioactivity against many plant–pathogenic fungi, including Botrytis
cinerea, Pyricularia oryzae, Colletotrichum scovillei, Passalora fulva and Phytophthora capsici,
etc. [19–24]. It is gradually becoming a preferred alternative or complement to chemical
fungicides or conventional antibiotics due to its promising antimicrobial activities and
eco-friendly advantages, and it is already registered for controlling fruit, vegetable and rice
diseases [19,25,26]. In our previous study, Wang et al. [27] found that tetramycin exhibited
superior antimicrobial activity against various kiwifruit pathogens, such as Pseudomonas
syringae pv. actinidiae, Botryosphaeria dothidea, Phomopsis sp., Pseudomonas fulva, Alternaria
tenuissima, Agrobacterium tumefaciens, Armillariella mellea and Phytophthora cactorum. In a
subsequent study, we also found that chitosan could effectively enhance tetramycin against
soft rot of kiwifruit, and their co-application was more effective than tetramycin or chitosan
alone in enhancing disease resistance, growth, quality and aroma of kiwifruit [12]. Con-
sidering the severity of soft rot disease in kiwifruit, it is of great practical significance to
establish various candidate, practicable and environmentally friendly approaches and find
various adjuvants of tetracycin.
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Figure 1. The chemical structures of tetramycin (a) and matrine (b).

Matrine (Figure 1b), a natural tetracyclo-quinolizindine alkaloid, is a bioactive com-
pound of Chinese herbs, including Sophora flavescens and Radix Sophorae tonkinensis, and has
been widely used in medicine and agriculture fields [28]. In medicine, a large number of
evidence has suggested that matrine possesses anti-cancer, anti-inflammatory, anti-oxidant,
antiviral, antimicrobial, anti-fibrotic, anti-allergic, antinociceptive, hepatoprotective, car-
dioprotective, and neuroprotective properties [29,30]. In agriculture, matrine has also
been verified to have satisfactory antiviral, fungicidal and insecticidal activities [31–34].
For instance, Fu et al. [34] reported that matrine exhibited broad-spectrum antifungal
activity, such as against Cochliobolus miyabeanus, Rhizoctonia solani, Fusarium moniliforme,
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Alternaria brassicae. Sun et al. [35] reported that combined matrine and osthole had a good
effect and could be used as an alternative fungicide against Sorghum purple spot disease
caused by Cercospora sorghi. In China, matrine has been widely registered and used for
controlling the pests and diseases of fruits, vegetables, crops, etc. However, to date, there
is little to no attention or documentation available regarding the application of matrine
for controlling soft rot disease of kiwifruit. Meanwhile, whether matrine can be used as
an effective adjuvant to promote tetramycin against soft rot disease of kiwifruit is worth
further attention.

In this work, the bioactivities of various botanical fungicides against B. dothidea and
Phomopsis sp. were first determined. Subsequently, the control efficacy of the combined
application of tetramycin and matrine against soft rot disease of kiwifruit was evaluated.
Moreover, the effects of the combined application of tetramycin and matrine on disease
resistance, development, quality and amino acids of kiwifruit fruits were investigated.
These findings provide a practicable, green, and safe candidate approach for controlling
soft rot disease of kiwifruit.

2. Materials and Methods
2.1. Pathogens, Fungicides and Culture Medium

Highly pathogenici pathogens (Botryosphaeria dothidea RF-1 and Phomopsis sp. RF-2)
were provided by the Research Center for Engineering Technology of Kiwifruit, Guizhou
University, Guiyang City, Guizhou Province, China. The information of tested fungicides is
shown in Table 1. Potato dextrose agar (PDA, 200 g of potato, 20 g of dextrose, 15 g of agar
and 1000 mL of distilled water) medium was sterilized at 121 ◦C for 30 min, and its pH
value was neutral.

Table 1. Information of tetramycin and botanical fungicides.

Fungicides Dosage Forms Manufactures Manufacture Sites

0.3% Tetramycin Aqueous solutions (AS) Microke Biological Engineering Co. Ltd. Liaoning, China
0.5% Matrine AS Xinghe Crop Science and Technology Co. Ltd. Shandong, China
0.3% Eugenol Soluble liquid (SL) Baoding Yada Chemical Co. Ltd. Hebei, China
1.0% Osthole Emulsion in water (EW) Suke Agrochemical Co. Ltd. Jiangsu, China
80% Ethylicin Emulsifiable concentrate (EC) Kebang Chemical Co. Ltd. Henan, China
0.5% Physcion AS Qingyuanbao Biological Technology Co. Ltd. Neimenggu, China
0.5% Berberine AS Wante Biochemical Co. Ltd. Hebei, China

2.2. Field Control Experiment Site

Field control experiments of soft rot disease by tetramycin + matrine, tetramycin, and
matrine were conducted in an orchard of kiwifruit with a 7-year-old ‘Guichang’ cultivar in
Ganba Village, Longchang Town, Xiuwen Country, Guiyang City, Guizhou Province, China
(26◦79′80′′ N, 106◦56′58′′ E). Kiwifruit trees were carried by the concrete ‘T’ type frames,
and their planting density was 74 plants per 666.7 m2, with plant spacing at 3.00 × 3.00 m.
Male plants accounted for 1/9 of the total plants. The annual rainfall, mean altitude,
annual sunshine duration, frostless season and mean temperature of the kiwifruit orchard
was about 1, 293 mm, 1, 300 m, 1, 139.2 hours, 266 days and 13.2~15 ◦C, respectively.
The physical and chemical characteristics of planting soils in the kiwifruit orchard are
shown in Table 2.

2.3. In Vitro Toxicity Tests of Tetramycin and Botanical Fungicides

The in vitro toxicities of tetramycin or botanical fungicides against B. dothidea RF-1
and Phomopsis sp. RF-2 were tested by the mycelium growth rate method [3]. The tested
solutions of tetramycin or botanical fungicides at five gradient levels, which were set based
on the pre-experiment results, were prepared with sterilized water. Then, 1 mL tested
solution was uniformly mixed into 9 mL sterilized PDA solution (45~55 ◦C), and 1 mL
sterilized water was used as control solution. Then, the mixed fungicide–PDA solution
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was transferred to 90 mm diameter petri dishes. Then, it stood until solidification to
prepare a fungicide-containing PDA. Subsequently, a 5 mm diameter B. dothidea RF-1 or
Phomopsis sp. RF-2 disc was cut from the active growth site of a 7-day-old B. dothidea RF-1
or Phomopsis sp. RF-2 cultured on a PDA plate without fungicide, and it was placed in
the fungicide-containing PDA plate center with the inoculum side down. Each tested
solution was set at three replicates. After the treated plates was cultured at 28 ◦C until
the mycelium growth was almost covered the control plates, the mycelium diameters of
B. dothidea RF-1 or Phomopsis sp. RF-2 growth in the fungicide-containing PDA plates
were determined by criss-cross method. Five inhibition rates of each fungicide under five
gradient concentrations against B. dothidea RF-1 or Phomopsis sp. RF-2 were calculated,
respectively. Finally, the linear regression equation and EC50 (effective concentration of
50% inhibition rate) values of tetramycin or botanical fungicides against B. dothidea RF-1 or
Phomopsis sp. RF-2 were obtained according to five series concentrations of fungicides and
their corresponding inhibition rates. The inhibition rate was calculated as Equation (1):

Inhibition rate (%) = 100 × ((Mycelium diameter of control-Mycelium diameter
of fungicide)/(Mycelium diameter of control-5))

(1)

Table 2. The physical and chemical characteristics of planting soils in the kiwifruit orchard.

Parameters Content Parameters Content

Organic matter 35.63 g kg−1 Exchangeable calcium 18.09 cmol kg−1

Total nitrogen 1.43 g kg−1 Exchangeable magnesium 312.67 mg kg−1

Total phosphorus 1.71 g kg−1 Available zinc 0.81 mg kg−1

Total potassium 1.15 g kg−1 Available iron 31.54 mg kg−1

Alkali-hydrolyzable nitrogen 98.75 mg kg−1 Available manganese 18.68 mg kg−1

Available phosphorus 7.31 mg kg−1 Available boron 0.15 mg kg−1

Available potassium 1.83 mg kg−1 pH 5.93

2.4. Field Control Experiment of Soft Rot Disease of Kiwifruit

According to the results of in vitro toxicity tests of tetramycin and botanical fungicides
against pathogens of soft rot disease, tetramycin and matrine were preferred as the field
control fungicides. A field control experiment was set for four experimental treatments:
0.3% tetramycin AS 5000-fold + 0.5% matrine AS 1000-fold dilution liquid, 0.3% tetramycin
AS 5000-fold dilution liquid, 0.5% matrine AS 500-fold dilution liquid, and clear water
(control). Completely randomized experimental design and foliar spray method were
used for the field control experiment of leaf spot disease. Each treatment was set at three
replicates, and a total of twelve plots with three repetitions were arranged randomly. Each
plot contained nine trees, and five trees on the diagonal were used for investigation. Based
on our previous study, from May 20 to June 13 and August 2 to August 12 were infection
periods of soft rot pathogens on ‘Guichang’ kiwifruit [11]. Accordingly, on May 19 and
August 1, about 1500 and 2000 mL of fungicide dilution liquid was sprayed onto each
kiwifruit plant (including fruits, leaves, buds and stems).

2.5. Investigation of Control Effect of Soft Rot Disease in Kiwifruit Fruits

A total of 250 fruits was randomly collected from the middle, east, south, west and
north parts of five trees in each plot on September 2. Of these, 150 fruits were used for
investigating soft rot disease, and another 100 fruits was used for investigating resistance,
growth, quality and amino acids. When fruits reached an edible state, their soft rot disease
was investigated. The incidence rate and control effect of soft rot disease were respectively
calculated as Equations (2) and (3):

Incidence rate (%) = (Number of diseased kiwifruit/Total number of kiwifruit) × 100 (2)

Control effect (%) = ((Incidence rate in control-Incidence rate in treatment)/Incidence rate of control) × 100 (3)
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2.6. Investigation of Resistance, Growth, Quality and Amino Acids of Kiwifruit Fruits

When fruits reached an edible state, their disease resistance parameters including
total phenolics, total flavonoids, soluble protein and malonaldehyde (MDA), as well as
superoxide dismutase (SOD), peroxidase (POD), polyphenoloxidase (PPO) and phenylala-
nine ammonia lyase (PAL) activities were measured according to Zhang et al. [9,10] and
Wang et al. [12]. The longitudinal, transverse and lateral diameters, as well as fruit shape in-
dex, single fruit volume and weight of fruits were measured as described by Zhang et al. [3].
Meanwhile, the vitamin C, soluble solid, soluble sugar, titratable acidity and dry matter of
fruits were also measured according to Zhang et al. [10]. Simultaneously, the contents of
17 hydrolyzed amino acids in the fruits were measured using a High Performance Liquid
Chromatography (HPLC) system (ThermoFisher U3000). Furthermore, sweet, flavor, bitter,
aromatic, essential, nonessential and total amino acids were counted [36].

2.7. Statistical Analyses

All data are exhibited as the mean ± standard deviation (SD) of three replicate results.
SPSS 18.0 (SPSS Inc., Chicago, IL, USA) was used for calculating the regression equation
and EC50 values, analyzing variance and normality of data. A one-way analysis of vari-
ance (ANOVA) and quantile–quantile (Q–Q) plot test were determined for the difference
significances and normality of data, respectively. Origin 10.0 was used to draw charts.

3. Results
3.1. Toxicity of Tetramycin and Botanical Fungicides against Soft Rot Pathogens

The toxicity of tetramycin and botanical fungicides against B. dothidea RF-1 and Pho-
mopsis sp. RF-2. of soft rot disease is shown in Table 3. First, 0.3% Tetramycin AS exhibited
an excellent toxicity against B. dothidea RF-1 and Phomopsis sp. RF-2 with EC50 values of
0.143 and 0.094 mg kg−1, which were higher by 4.76 and 3.20, 131.13 and 274.97, 592.62 and
409.80, 656.78 and 608.56, and 9525.24 and 2605.62 folds compared to 0.3% eugenol SL,
1.0% osthole EW, 80% ethylicin EC, 0.5% physcion AS and 0.5% berberine AS, respectively.
Meanwhile, 0.5% matrine AS also had an outstanding toxicity against B. dothidea RF-1 and
Phomopsis sp. RF-2 with EC50 values of 0.442 and 0.332 mg kg−1, which were higher by
42.43 and 77.85, 191.73 and 116.03, 212.49 and 172.30, and 3081.70 and 737.73 folds compared
to 1.0% osthole EW, 80% ethylicin EC, 0.5% physcion AS and 0.5% berberine AS, respec-
tively. The results indicate that 0.3% tetramycin AS and 0.5% matrine AS had a notable
potential for controlling soft rot disease of kiwifruit in the field. Although 0.3% eugenol SL
also had a relatively superior toxicity against B. dothidea RF-1 and Phomopsis sp. RF-2, its
EC50 value to the dominant pathogen B. dothidea was lower than that of 0.5% matrine AS.
Moreover, 0.3% tetramycin AS and 0.5% matrine AS had a same dosage form; hence, they
were optimized as the field control fungicides of soft rot disease in kiwifruit.

3.2. Control Effects of Tetramycin and Matrine against Soft Rot Disease of Kiwifruit

The control effects of tetramycin + matrine, tetramycin alone and matrine alone
against soft rot disease of kiwifruit are shown in Table 4. Tetramycin + matrine, tetramycin
and matrine significantly (p < 0.01) decreased the incidence rate of soft rot disease of
kiwifruit, and tetramycin + matrine was the most effective. The control effect of tetramycin
+ matrine against soft rot disease was 82.68%, which was significant (p < 0.05) higher
than 75.19% of tetramycin and was significantly (p < 0.01) higher than 68.50% of matrine.
The results demonstrate that matrine used together with tetramycin effectively controlled
soft rot disease of kiwifruit, whose control effect was superior to that of tetramycin or
matrine alone.
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Table 3. Toxicities of tetramycin and botanical fungicides against B. dothidea and Phomopsis sp.

Pathogens Fungicides Regression
Equation

Determination
Coefficient (R2) EC50 (mg kg−1)

B. Dothidea RF-1

0.3% Tetramycin AS y = 6.076 + 1.251x 0.996 0.143
0.5% Matrine AS y = 5.422 + 1.191x 0.978 0.442
0.3% Eugenol SL y = 5.365 + 2.180x 0.991 0.680
1.0% Osthole EW y = 4.201 + 0.628x 0.981 18.752
80% Ethylicin EC y = 2.065 + 1.522x 0.993 84.745
0.5% Physcion AS y = 2.858 + 1.086x 0.971 93.919
0.5% Berberine AS y = 4.100 + 0.287x 0.943 1362.110

Phomopsis sp. RF-2

0.3% Tetramycin AS y = 1.151 + 9.360x 0.997 0.094
0.5% Matrine AS y = 5.925 + 1.882x 0.923 0.332
0.3% Eugenol SL y = 5.710 + 1.360x 0.997 0.301
1.0% Osthole EW y = 3.178 + 1.290x 0.996 25.847
80% Ethylicin EC y = 3.139 + 1.174x 0.953 38.521
0.5% Physcion AS y = 4.117 + 0.502x 0.991 57.205
0.5% Berberine AS y = 3.533 + 0.614x 0.991 244.928

Note: y and x indicate the inhibition rate and fungicide concentration, respectively.

Table 4. The control effects of tetramycin and matrine on soft rot diseases of kiwifruit.

Treatments Incidence Rate of Disease Fruits (%) Control Effects (%)

Tetramycin + Matrine
Tetramycin

9.78 ± 1.39 cC 82.68 ± 2.46 aA

14.00 ± 2.00 bBC 75.19 ± 3.54 bAB

Matrine 17.78 ± 2.14 bB 68.50 ± 3.80 cB

Control 56.44 ± 3.01 aA

Note Values indicate the mean± SD (n = 3). Different capital and small letters in the same column show significant
differences at 1% (p < 0.01) and 5% (p < 0.05) levels, respectively.

3.3. Effects of Tetramycin and Matrine on Resistance Parameters of Kiwifruit Fruits

Figure 2 depicts the effects of tetramycin + matrine, tetramycin and matrine on the
total phenolics, total flavonoids, soluble protein, and MDA of kiwifruit fruits. Compared to
tetramycin, matrine or control, and tetramycin + matrine significantly (p < 0.05) increased
the contents of total phenolics and total flavonoids of kiwifruit fruits and significantly
(p < 0.01) increased their soluble protein content, as well as significantly (p < 0.01) reduced
their MDA content. Total phenolics and total flavonoids of kiwifruit fruits treated by
tetramycin or matrine alone had no significant (p < 0.05) difference to those of the control,
while their soluble protein content was significantly (p < 0.05) higher than that of the control.
Moreover, MDA of kiwifruit fruits treated by tetramycin or matrine alone was significant
(p < 0.01) or significantly (p < 0.05) higher than that of the control, respectively. These results
demonstrate that matrine used together with tetramycin enhanced total phenolics, total
flavonoids and soluble protein contents of kiwifruit fruits and inhibited their MDA content.

Figure 3 depicts the effects of tetramycin + matrine, tetramycin and matrine on SOD,
POD, PPO, and PAL activities of kiwifruit fruits. Compared to tetramycin, matrine or
control, tetramycin + matrine significantly (p < 0.01) enhanced SOD, PPO, and PAL ac-
tivities of kiwifruit fruits. Compared to tetramycin or control, tetramycin + matrine also
significantly (p < 0.01) enhanced POD activity of kiwifruit fruits; meanwhile, POD activity
of kiwifruit fruits treated by tetramycin + matrine was significantly (p < 0.05) higher than
that of matrine, while that of matrine was also significantly (p < 0.05) higher than that
of the control. SOD, PPO, and PAL activities of kiwifruit fruits treated by tetramycin or
matrine alone had no significant (p < 0.05) difference to those of the control; their POD
activity treated by tetramycin also had no significant difference to that of the control. These
findings demonstrate that matrine used together with tetramycin notably improved SOD,
POD, PPO, and PAL activities of kiwifruit fruits.
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Figure 2. The effects of tetramycin and matrine on the contents of phenolics (a), flavonoids (b), soluble
protein (c), and MDA (d) in kiwifruit fruits. Values indicate the mean ± SD (n = 3). Different capital
and small letters show significant differences at 1% (p < 0.01) and 5% (p < 0.05) levels, respectively.

3.4. Effects of Tetramycin and Matrine on Growth and Quality of Kiwifruit Fruits

The effects of tetramycin + matrine, tetramycin, and matrine on the development of
kiwifruit fruits are shown in Table 5. Longitudinal, transverse, lateral diameters and fruit
shape index of fruits showed no significant (p < 0.05) differences among the four treatments.
Compared to control, tetramycin + matrine could significantly (p < 0.05) enhance the single
fruit volume and weight of kiwifruit fruits, but there was no significant (p < 0.05) difference
to those of kiwifruit fruits treated by tetramycin. Meanwhile, the single fruit weight of
kiwifruit fruits treated by tetramycin + matrine was significantly (p < 0.05) higher than
those of matrine. The results reveal that matrine used together with tetramycin effectively
promoted fruit development and yield formation of kiwifruit.

Table 5. The effects of tetramycin and matrine on the development of kiwifruit.

Treatments
Diameter (mm) Fruit Shape

Index
Single Fruit

Volume (cm3)
Single Fruit
Weight (g)Longitudinal Transverse Lateral

Tetramycin + Matrine
Tetramycin

76.89 ± 0.31 a 52.98 ± 0.50 a 42.64 ± 0.24 a 1.61 ± 0.00 a 72.72 ± 1.00 a 91.81 ± 0.59 a

76.68 ± 0.22 a 52.68 ± 0.43 a 41.86 ± 0.52 a 1.62 ± 0.01 a 70.79 ± 0.81 ab 90.42 ± 0.86 ab

Matrine 76.14 ± 0.46 a 52.05 ± 0.51 a 41.97 ± 0.28 a 1.62 ± 0.01 a 69.64 ± 1.09 ab 89.72 ± 0.73 bc

Control 76.10 ± 0.56 a 52.03 ± 0.30 a 41.59 ± 0.24 a 1.63 ± 0.01 a 68.95 ± 1.12 b 88.93 ± 1.06 c

Note: Values indicate the mean ± SD (n = 3). Different small letters in the same column show significant
differences at 5% level (p < 0.05).
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Figure 3. The effects of tetramycin and matrine on SOD (a), POD (b), PPO (c), and PAL (d) activities
of kiwifruit fruits. Values indicate the mean ± SD (n = 3). Different capital and small letters show
significant differences at 1% (p < 0.01) and 5% (p < 0.05) levels, respectively.

The effects of tetramycin + matrine, tetramycin, and matrine on the quality of kiwifruit
fruits are displayed in Table 6. Compared to control, tetramycin + matrine could signifi-
cantly (p < 0.05) increase vitamin C, soluble sugar, soluble solid and dry matter of kiwifruit
fruits, as well as decrease their titratable acidity. Simultaneously, vitamin C, soluble sugar,
soluble solid and dry matter of kiwifruit fruits treated by tetramycin + matrine were a little
more than those of tetramycin or matrine alone. However, the quality improvement of
kiwifruit fruits treated by tetramycin or matrine alone was not obvious, and they could
only significantly (p < 0.05) increase dry matter content of fruits compared with control.
These findings show that matrine used together with tetramycin could effectively enhance
kiwifruit fruit quality, and tetramycin and matrine should have a notably synergistic effect
in improving the quality of kiwifruit fruits.

Table 6. The effects of tetramycin and matrine on quality of kiwifruit.

Treatments Vitamin C
(g kg−1)

Total Soluble
Sugar (%) Soluble Solid (%) Dry Matter (%) Titratable Acidity

(%)

Tetramycin + Matrine
Tetramycin

1.90 ± 0.02 a 12.62 ± 0.06 a 15.50 ± 0.10 a 19.68 ± 0.11 a 1.05 ± 0.01 b

1.87 ± 0.02 ab 12.40 ± 0.10 ab 15.27 ± 0.15 a 19.37 ± 0.19 ab 1.12 ± 0.04 a

Matrine 1.87 ± 0.01 ab 12.61 ± 0.05 a 15.17 ± 0.15 a 19.34 ± 0.17 ab 1.09 ± 0.02 ab

Control 1.85 ± 0.01 b 12.10 ± 0.08 b 14.70 ± 0.10 b 18.98 ± 0.14 b 1.11 ± 0.03 a

Note: Values indicate the mean ± SD (n = 3). Different small letters in the same column show significant
differences at 5% level (p < 0.05).
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3.5. Effects of Tetramycin and Matrine on Amino Acids of Kiwifruit Fruits

The effects of tetramycin + matrine, tetramycin, and matrine on kiwifruit amino
acids are displayed in Table 7. Total amino acids of fruits treated by tetramycin + ma-
trine, tetramycin, and matrine was higher than that of control. Compared to control,
the sweet, flavor, bitter, essential, nonessential and total amino acids of fruits treated by
tetramycin + matrine were significantly (p < 0.05) higher than those of control. Simulta-
neously, tetramycin + matrine could also significantly (p < 0.05) enhance the sweet, flavor,
essential, nonessential and total amino acids of fruits compared with tetramycin treatment.
Meanwhile, tetramycin + matrine also could significantly (p < 0.05) enhance the flavor,
bitter, essential and nonessential amino acids of fruits compared with matrine treatment.
Aromatic amino acids of fruits in four treatments showed no significant (p < 0.05) differ-
ences. Moreover, compared to control, tetramycin could only significantly (p < 0.05) increase
bitter amino acids of kiwifruit fruits, while matrine could only significantly (p < 0.05) in-
crease sweet, flavor and nonessential amino acids. These results reveal that the promoted
effects of fruit amino acids by tetramycin + matrine were superior to those of tetramycin or
matrine alone.

Table 7. The effects of tetramycin and matrine on amino acids of kiwifruit fruits.

Amino Acids (g kg−1) Tetramycin +
Matrine Tetramycin Matrine Control

Aspartic 0.89 0.83 0.86 0.83
Glutamate 1.85 1.84 1.85 1.79

Cystine 0.97 0.93 0.96 0.97
Serine 0.80 0.76 0.77 0.76

Glycine 0.77 0.65 0.76 0.75
Histidine 0.69 0.68 0.68 0.66
Arginine 1.44 1.38 1.41 1.35

Threonine 0.45 0.48 0.48 0.47
Alanine 0.76 0.68 0.74 0.67
Proline 1.25 1.28 1.26 1.29

Tyrosine 0.67 0.68 0.68 0.67
Valine 0.65 0.60 0.65 0.64

Methionine 0.57 0.63 0.57 0.58
Isoleucine 0.62 0.60 0.58 0.58
Leucine 0.65 0.59 0.57 0.58

Phenylalanine 0.74 0.70 0.72 0.68
Lysine 0.94 0.85 0.88 0.87

Sweet amino acids 4.72 ± 0.01 a 4.53 ± 0.04 b 4.69 ± 0.05 a 4.60 ± 0.04 b

Flavor amino acids 3.68 ± 0.03 a 3.51 ± 0.03 c 3.58 ± 0.01 b 3.49 ± 0.01 c

Bitter amino acids 3.92 ± 0.08 a 3.81 ± 0.04 ab 3.78 ± 0.01 bc 3.73 ± 0.04 c

Aromatic amino acids 2.37 ± 0.03 a 2.31 ± 0.08 a 2.36 ± 0.03 a 2.32 ± 0.01 a

Essential amino acids 4.61 ± 0.07 a 4.45 ± 0.07 b 4.45 ± 0.03 b 4.41 ± 0.03 b

Nonessential amino acids 8.83 ± 0.04 a 8.42 ± 0.04 c 8.70 ± 0.04 b 8.45 ± 0.04 c

Total amino acids 14.69 ± 0.05 a 14.16 ± 0.10 b 14.42 ± 0.08 ab 14.15 ± 0.04 b

Note: Values indicate the mean ± SD (n = 3). Different small letters in the same line show significant differences
at 5% level (p < 0.05).

4. Discussion

Tetramycin is a natural product derived from microorganisms, while matrine is also a
natural product derived from plants, and both of them have many prominent advantages,
including easy degradation, no residue poisoning and no environmental pollution [35,37].
Our previous studies found that tetramycin exhibited superior antimicrobial activity against
various kiwifruit pathogens [3,27]. Simultaneously, previous findings have demonstrated
that matrine could effectively inhibit the mycelia biosynthesis of Cochliobolus miyabeanus,
Rhizoctonia solani, Fusarium moniliforme, Alternaria brassicae and Cercospora sorghi [34,35].
The results here exhibit that 0.5% matrine AS also had an outstanding toxicity against
B. dothidea RF-1 and Phomopsis sp. RF-2 with EC50 values of 0.442 and 0.332 mg kg−1,
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which were higher by 42.43 and 77.85, 191.73 and 116.03, 212.49 and 172.30, and 3081.70
and 737.73 folds compared to 1.0% osthole EW, 80% ethylicin EC, 0.5% physcion AS and
0.5% berberine AS, respectively. This work expanded the antimicrobial spectrum of matrine.
Additionally, although 0.3% eugenol SL had a relatively superior toxicity against B. dothidea
RF-1 or Phomopsis sp. RF-2, its toxicity to dominant pathogen B. dothidea was inferior to
that of 0.5% matrine AS. Furthermore, 0.5% matrine AS and 0.3% tetramycin AS had the
same dosage form; hence, they were optimized as combined fungicides for controlling soft
rot disease in kiwifruit.

Combined application of fungicides consisting of two or more active components
may present antagonistic, additive or synergistic interaction [35,38]. In our previous study,
we also found that co-application of tetramycin and chitosan was more effective than
tetramycin or chitosan alone in controlling soft rot disease of kiwifruit and enhancing the
disease resistance, growth, quality and aroma of kiwifruit fruits [12], while the combined
application of tetramycin and matrine in controlling plant diseases has not been reported.
In this study, the control effect of tetramycin + matrine against soft rot disease was 82.68%,
which was significantly (p < 0.05) higher than 75.19% of tetramycin and significantly
(p < 0.01) higher than 68.50% of matrine. This suggests that tetramycin and matrine had
a notably synergetic effect in the control of soft rot disease of kiwifruit. This synergistic
interaction was a combined action of many factors, and it was probably derived from
the superior antimicrobial activities and complementary action modes of tetramycin and
matrine, which effectively decreased aggressiveness of B. dothidea and Phomopsis sp. of soft
rot pathogens. Synergistic application of fungicides can not only expand their antimicrobial
spectrum, enhance fungicide efficiency, reduce fungicide amount and decrease control cost,
they can also play a key role in overcoming and delaying fungicide resistance. Tetramycin
is a polyene antibiotic mixture, and combined with matrine, it can effectively prevent the
resistance development of pathogens [27,39].

Phenolics and flavonoids are two important secondary metabolites in systemic resis-
tance of plants. Soluble protein and MDA are closely related to plant disease resistance [40].
In our previous report, Wang et al. [12,27] found that tetramycin could effectively increase
phenolics and flavonoids of kiwifruit fruits. In this work, matrine used together with
tetramycin effectively improved phenolics, flavonoids and soluble protein of fruits and
inhibited their MDA, whereas these effects of matrine or tetramycin alone were dissatisfac-
tory. SOD, POD, PPO, and PAL are closely associated with plant disease resistance [40].
Zhong et al. [39] found that tetramycin could stimulate plant disease resistance by enhanc-
ing PPO, PAL and POD activities. Wang et al. [12,27] also indicate that tetramycin notably
promoted SOD and PPO activities of kiwifruit fruits. Similarly, the present results show
that matrine used together with tetramycin notably improved SOD, POD, PPO, and PAL
activities of kiwifruit fruits, while these effects of matrine or tetramycin alone were unsat-
isfactory. These results emphasize that the co-application of tetramycin and matrine was
more helpful in improving the disease resistance of kiwifruit, and an obviously synergetic
interaction of tetramycin and matrine was available.

The health of kiwifruit fruits during storage determines its fruit quality and commodity.
Wang et al. [12] indicated that chitosan + tetramycin effectively enhanced the growth and
quality of kiwifruit. In this study, tetramycin + matrine significantly (p < 0.05) enhanced
volume, weight, vitamin C, soluble solid, soluble sugar and dry matter of kiwifruit and
reduced their titratable acidity. However, the development and quality improvements of
kiwifruit fruits treated by tetramycin or matrine alone was not obvious. These findings
show that matrine used together with tetramycin could effectively enhance kiwifruit fruit
development and quality, and tetramycin and matrine should have a notably synergistic
interaction. These notable effects were probably derived from the dual action of tetracycin
and matrine, of which their co-application could protect kiwifruit from pathogenic infection
and induce disease resistance in kiwifruit fruits. The closer the amino acid composition
of foods is to that of human proteins, the higher its nutritional value [3]. According to
the amino acid model of protein nutritional value proposed by the WHO and FAO, it is
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suggested that the essential amino acids with superior quality account for about 40% of
total amino acids, and the ratio of essential amino acids to nonessential amino acids is
more than 0.6 [3,41]. In this study, the aforementioned percentages and ratios of kiwifruit
fruits treated by tetramycin + matrine, tetramycin, matrine and control were 31.40% and
0.52, 31.46% and 0.53, 30.89% and 0.51, as well as 31.15% and 0.52, respectively. These
results illustrate that the protein nutritional value of kiwifruit fruits treated by tetramycin +
matrine was closer to the ideal mode value compared to matrine and control treatments.
Simultaneously, tetramycin + matrine could significantly (p < 0.05) increase sweet, flavor,
bitter, essential, nonessential and total amino acids of kiwifruit fruits, and the promoted
effects of fruit amino acids by tetramycin + matrine were superior to those of tetramycin or
matrine alone. These findings highlight that matrine is an effective adjuvant of tetramycin
in enhancing its improvement for kiwifruit quality.

At present, natural products are preferred by consumers and are increasingly used as
popular alternatives or complementary approaches to fungicides for plant disease man-
agement [13,14,42]. Tetramycin and matrine not only have many prominent advantages,
such as easy degradation, no residue poisoning and no environmental pollution, etc., they
have also been widely used in the medicine and agriculture fields [18,29,35,37]. Mean-
while, the field application concentration of 0.3% tetramycin AS (5000-fold dilution liquid)
+ 0.5% matrine AS (1000-fold dilution liquid) is low, and the safe interval (August 1 to
September 28, 58 days) and soft ripening (more than 20 days) periods of kiwifruit fruits
were also long. Thus, the food safety risks caused by tetramycin or matrine are almost
nonexistent. This study highlights that the co-application of tetramycin and matrine can be
used as a feasible candidate approach for controlling soft rot disease of kiwifruit.

5. Conclusions

In conclusion, tetramycin and matrine displayed excellent toxicity activities against B.
dothidea and Phomopsis sp. The combination of tetramycin and matrine effectively controlled
soft rot disease of kiwifruit and reliably promoted the contents of total phenolics, total
flavonoids and soluble protein of kiwifruit fruits and decreased their MDA, as well as
notably enhanced their SOD, POD, PPO, and PAL activities. Moreover, the combination
of tetramycin and matrine could effectively improve the development, quality and amino
acids of kiwifruit fruits. This study highlights that the combination of tetramycin and
matrine can be used as a feasible candidate approach for controlling soft rot disease
of kiwifruit.
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