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a b s t r a c t

Pneumonia is one of the major reasons for child mortality especially in income-deprived regions of
the world. Although it can be detected and treated with very less sophisticated instruments and
medication, Pneumonia detection still remains a major concern in developing countries. Computer-
aided based diagnosis (CAD) systems can be used in such countries due to their lower operating
costs than professional medical experts. In this paper, we propose a CAD system for Pneumonia
detection from Chest X-rays, using the concepts of deep learning and a meta-heuristic algorithm.
We first extract deep features from the pre-trained ResNet50, fine-tuned on a target Pneumonia
dataset. Then, we propose a feature selection technique based on particle swarm optimization (PSO),
which is modified using a memory-based adaptation parameter, and enriched by incorporating an
altruistic behavior into the agents. We name our feature selection method as adaptive and altruistic
PSO (AAPSO). The proposed method successfully eliminates non-informative features obtained from
the ResNet50 model, thereby improving the Pneumonia detection ability of the overall framework.
Extensive experimentation and thorough analysis on a publicly available Pneumonia dataset establish
the superiority of the proposed method over several other frameworks used for Pneumonia detection.
Apart from Pneumonia detection, AAPSO is further evaluated on some standard UCI datasets, gene
expression datasets for cancer prediction and a COVID-19 prediction dataset. The overall results are
satisfactory, thereby confirming the usefulness of AAPSO in dealing with varied real-life problems. The
supporting source codes of this work can be found at https://github.com/rishavpramanik/AAPSO.

© 2022 Elsevier B.V. All rights reserved.
1. Introduction

Pneumonia is a very common disease, especially among chil-
ren. However, Pneumonia can be treated with low-cost medi-
ation. Despite having some affordable treatment procedures, it
s very unfortunate that majorly in sub-Saharan Africa and South
sia where poverty still exists to a large extent, it continues to
e a reason to cause thousands of deaths every year.1 A possible

reason for this is the lack of infrastructural facilities, such as
proper testing labs. Besides, pollution and the lack of sense of
hygiene due to lower levels of education make things worse. A
Chest X-ray (CXR) impression of the lung area is one of the most
effective ways to detect Pneumonia [1]. A beam of radiation is
passed through the human body, and the image is collected on
a special film. Thus, the entire process of examination becomes
completely painless and quicker than methods like Computed

∗ Corresponding author.
E-mail addresses: rishavpramanik@gmail.com (R. Pramanik),

am.sarkar@jadavpuruniversity.in (R. Sarkar).
1 https://www.who.int/news-room/fact-sheets/detail/Pneumonia.
ttps://doi.org/10.1016/j.asoc.2022.109464
568-4946/© 2022 Elsevier B.V. All rights reserved.
Tomography (CT) scans. Sample CXRs of Pneumonia affected and
normal cases are illustrated in Fig. 1. Typically, there is a good
amount of intra-class and inter-class variations for CXRs that
make the computer-based detection task much more challenging.
This is because the physical structure of every human being
is different. The range of Pneumonia patches depends on the
severity of infection. Further, the developed Pneumonia patches
may have varied shapes and can be located in multiple areas [2].
This makes the task of detection even more difficult.

With the advancement of technologies, Computer-Aided De-
tection (CAD) systems are nowadays getting more popular be-
cause it requires much less investment for medical laboratory
setup, thereby making the medical facilities affordable for all.
Typically, such systems consider an image as the input of the
suspected organ to make the prediction. Computer scientists gen-
erally extract a set of features from the inputs by some means
and try to identify the presence of a disease using some machine
learning algorithms. Deep learning-based methods now do the
same, but they do not need any feature engineering for the de-
tection or classification tasks. Researchers usually perform deep
feature extraction with the help of convolutional neural networks

https://doi.org/10.1016/j.asoc.2022.109464
http://www.elsevier.com/locate/asoc
http://www.elsevier.com/locate/asoc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.asoc.2022.109464&domain=pdf
https://github.com/rishavpramanik/AAPSO
mailto:rishavpramanik@gmail.com
mailto:ram.sarkar@jadavpuruniversity.in
https://www.who.int/news-room/fact-sheets/detail/Pneumonia
https://doi.org/10.1016/j.asoc.2022.109464
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Fig. 1. CXRs of Pneumonia and normal cases. Images are taken from the Kermany et al. [4] dataset. The top row consists of images belonging to the normal category,
whereas images in the bottom row belong to confirmed Pneumonia cases.
(CNNs) and classify using multi-layered neural networks. To train
such networks, they rely on an objective function, which is used
to optimize the numerous internal-weight values of the deep
model. Hence, this is known as ‘‘hilly landscape of multiple weight
alues’’ [3]. Deep learning-based methods have shown good gen-
ralization traits over various problem domains, which prompts
esearchers around the globe to work tirelessly and come up with
ore efficient and effective models than earlier. However, this

obust nature comes at the cost of high computational resources
nd, in general it requires a huge amount of data to train the
odel efficiently. The latter requirement sometimes cannot be

ulfilled, especially in the biomedical field.
Nowadays, researchers very often use the concept of transfer

earning, which alleviates the need for such a huge amount of
ata for proper training of the models. For this they train the net-
ork using a larger dataset (such as ImageNet), then they transfer
eights and using which they train the network on a smaller
ataset (i.e., the target dataset). However, researchers generally
verlook one important aspect when they apply deep learning
odels, which is the existence of redundant or non-informative

eatures, the presence of which may hamper the overall perfor-
ance of the network. For that reason, recently we see a good

nflux of pruning-based deep networks which essentially aim to
liminate irrelevant parts of the deep network and re-train the
etwork. On a similar note, feature selection-based algorithms
im for the same, i.e., such algorithms focus on selecting the
est subset of features from a given set of features. Researchers,
ften devise such methods using popular meta-heuristic-based
ptimization algorithms such as Genetic Algorithm (GA), Particle
warm Optimization (PSO), and Ant Colony Optimization (ACO)
o name a few.

In the present work, we propose an adaptive and altruistic PSO
AAPSO) for Pneumonia detection from CXR images. We first use
CNN architecture (pre-trained on the ImageNet dataset), which
e fine-tune on the target dataset. The features from the layer
receding the final classification layer are extracted and fed to the
roposed AAPSO algorithm to obtain the relevant set of features
nly, and finally, classify the CXR images using the k− Nearest
eighbors (k−NN) classifier. The proposed deep feature-selection

method outperforms several state-of-the-art approaches. In a
nutshell, we list the highlights of our work as:

• We propose a deep feature selection-based method for
Pneumonia detection from CXR images.
• Original PSO is improvised with a dynamic adaption pa-

rameter which we propose on the assumption: ‘‘Relative
divergence of a solution is directly dependent on the search
time remaining’’.
2

• Adaptive PSO is further enriched with altruistic qualities for
the motive to select the most relevant subset of features
from a pool of features extracted by the CNN model.
• The proposed deep feature selection framework is assessed

on a publicly accessible Pneumonia CXR dataset using 5-fold
cross-validation scheme.
• The proposed framework is also tested on several real-life

datasets like gene expression-based cancer prediction and
COVID-19 prediction to ensure the robustness of the same.

The rest of the paper is organized in the following manner:
Section 2 consists of past methods proposed in the domain of
Pneumonia detection from CXRs and also reviews the differ-
ent variants of PSO found in the literature for feature selection.
Section 3 gives a detailed description of the proposed method,
and Section 4 reports the experiments and the corresponding
analysis. To check the usefulness of AAPSO on other real-life
medical datasets, in Section 5 we extensively evaluate AAPSO on
standard UCI datasets, microarray-based gene expression datasets
and a COVID-19 prediction dataset. Finally, we conclude our
paper in Section 6.

2. Related work

2.1. Pneumonia detection from CXRs

Some recently proposed methods for Pneumonia detection
using CXRs are discussed below:

Liang and Zheng [5] proposed a deep residual-based model
with dilated convolutions having 49 layers for Pneumonia de-
tection. Besides, they added some noise to deal with overfitting.
While this inclusion was able to handle the overfitting problem,
on the other hand, the experimental results show that the method
is less precise for Pneumonia detection which may not be useful
in practical scenarios. This problem was possibly due to the rea-
son that the authors opted to adapt the transfer learning proce-
dure by training the network on a large-scale CXR dataset [6]. The
dataset used for pre-training itself is imbalanced, therefore there
might have been a problem to learn the feature representation
in the pre-training process itself. Recently, Zhang et al. [7] pro-
posed a one-class detection technique. The authors used a deep
model for feature extraction, and then proposed an anomaly-
detection module and a confidence–prediction module, and to
fit the anomaly scores the authors used Gaussian distribution.
Although the method is of great significance, the authors directly
used a pre-trained feature extractor. A fine-tuned network might
have given a better feature representation, which would have
been more useful for final classification.
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The work by Chattopadhyay et al. [8] proposed a deep feature-
selection technique with a Sine-Cosine Algorithm aided by a
local search method. Unsupervised learning approaches have also
been proposed in the past. For example, Tang et al. [9] aimed
to evaluate the classification-based generalizability of Generative
Adversarial Network (GAN) based methods. The authors proposed
to use CycleGAN for this task. The authors used the feature maps
from the inner layers to calculate the reconstruction loss for
unsupervised learning.

Ensemble-based methods such as the one by Kundu et al. [10]
used three deep CNN models as base learners, and outcomes of
those learners were aggregated based on the weighted sum rule.
The authors assigned weights based on the entropy of various
performance metrics. One of the main problems with this strategy
is that deep learners often give very high probabilistic values even
for misclassification scenarios. This behavior is observed due to
irrelevant features learned within its inner layers. The authors as-
signed the classifier a weight, used for classification, which might
not be practical considering the previous discussion. In the article
by Dey et al. [11], the authors proposed an ensemble scheme
using principal component analysis (PCA) and a serial fusion. The
method was designed to ensemble deep features and handcrafted
features such as Complex Wavelet Transform (CWT), Discrete
Wavelet Transform (DWT) and Gray-Level Co-Occurrence Ma-
trix (GLCM). The ensembled features were classified using some
popular machine learning-based classifiers. A high-dimensional
feature vector was used for the final classification. This might
have been a concern in performance since no feature selec-
tion technique was applied to check the existence of correlated
features.

2.2. Feature selection using PSO

Since its inception in 1995 [12], PSO has been used suc-
cessfully to handle many real-life continuous optimization prob-
lems [13,14]. Additionally, for a discrete search space-based
optimization problem, like the knapsack problem or the feature
selection problem, PSO has been used by many researchers.
Below, we review some variants of PSO proposed in recent years.

Tran et al. [15] proposed a Variable-Length Particle Swarm
Optimization (VLPSO), which divided the population into several
partitions. Each partition had a maximum length criterion, which
equals the number of features selected from a subset of ranked
features. This ranking was done based on symmetrical uncer-
tainty – a filter method. The proposed strategy could very well
reduce the computational memory and time required. However,
over the course of iterations, the feature ranking was not updated
as it is a computationally expensive task. But it may hamper
the overall feature selection process. In addition, the particles
were updated independently in the different dimensions with-
out considering the interactions among themselves. In another
work by Tran et al. [16], they proposed potential PSO (PPSO), a
feature-representation mechanism, which could perform feature
discretion and selection. This strategy reduced the search space
complexity. A new fitness function was also proposed to evaluate
the solutions. Results achieved on standard datasets were encour-
aging, but in the initial stages the method uses a fixed size feature
vector for random initialization, this may pose a challenge to
explore the search space. Also, this method requires a pre-defined
list of cut-points, which might pose an additional challenge.

Ansari et al. [17] proposed a bi-stage feature selection method
where the first stage consists of two filter methods, and the
second stage consists of two wrappers for feature-selection. This
approach resulted in using a lot of computational resources and
time to optimize with four feature selection algorithms. In the
work by Ghosh et al. [18], the authors used GA and PSO, then
 p

3

Table 1
Distribution of images in the Pneumonia dataset used for experimentation.
Class Setting Samples

Normal Train 1267
Test 316

Pneumonia Train 3419
Test 856

applied the average weighted combination method (AWCM) fol-
lowed by a local search method namely sequential one-point
flipping (SOPF). This approach was useful and resulted in a good
number of feature reductions. The proposed framework requires
determining a feature importance score based on accuracy val-
ues obtained by GA and PSO, and using the mean of this im-
portance score, features were eliminated. Therefore, the depen-
dency of one feature on another was completely ignored. A work
proposed by Guha et al. [19] proposed to hybridize PSO and
Gravitational Search Algorithm (GSA) for handwritten script clas-
sification. The proposed method introduced a concept of memory
into the memory-less GSA while updating the velocity of the
agents. But the driving force for velocity i.e., the acceleration,
which is a measure used in GSA to determine the extent of explo-
ration and exploitation, remains memory free in their proposed
algorithm. Hence, the algorithm may have some issues balancing
the exploration and exploitation efficiently.

3. Methods and materials

In this section, we discuss the relevant details corresponding
to the proposed deep feature selection framework for Pneumonia
detection from CXRs. We present the overall pipeline of the
proposed approach in Fig. 2. At first, the input images are resized
to (224,224) pixels and augmented using standard online data
augmentation techniques such as horizontal and vertical flips,
rotation, scaling, skew and translation. This step is essential to
make the model capable of dealing with input variants [20]. How-
ever, for the test set, the data augmentation process is avoided
to ensure the model is not evaluated on synthetic data. These
samples are then fed to the ResNet50 model (pre-trained on the
ImageNet dataset) and are used to train the deep CNN, for clas-
sification. We use fully-connected neural networks, essentially
with one hidden layer of the dimension of 512. The last layer is
the probability score generator, hence we extract deep features
from the second-last layer (512 dimensions). These features are
fed to the proposed AAPSO-based feature selection algorithm
to remove redundant and non-informative features, and thus a
reduced feature set is obtained. This reduced feature set is fed to
the k−NN classifier for the purpose of classification.

3.1. Dataset description

We have used a publicly available CXR Pneumonia dataset by
Kermany et al. [4]. We should be cognizant of the fact that the
dataset suffers from the class-imbalance problem. This dataset is
publicly-hosted on the Kaggle platform2 for easy use. We present
the distribution of the images in Table 1.

2 https://www.kaggle.com/datasets/paultimothymooney/chest-xray-
neumonia.

https://www.kaggle.com/datasets/paultimothymooney/chest-xray-pneumonia
https://www.kaggle.com/datasets/paultimothymooney/chest-xray-pneumonia


R. Pramanik, S. Sarkar and R. Sarkar Applied Soft Computing 128 (2022) 109464

3

l
i
T
a
r
l
o
o
s
t
a
f

F

Fig. 2. The overall pipeline of the proposed approach used for Pneumonia detection from CXRs. First, the images are resized and augmented using standard techniques.
Then these are fed to the pre-trained ResNet50 model for deep feature extraction. After that the proposed AAPSO selects the most informative features. Finally, the
classification is performed using the k−NN classifier.
.2. Deep residual network

Deep Residual Network (ResNet), one of the widely used deep
earning models, was introduced by He et al. [21] in 2016. Typ-
cally, a ResNet architecture comprises several residual blocks.
he very first thing we can notice in Fig. 3 is that there is
direct connection that skips some layers of the model. The

esidual-connections help to counter the vanishing gradient prob-
em, which means for a very deep CNN architecture, the gradients,
r the derivatives tend to be zero and thus are not properly
ptimized during the training process. For a deep architecture, a
ignal is generally processed following Eq. (1) where w is referred
o as the weight parameter and b is called the bias, w and b
re trainable. With residual learning, the input signal is modified
ollowing Eq. (2).

(x) = ReLU(wx+ b) (1)

H(x) = F (x)+ x (2)

In addition, the residual connections regularize the model. Sup-
pose a block gives a weak representation of features. For such a
scenario, residual connections would eventually retain the origi-
nal representation, thereby making the model much less prone to
over-fitting. In the present work, we use ResNet50, which consists
of 4 residual convolutional blocks (Fig. 3).

3.3. Particle swarm optimization

PSO, originally introduced by Kennedy and Eberhart [12], is
a population-based optimization algorithm. The success of PSO
over the years lies in the fact that it is simple, has fewer con-
trolling parameters, and is computationally inexpensive in terms
of memory use. The mathematical formulation of PSO is given in
Eqs. (3), (4).

vij(t + 1) = vij(t)+ r1 ∗ (Pbestij − xij(t))+ r2 ∗ (Gbestj − xij(t)) (3)

xij(t + 1) = xij(t)+ vij(t + 1) (4)

In Eq. (3), r1 and r2 are two random numbers in the range
of (0, 1), and vij and xij refer to the velocity and the position
respectively for the ith particle in jth dimension. Pbest is the
personal best solution of the given agent. Gbest is the global best
solution derived from the global best agent.
4

Fig. 3. A typical residual block used in ResNet-based deep CNNs.
Source: Modified from [21].

3.4. Adaptive PSO

3.4.1. Motivations behind adaptive PSO
The basic PSO algorithm sometimes suffers from a major lim-

itation which is, if the population hovers around a particular
suboptimal solution, the chances of getting stuck in such a par-
ticular region of the search space become much higher. Also,
the algorithm does not consider the extent of exploration and
exploitation that is desired to reach the global optima. To this
end, we hypothesize: ‘‘Relative divergence of a solution is directly
dependent on the search time remaining’’. This is true when we
consider the maximum number of iterations as the stopping
criterion. The justification behind the hypothesis is that in initial
iterations, the search process should go through more diverse
regions, thereby ensuring proper exploration. With progression in
time, the particles try to converge to an optimal solution, thereby
ensuring exploitation in the later iterations. To address this issue,
we incorporate a memory-based adaptive dependence parameter
into the basic PSO algorithm.
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.4.2. Derivation of the adaptation parameter
Eq. (5) gives the mathematical foundation of the hypothesis

tated above. In this equation, the term dS
S quantifies our as-

umption of relative divergence from a solution. As we consider,
S refers to the change in a solution, whereas S is the present
olution. Hence by relative divergence, we measure the change
n the solution w.r.t. the present solution. The change in time is
epresented by dt .
dS
S
∝ dt (5)

dS
S
= c · dt (6)∫ Sf

Si

dS
S
= c

∫ tf

ti

dt (7)

loge
Sf
Si
= c · (tf − ti) (8)

f = Si · ec(tf−ti) (∆S = Si − Sf ) (9)
∆S
Si
= 1− ec(tf−ti) (10)

ij(t + 1) = w ∗ vij(t)+ r1 ∗ (Pbestij − xij(t))

+r2 ∗ (Gbestj − xij(t)) (11)

In Eq. (6), we introduce an equality term amongst the assumed
relations using a proportionality constant of c. For the exper-
imental purpose, the value of c is set to 1. Further, following
the basic rules of integration, we integrate within limits. We set
the limits keeping in mind the start and end of the algorithm
w.r.t. time, which is here represents the number of iterations.
Si refers to the initial solution, whereas Sf refers to the final
solution. In Eq. (8), we apply the relevant limits. After some
rearrangements as shown in Eq. (9), finally in Eq. (11) we get the
value of w as derived in Eq. (10).

3.5. Transfer function and fitness value

3.5.1. Transfer function
As discussed earlier, PSO was originally designed to optimize

values in a continuous domain. However, feature selection is a
binary optimization problem. Hence, to select an optimal set of
features using PSO, an additional step is required to convert the
continuous values into discrete/binarized values. For this purpose,
we use a transfer function, which normalizes the optimized val-
ues to the range of (0, 1). We employ a standard transfer function
in the domain of feature selection [8,22]. We generally refer to
this function as the S−shaped transfer function. We present the
raphical representation of this function in Fig. 4. We convert
he continuous values into binarized values in accordance with
qs. (12) and (13), where rand is any random number in the range

of σ (x).

σ (x) =
1

1+ e−x
(12)

(σ (x)) =
{
1 if σ (x) ≥ rand
0 if σ (x) < rand

(13)

.5.2. Fitness value

itness = α × a+ (1− α)× f (14)

To evaluate the strength of candidate solutions, we define a fit-
ess value, which we calculate following Eq. (14). In this equation,
is a hyperparameter, f is a ratio of the number of left-out fea-

tures to the total number of features, while a is the classification
ccuracy.
5

Fig. 4. A graphical representation of S-shaped transfer function. This function is
commonly known as the sigmoid function.

3.6. Altruistic PSO

Algorithm 1: Altruism Process
Input: N agents with having a solution set S, each with the

dimension d, having corresponding velocities v and
ranked according to the change in fitness from the
previous iteration. k fraction of solutions to be considered
as elite.

Output: New solution set S and velocities v

Initialization :
1: start_agent← k× N
2: stop_agent← N − k× N
3: for i← start_agent to stop_agent do
4: m← N − i
5: for j← 1 to d do
6: if vij > α & vij < β then
7: if random(0, 1) < random(σ (α), σ (β)) then
8: Smj ← Sij
9: vmj ← vij

10: vij ← random(0, 1)
11: Sij ← Apply Equations (12) and (13) on vij
12: end if
13: else
14: if random(0, 1) < 0.5 then
15: Smj ← Sij
16: vmj ← vij
17: vij ← random(0, 1)
18: Sij ← Apply Equations (12) and (13) on vij
19: end if
20: end if
21: end for
22: end for

For a feature selection algorithm, the strength of a solution
is the ability to reduce the feature dimension. Velocities in PSO
determine how this reduced feature set is generated, hence the
velocities associated should be given significance when any sort
of operation is performed on them. One major problem with the
basic PSO is that it does not account for generational memory,
or in other words, operations of the basic PSO are not affected
by a change in objective function value in its previous iterations.
This can be considered a limitation of the algorithm since PSO
does not possess any memory other than storing the personal and
global best information of the agents. This may lead the algorithm
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Table 2
Comparison of different learning rates and batch sizes on Fold-1 of the
Pneumonia dataset.
Learning rate Batch size Accuracy (in %)

1e−3
16 94.32
32 96.32
64 95.47

1e−4
16 96.12
32 96.49
64 95.38

1e−5
16 93.07
32 92.74
64 91.62

to diverge from the informative region of the search space. One
of the ways to encounter this problem is to minimal change in
the fitness value in each iteration. Also, from a feature selection
perspective, if the probability of selection is not very definite, the
selection of such a feature may not be useful for classification. For
such a scenario, we can say the probability of the feature selection
process is neither very definite to get accepted a feature in the
reduced feature set nor to get it rejected as a redundant feature.
Hence, we must give these features a chance to be re-assessed
in the search space. This might be also beneficial as the less fit
agents may be transferred to the selected feature subset.

3.6.1. Altruism
Altruism means showing selfless concern for the well-being

f others. Both humans and some animals sometimes show al-
ruistic behavior towards their family members or friends. This
llows other members a chance to survive or to improve their
bility to survive. To incorporate this nature into the basic PSO,
e first evaluate the change in fitness scores for each agent
.r.t. the previous iteration and rank them accordingly. If the
hange is significant, in such a scenario we should let the agent
onverge to its optimal solution before using it for a possible
reater advantage (in this case to explore the search space). So
e preserve the elite agents (say, top k%) and let them converge
o the optimal solution. For the remaining agents, we allow the
op-half agents to show altruistic behavior with the bottom-half
airwise (best with worst, second-best with second-worst, and so
n).
To incorporate this idea, we consider the top-half agents,

hich undergo altruism with their partner agents. We randomly
ransfer the features along with their corresponding velocities to
ts partner. To selectively perform this task, if the value of (12) is
reater than p and less than p+ γ , the probability of that partic-

ular feature getting selected lies in the range (p, p+ γ ). Once the
hole process is over, the velocities in these dimensions, which
ave undergone altruism, are randomly reset to get optimized for
probable better solution. The overall pipeline of the AAPSO can
e found in Fig. 5. Algorithm 1 shows the steps of the proposed
ethod. We present a dry run of the AAPSO in Appendix for the
onvenience of the readers.

. Results and analysis

In this section, we have reported the obtained results by
pplying our proposed method to a publicly accessible standard
neumonia dataset. All the experiments have been performed
n a machine with Nvidia Tesla T4 GPU, and the programming
anguage used is Python 3.8. We have also performed some exper-
ments using MATLAB programming version 9.4. We have used
he PyTorch library to implement the deep learning model.
6

Fig. 5. A flow diagram for the proposed AAPSO. The value of α is set as
the velocity value when the probability of the feature to get selected is half
(σ (α) = 0.5). The value of k is set to 40. Whereas the value of β is set as the
velocity value when the probability of the feature to get selected is close 0.8
i.e., not too definite. The value of p is set as σ (α) and γ is set as σ (β).

4.1. Performance of the deep learner

Typically, deep CNN architectures are designed to tackle some
specific problems related to image classification or pattern recog-
nition. Therefore, the feature extraction process is often different
from one deep CNN model to another. Here, we have compared
several state-of-the-art pre-trained deep CNN architectures for
Pneumonia detection from CXRs. The deep models include VGG-
16, one of the classic deep models which consists of 3 × 3 filters,
and it is 16-layers deep. GoogleNet consists of inception mod-
ules and an auxiliary classifier. DenseNet121 consists of dense
connections, and the MobileNetV2 adopts depth-wise separable
convolutions. The relevant results in Fig. 6 clearly state the su-
periority of ResNet50 over other deep learners on Fold-1 of the
experiment.

4.2. Hyperparameter tuning

4.2.1. Deep learning
Hyperparameters are one of the most important aspects while

training a deep learner. However, it is often difficult to find the
optimal state of the model to learn most efficiently. One impor-
tant hyperparameter for a deep learner is the batch size, which
defines the number of samples to feed to the model at once.
Another one is the learning rate, which controls the ability of the
deep model to learn. To get the optimal values of these, we resort
to the grid search method [23]. The learning rate is selected based
on the results from a set of values {1e− 3, 1e− 4, 1e− 5} while
the batch sizes considered to find the optimal hyperparameter is
{16, 32, 64}. The final results of these experiments are provided
in Table 2. We observe that the optimal solution is obtained for
batch size equal to 32, and learning rate equal to 1e − 4, which



R. Pramanik, S. Sarkar and R. Sarkar Applied Soft Computing 128 (2022) 109464

P

i
s
t
w

4

i
h
m
s
e
r
t
o
w
s
f

4

a
g
s
c
(
c
s
i
f
o
o
t
a
c
b
i

4

b
s
E
c
G

Fig. 6. Classification performance of several deep learners on Fold-1 on the
neumonia dataset.

s decreased by a tenth factor upon completion of 5 epochs for
moother learning and to reduce overfitting. For optimization of
he deep learner, the Adam optimizer is used along with the
idely used cross-entropy loss.

.2.2. Feature selection
To assess the performance of the AAPSO, we have compared

t with various other optimization algorithms. Like PSO, meta-
euristic-based feature selection algorithms require several
athematical operations to choose optimal sets of features. Con-
equently, the algorithms in the literature use several sets of
quations, which are assisted by various parameters. These pa-
ameters have their own significance and are known to control
he optimization process. Thus, it is crucial to select the right set
f hyperparameters to effectively use these algorithms. In this
ork, we follow some previous methods [8,22] in order to use the
tandard values of these parameters. The parameters used can be
ound in Table 3.

.3. Experimental outcomes

The proposed deep feature selection based method is trained
nd tested using the 5-fold cross validation methodology. Table 4
ives fold-wise results on the dataset discussed in the preceding
ub-section. One of the main reasons for not achieving cent per
ent metrics lies in the fact that the dataset is quite imbalanced
see Table 1). Another possible reason for misclassification in-
ludes high intra-class variability. For example, cases with early
tages of Pneumonia which show very less prominent features
n the CXRs [7]. Fig. 7 presents the loss w.r.t. to the epochs
or the deep learner (ResNet-50). From both these figures, we
bserve that the CNN model does not suffer from any major
verfitting. For the proposed AAPSO, we give the fitness w.r.t. to
he number of iterations in Fig. 8 which shows the stability of the
lgorithm as it converges over the time. The receiver operating
haracteristic (ROC) curves in Fig. 9 show that the model does not
ehave suboptimally for any of the classes. The confusion matrix
n Fig. 10 gives a quantitative measure to support this claim.

.4. Comparison with other feature selection algorithms

Table 5 compares our AAPSO with 11 popular meta-heuristic
ased feature selection algorithms on the 5-fold cross-validation
etting. The algorithms compared include GA: Genetic Algorithm,
O: Equilibrium Optimizer, MA: Mayfly Algorithm, PSO: Parti-
le Swarm Optimization, GSA: Gravitational Search Algorithm,
NDO: Generalized Normal Distribution Optimization, ASO: Atom
7

Fig. 7. Learning curve w.r.t. loss for the deep learner (ResNet50). The loss values
for each epoch are plotted against the progression in epoch.

Fig. 8. The learning curve for the top ranked agent in each iteration w.r.t. the
progression in iteration. The X-axis refers to the progression in iteration whereas
the Y -axis gives the fitness value for the top ranked agent. Note that the top
ranked agent may not be the same in each iteration.

Search Optimization, BOA: Butterfly Optimization Algorithm,
ALO: Ant Lion Optimizer, SSA: Salp Swarm Algorithm, CSA: Crow
Search Algorithm. We can observe from the results that the
proposed AAPSO outperforms the other methods vis-à-vis both
in terms of classification accuracy and the number of features
used. Besides, from the results shown in this table, we can also
claim that the introduction of adaptive dependence on memory
significantly increases the learning capability of the PSO. This
increase in performance can be attributed to the fact that the
adaptive parameter effectively balances proper exploration in the
initial stages of the algorithm followed by exploitation in the later
stages. To additionally evaluate the stability of the algorithm in
comparison to other algorithms for different folds of data, we
present the standard deviation and box-plots. From Table 5 we
observe that standard deviation values in different folds are very
less which ensures the stability of the proposed AAPSO. Also,
we show the box-plots in Fig. 11 using the length of reduced
feature sets obtained by the AAPSO along with other algorithms
considered here for comparison. The figure shows the spread,
skewness and locality of the data (in this case the number of
selected features) among the group. From the data presented,
we conclude that the proposed AAPSO acts optimally for each
fold of the samples and is not biased towards any specific set of
samples (i.e., folds). Thus, from this discussion, we can state that
the AAPSO performs its intended task effectively.
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Table 3
Different sets of hyperparameters for various optimization algorithms used for experimentation purposes.
Optimization algorithm Parameter Value

Generic Parameters
Population 20
Iterations 30
Weight for Accuracy (α) α = 0.98

GA: Genetic Algorithm
Gene Selection Roulette Wheel
Crossover Probability 0.8
Mutation Probability 0.05

EO: Equilibrium Optimizer
Pool Size 4
Constants (a1,a2) a1 = 1, a2 = 2
Generation 0.9

MA: Mayfly Algorithm

Attraction Constant (a1,a2) a1 = 1, a2 = 1.5
Initial Nuptial Dance Coefficient 0.1
Initial Random Walk Coefficient 0.1
Gravitational Constant 0.98
Visibility Coefficient 2
Nupital Dance & Random Walk updating factor (δ) 0.9

PSO: Particle Swarm Optimization Coefficients (r1,r2) r1 and r2 lie in [0, 1]

GSA: Gravitational Search Algorithm Initial Gravitational Constant 6
Constant (ϵ) 0.00001

GNDO: Generalized Normal Distribution Optimization Lower Bound of Variables 0
Upper Bound of Variables 1

ASO: Atom Search Optimization Depth Weight 50
Multiplier Weight 0.2

BOA: Butterfly Optimization Algorithm Modular Modality 0.01
Switch Probability 0.8

ALO: Ant Lion Optimizer Antlion Selection Roulette Wheel

SSA: Salp Swarm Algorithm Constants (c1,c2) c1 and c2 lie in [0, 1]

CSA: Crow Search Algorithm Awareness Probability 0.1
Flight Length 1.5
a

Table 4
Fold wise performance of the proposed method. All metrics are reported in %.
Fold Accuracy Precision Recall F1

Fold-1 98.37 98.95 98.83 98.89
Fold-2 98.54 98.95 99.06 99.00
Fold-3 98.46 98.95 98.95 98.95
Fold-4 97.86 97.89 99.17 98.52
Fold-5 98.80 99.30 99.07 99.18

Average 98.41 98.80 99.02 98.91
Standard Dev 0.34 0.54 0.13 0.24

Fig. 9. ROC curves for both the Pneumonia and normal classes post feature
selection. The reported curves are for Fold-1 of the experiment.

4.5. Statistical analysis of AAPSO

We perform a statistical significance test to determine the
robust nature of the AAPSO algorithm when compared to other
8

Fig. 10. Confusion matrix for Fold-1 of the experiment post feature selection.

lgorithms. In doing so, we consider a null hypothesis: ‘‘The
proposed AAPSO provides similar results when compared to other
feature selection algorithms’’. To reject this null hypothesis, we
take the help of a very popular non-parametric statistical test,
namely the Mann–Whitney U test [24]. This test is based on
the idea that two distributions namely X and Y are arranged in
increasing order based on the values of X and Y. A condition is
checked whether the majority of the samples in X lie above or be-
low the majority of the samples in Y. Such a phenomenon would
go against the fundamental principle of random mixing. Hence,
the null hypothesis of random mixing would be disregarded [24].
To gather the statistical evidence, we consider the classification
accuracies by different feature selection algorithms for each of
the five folds. If the obtained p-value is greater than 0.05 (5%),
we conclude the null hypothesis has enough statistical evidence
to get it accepted. Otherwise, we reject this hypothesis. Table 6
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Table 5
Comparison of different feature selection techniques using the 5-fold cross validation method. Acc, Feat, Avg and SD refer to accuracy
(%), number of features used to classify, average and standard deviation respectively.
Method Fold-1 Fold-2 Fold-3 Fold-4 Fold-5 Avg SD

Acc Feat Acc Feat Acc Feat Acc Feat Acc Feat

ResNet50 96.49 512 98.11 512 95.89 512 96.92 512 96.49 512 96.78 0.83

GA 97.26 200 96.98 198 97.44 198 95.81 181 97.95 169 97.09 0.80
EO 97.96 250 98.29 245 97.95 247 95.76 249 98.29 245 97.65 1.07
MA 96.52 364 98.46 370 97.78 384 96.07 348 97.95 363 97.36 1.01
PSO (basic) 97.52 189 97.78 177 97.52 193 96.84 194 98.46 235 97.62 0.58
GSA 98.02 241 97.18 251 97.26 254 97.01 235 97.78 274 97.45 0.43
GNDO 97.52 242 98.12 268 97.86 254 96.58 244 97.78 241 97.57 0.59
ASO 97.95 249 97.77 249 97.27 226 96.99 258 97.69 253 97.53 0.39
BOA 97.69 232 98.12 240 98.04 258 96.75 248 98.03 243 97.73 0.57
ALO 97.86 240 97.60 255 97.95 232 96.75 245 98.26 252 97.68 0.58
SSA 97.86 259 98.12 249 98.26 258 97.01 252 98.29 251 97.91 0.53
CSA 97.86 242 97.35 248 98.12 259 97.60 249 97.35 261 97.66 0.34

Altruistic PSO 98.03 173 98.37 195 97.95 191 96.92 192 98.12 189 97.88 0.56
AAPSO 98.37 163 98.54 176 98.46 183 97.86 195 98.80 183 98.41 0.34
Table 6
Results of Mann–Whitney U Test. Tests are conducted by comparing the 5-fold
accuracy values produced by different feature selection algorithms.
Method p-value

PSO (Basic) 0.02293
GA 0.01078
EO 0.04684
MA 0.01836
GSA 0.01079
GNDO 0.01390
ASO 0.01079
BOA 0.03005
ALO 0.02327
SSA 0.03746
CSA 0.01366

Fig. 11. Box Plot analysis for the number of features. The plots were drawn
using the number of features selected in 5 folds of the experiment by various
feature selection algorithms.

presents the p-values for the aforementioned statistical test. From
the tabulated results, we can reject the null hypothesis.

4.6. Comparison with other improved feature selection algorithms

In the preceding section, we have shown the robustness of
AAPSO when compared to various meta-heuristic algorithms in
its basic form. Over the past few years, researchers have also im-
proved the algorithms to handle specific problems [14,25]. There-
fore, for a fair comparison, we compare the present method with
some recently proposed feature selection algorithms. The results
of this comparison are recorded in Table 7. For this comparison,
we consider the following methods:
9

Table 7
Comparison of AAPSO with improvised feature selection algorithms on Fold-1
of the experiment.
Algorithm Accuracy (%) Features

AIEOU 98.02 202
SSD + LAHC 98.21 198
ASGW 97.98 187
BSNDO 98.32 189
ECWSA 97.65 243

Altruistic-PSO 98.03 173
AAPSO 98.37 163

1. Automata-based improved equilibrium optimizer with U-
shaped transfer function [26] (AIEOU)

2. Social ski-driver algorithm with late acceptance hill climb-
ing [27] (SSD+LAHC)

3. Adaptive switching gray-whale optimizer [28] (ASGW)
4. Binary Simulated Normal Distribution Optimizer [22]

(BSNDO)
5. Embedded chaotic whale survival algorithm for filter-

wrapper feature selection [29] (ECWSA)

From Table 7 it is clear that AAPSO outperforms the improvised
feature selection algorithms considered here.

4.7. Comparison of various deep learning models with AAPSO-based
feature selection

To ensure the proper usage of the feature selection algorithm,
we should ensure that the proposed method is not biased towards
the deep learning model considered here (i.e., ResNet50). One
effective way to check this is how the proposed method performs
when other standard deep learning models are used. For this
purpose, we use four state-of-the-art deep learning models other
than ResNet50. As described in the previous sections, following
the same methodology, we extract the features and apply our
feature selection algorithm. We provide the relevant results of
this experiment in Table 8. From Table 8, it is clear that the
proposed AAPSO performs well with all the deep models. We
can observe a significant increase in the classification accuracy,
while the performance of the ResNet50 model is considerably
better in terms of classification accuracy. In addition, we also see
post AAPSO feature-selection the accuracy is better than applying
AAPSO feature selection with other deep learners. We may at-
tribute this success to the ability of ResNet50 to generate a better
feature representation than other models for the classification
problem under consideration. This is because while training a
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Table 8
Ablation study considering various deep learning models along with ResNet50
for Fold-1 of the experiments. Here Acc (%) and Feat represent the classification
accuracy and the number of selected features respectively.
Deep model Acc PSO Altruistic PSO AAPSO

Acc Feat Acc Feat Acc Feat

VGG16 94.70 97.01 186 97.18 242 97.61 227
GoogleNet 95.55 96.67 220 97.09 211 97.35 221
DenseNet121 96.12 97.44 227 97.42 220 97.53 231
MobileNetV2 95.52 95.73 224 96.24 217 96.50 194

ResNet50 96.49 97.52 189 98.03 173 98.37 163

Table 9
Comparison with state-of-the-art methods. Values of the performance metrics
are shown in terms of %.
Work Ref. Accuracy Precision Recall F1

Linag & Zheng [5] 90.50 89.10 96.70 92.70
Sharma et al. [31] 90.68 – – –
Stephen et al. [32] 93.73 – – –
Ibrahim et al. [33] 94.43 – 98.19 –
Saraiva et al. [34] 95.30 98.86 94.77 96.77
Rajaraman et al. [35] 96.20 97.70 96.20 97.00
Dey et al. [11] 97.94 95.02 97.55 96.27
Mahmud et al. [36] 98.10 98.00 98.50 98.30
Chattopadhyay et al. [8] 98.36 98.98 98.79 98.88

Ours 98.41 98.80 99.02 98.91

deep model with a neural network classifier, the classifier in-
tends to form linearly separable features for better hyperplane
formation [30].

4.8. Comparison with state-of-the-art methods

While evaluating any approach, it is always important to com-
are the proposed approach with the recent approaches found
n the literature. Table 9 compares the proposed approach with
he existing approaches in terms of various performance metrics.
rom the tabulated results, we observe that our method outper-
orms the state-of-the-art approaches. This increase can attribute
o the proposed enrichment in PSO to select relevant subsets
f features from a given feature set generated by the ResNet50
odel.

.9. Further analysis

The role of a feature selection algorithm is to primarily select
relevant set of features from the entire set of features and

hen further classify based on the selected features. However, it
ecomes an important task to extract relevant features. Fig. 12
resents Gradient-weighted class activation maps (GradCAM) for
wo cases, one being the normal case and the other being a
onfirmed Pneumonia case. The normal case as expected does not
ave a strong activation in any region but has an overall acti-
ation in the entire chest area. This is very important since this
mplies the model relies on the full CXR image for its final pre-
iction. In contrast, we see a strong activation for the confirmed
neumonia case near the lower region close to the heart. One
ossible reason which is very common in the case of Pneumonia
s that due to gravity, water deposits in the lungs settle in the
ottom region and thus form bacterial colonies in that region [37].
rom a detection perspective, the strong activation of the model
n such regions is of great significance, which the model does
ffectively as seen in the figure. However, we also see some areas
ie outside the region of interest, which in this case is the chest
egion. These areas have slightly medium to less activation in
oth these figures. This is when feature selection helps to increase
10
the performance of the model. A feature selection algorithm
aims to discard such redundant features, which may degrade the
classification performance. Thus, from an overall perspective, it
becomes an important task to identify the proper features and
design suitable techniques to overcome the shortcomings of the
feature extraction processes.

5. Performance of AAPSO on other real-life datasets

Feature selection-based algorithms are often devised to solve
real-life problems more efficiently and effectively. To ensure this
quality of a feature selection algorithm, we apply AAPSO to some
real-life datasets frequently used in the literature. We consider
datasets from the UCI repository, microarray-based gene expres-
sion datasets and a COVID-19 prediction dataset. For comparison,
we choose some existing improvised feature selection algorithms
as described in . The reason behind such a choice is that the re-
spective algorithms have already shown their effectiveness when
compared to classical algorithms in the respective papers. Also,
this section compares the results with AAPSO only, as the pre-
ceding section establishes the superiority of AAPSO over Altruistic
PSO. In this section, we furthermore mention some strengths
and weaknesses of AAPSO and suggest some potential solutions
to overcome the said weaknesses. This is required to cope up
with the growing demand for efficient artificial intelligence (AI)-
powered systems.

5.1. AAPSO on UCI datasets

As stated earlier, to test the effectiveness of AAPSO, we con-
duct experiments on several standard datasets obtained from UCI
repository.3 The details of the datasets can be found in Table 10.
We tabulate the comparative results in Table 11.

From Table 11 we observe that AAPSO performs the best in
terms of classification accuracy for 7 out of 10 datasets. While the
number of features reduced may not be individually best, results
are comparable, thereby ensuring the effectiveness of AAPSO for
real-world problems.

AIEOU is an improvised version of EO, with automata-based
learning. The method uses Adaptive β Hill Climbing (AβHC) to
find a better equilibrium pool. The parameters of EO were made
adaptive using a 3-action automata. BSNDO is an improvised
version of GNDO coupled with simulated annealing for better
local search. Similarly, SSD+LAHC couples Social-Ski Diver (SSD)
with Late acceptance hill-climbing (LAHC) local search. However,
these methods do not use data-driven strategies but focus on
a better adaptive balance between exploration and exploitation.
ECWSA uses a filter-wrapper-based approach for Whale Opti-
mization Algorithm (WOA) the selection was guided by chaos.
ASGW uses an adaptive agent switching strategy for a hybrid
Grey Wolf Optimizer (GWO) and WOA. These methods focus on
intelligent agent switching strategies, which the authors balance
between exploration and exploitation. However, there was no ex-
plicit focus on controlling the agent’s exploration and exploitation
strategies.

While we see the effectiveness of AAPSO on UCI datasets, we
should note that UCI datasets have comparatively fewer features
than we have considered for the deep feature selection frame-
work. Thus, we also conclude that AAPSO performs well even in
low dimension settings.

3 https://archive.ics.uci.edu/ml/index.php.

https://archive.ics.uci.edu/ml/index.php
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Fig. 12. GradCAM analysis on testing data. The upper figure shows the GradCAM analysis for a normal image with classification probability of 0.9875. The bottom
image shows GradCAM analysis for a confirmed Pneumonia case with classification probability 0.9965. The GradCAMs are generated using the gradient maps in the
final convolutional layer of the deep learner.
Table 10
Details of the datasets chosen from the UCI machine learning repository.
Dataset Description Domain

Attributes Samples Classes

Breastcancer 9 699 2 Biology
BreastEW 30 569 2 Biology
Exactly2 13 1000 2 Biology
HeartEW 13 270 2 Biology
IonosphereEW 34 351 2 Electromagnetic
KrvskpEW 36 3196 2 Game
Lymphography 18 148 4 Biology
SonarEW 60 208 2 Biology
SpectEW 22 267 2 Biology
WineEW 13 178 3 Chemistry

5.2. AAPSO on high dimensional data

While we have observed the effectiveness of AAPSO on deep
eature selection and standard UCI datasets, this subsection ex-
mines the ability of AAPSO to handle very high dimensional
atasets. For this purpose, we consider three microarray datasets
amely DLBCL, Prostate and SRBCT. All these datasets consist of
ene expressions. These datasets are used for cancer prediction.
andling microarray data is very challenging because the search
pace is very huge. We observe the results of this experiment in
able 12.
The results in Table 12 clearly showcase the reliability of

APSO on real-life cancer prediction from given sequences of
enes. Thus, AAPSO is also useful for high dimensional data.

.3. AAPSO on COVID-19 prediction

Undoubtedly, COVID-19 had a traumatizing impact on human-
ty since its emergence in late 2019. Early diagnosis of COVID-19
s always encouraged by medical professionals and governmental
nd non-governmental agencies to curb the spread of the virus.
he early symptoms include loss of smell, shortness of breath, and
11
fever amongst many others. Since these symptoms are so com-
mon for any other viral diseases, there should be some specialized
way to testing.

These symptoms are generally treated as features and are
fed to a suitable classifier for detecting the presence of the said
virus. One such dataset is publicly available4 for development
of AI-powered COVID-19 detection tools. This dataset has 74
such features and 1085 instances. Table 13 shows a comparative
analysis for COVID-19 detection. Based on these results we can
mention that AAPSO works well even for COVID-19 prediction.

5.4. Strengths, weaknesses, and future extension of AAPSO

To get an unbiased view of the AAPSO, in this subsection we
summarize the strengths and weaknesses of AAPSO. In addition,
we also provide some suitable suggestions to tackle the problems
faced by AAPSO.

5.4.1. Strengths
• AAPSO undergoes selective altruism by preserving the top

ranked agents, thereby allowing them to converge to the
optimal solution.
• The altruism helps to explore certain subsets of features,

i.e., the lower ranked agents, in order to give them a chance
to improve their fitness value.
• The adaptive behavior helps to set an adaptive balance

between exploration and exploitation, thus providing a way
for the algorithm to look into the search space in an effective
manner.

5.4.2. Weaknesses
• AAPSO requires a bit more computation than the basic PSO,

thus requiring additional computational resources.
• The number of agents should be preferably higher (>10) to

have top-ranked agents to be preserved and have a suit-
able number of agents to undergo altruism. This leads to a
greater training time.

4 https://github.com/Atharva-Peshkar/Covid-19-Patient-Health-Analytics.

https://github.com/Atharva-Peshkar/Covid-19-Patient-Health-Analytics
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Table 11
Results on standard UCI datasets. Acc (%) and Feat refer to the classification accuracy and the number of features selected respectively.
Note that the bold values in AAPSO refer to the best metric for the dataset amongst competitors.
Dataset AAPSO AIEOU BSNDO SSD + LAHC ECWSA ASGW

Acc Feat Acc Feat Acc Feat Acc Feat Acc Feat Acc Feat

Breastcancer 100 3 100 8 100 4 98.93 3 95.21 7 98.50 5
BreastEW 100 11 98.25 3 98.25 4 98.25 9 97.38 15 100 16
Exactly2 81.15 6 80.50 8 80.50 8 79 8 78.90 9 77.70 8
HeartEW 85.18 5 90.74 4 90.74 4 91.67 5 85.63 9 83.1 6
IonosphereEW 90.15 9 95.74 11 95.74 16 96.43 12 86.79 10 97.2 17
KrvskpEW 100 25 99.53 6 98.44 22 97.81 20 93.53 16 97.1 25
Lymphography 96.67 6 96.67 6 96.67 5 96.67 7 87.02 10 88.40 11
SonarEW 95.24 26 95.24 6 95.24 27 97.62 24 76.84 23 94.80 36
SpectEW 98.15 8 98.15 14 96.22 6 95.15 9 79.84 7 87 10
WineEW 100 4 100 3 100 3 100 3 98.02 7 100 6
Table 12
Results on very high dimensional microarray datasets. The accuracy score (%) is presented under the method, whereas
the number of selected features is written in brackets.
Dataset Features AAPSO AIEOU BSNDO SSD + LAHC ECWSA ASGW

DLBCL 7070 100(114) 100(182) 100(162) 96(98) 100(154) 94(214)
Prostate 12,533 100(212) 95(34) 100(201) 100(284) 96(178) 100(98)
SRBCT 2308 100(214) 100(236) 100(298) 94(68) 100(265) 100(231)
Table 13
Results on COVID-19 dataset. The accuracy score (%) is presented under the method, whereas the number
of selected features is written in brackets.
Features AAPSO AIEOU BSNDO SSD + LAHC ECWSA ASGW

74 99.08(29) 96.31(52) 98.61(26) 97.69(23) 94.31(50) 97.69(40)
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• The altruism is static in nature, or in other words, altruism
happens to a fixed number of agents regardless of their
performance. This may not be useful for certain cases.

5.4.3. Future extension
• The number of agents undergoing altruism may be selected

dynamically based on some statistical measures.
• We may consider the past information of an agent to keep

a track if the agent is trapped in local optima or not. This
may increase the memory use, but can be effective in certain
scenarios.
• We may consider having guided initialization strategies to

help explore the search space in a more computationally ef-
ficient manner, thus reducing the overall time of execution.

6. Conclusion

While the world heals from the effects of the devastating
OVID-19 pandemic, still Pneumonia concerns us with its fatality
ate and other consequences. In this work, we have proposed
n AI-based technique for automatic Pneumonia detection from
XRs. For this task, we have considered a pre-trained base deep
NN learner namely ResNet50 and fine-tuned it on a standard
neumonia dataset. We have extracted features from the second
ast layer and employed the proposed AAPSO for feature selection
nd classified the CXRs based on the selected features. Extensive
xperiments and thorough analysis establish the robustness of
he proposed method when compared to some state-of-the-art
ethods.
In future, we aim to incorporate some dynamic characteristics

o further increase the performance of PSO by efficiently balanc-
ng its exploration and exploitation capabilities. We also plan to
ncorporate other types of data-driven altruistic strategies into
SO or other optimization algorithms. Further work can also focus
n designing very lightweight deep learners which will be useful
or deploying in resource-constrained environments. We can also
lan to incorporate noise reduction techniques [38] to enhance

he quality of the raw image and make it more informative.
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ppendix. Dry run of AAPSO

Consider a dry run of AAPSO with 3 agents in its 15th iteration,
here the maximum number of iterations is 30 and the number
f dimensions of each agent is 5. Let us assume that we preserve
he top 33% of the solutions during altruism. Let V be the veloci-
ies and X be the solution set, where 1 refers to a selected feature
nd 0 refers to a discarded feature.

=

[
−10.25 0.36 12.02 1.25 −5.65
15.65 −3.65 5.12 0.12 2.65

]

5.32 −3.12 2.62 −1.25 5.85
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X

T

=

[0 0 1 1 0
1 0 1 1 1
1 0 1 0 1

]
he steps go like:

• Step-1: Update the adaption parameter, w = 1 − e−0.5 =
0.393
• Step-2: Update the velocities according to Eq. (11). This is an

assumption that all agents achieve their personal best in this
iteration only. While in real-life scenarios, this may or may not
be the case.
The updated velocities for the ith look like: Vi = 0.393∗Vi+

0.69∗(Vi−Xi)+0.42∗(V1−Xi) and the feature set is updated.
Note the values 0.69&0.42 are randomly generated:

V =

[
−15.41 0.54 16.95 0.77 −8.49
11.53 −3.80 9.48 −0.45 −0.61
0.35 −3.23 2.62 −0.83 2.86

]

X =

[0 1 1 1 0
1 0 1 0 0
0 0 1 0 1

]
• Step 3: Calculate the change in fitness w.r.t. the previous

iteration and rank them accordingly. Let us consider the
ranking is the order X2, X1, X3. Therefore, as per the steps
described in the main sections, X2 is preserved while X1 & X3
undergo altruism.
• Step 4: Perform altruism between top-half non-elite so-

lutions and bottom-half non-elite solutions. The updated
velocity and feature set are:

V =

[ 0.63 0.54 16.95 0.31 0.89
11.53 −3.80 9.48 −0.45 −0.61
−15.41 −3.23 2.62 0.77 −8.49

]

X =

[0 1 1 0 1
1 0 1 0 0
0 0 1 1 0

]
The bold values indicate inheritance from altruistic partner,
while the underlined values signify a random number for
resetting.
• Step 5: Evaluate the feature set and go for the next iteration
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