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Abstract

Most mathematical models of collective cell spreading make the standard assumption that the cell diffusivity and cell
proliferation rate are constants that do not vary across the cell population. Here we present a combined experimental and
mathematical modeling study which aims to investigate how differences in the cell diffusivity and cell proliferation rate
amongst a population of cells can impact the collective behavior of the population. We present data from a three-
dimensional transwell migration assay that suggests that the cell diffusivity of some groups of cells within the population
can be as much as three times higher than the cell diffusivity of other groups of cells within the population. Using this
information, we explore the consequences of explicitly representing this variability in a mathematical model of a scratch
assay where we treat the total population of cells as two, possibly distinct, subpopulations. Our results show that when we
make the standard assumption that all cells within the population behave identically we observe the formation of moving
fronts of cells where both subpopulations are well-mixed and indistinguishable. In contrast, when we consider the same
system where the two subpopulations are distinct, we observe a very different outcome where the spreading population
becomes spatially organized with the more motile subpopulation dominating at the leading edge while the less motile
subpopulation is practically absent from the leading edge. These modeling predictions are consistent with previous
experimental observations and suggest that standard mathematical approaches, where we treat the cell diffusivity and cell
proliferation rate as constants, might not be appropriate.
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Introduction

Collective cell spreading plays an important role in development

[1], repair [2–5] and disease [6]. One way of improving our

understanding of the mechanisms that influence collective cell

spreading is to develop and implement a mathematical model that

can both mimic existing experimental observations as well as

suggesting new experimental options for studying collective cell

spreading [7]. Such mathematical models have provided key

insights into several biological systems. For example, Greenspan’s

model [8] of tumor growth provided a potential explanation of the

observed spatial structure in tumor spheroids, while Gatenby and

Gawlinski’s model of tumor spreading into surrounding tissue [9]

predicted the formation of a gap between the two types of tissue

that was later verified experimentally [7].

Almost all mathematical models of collective cell spreading

processes make the simplifying assumption that the population of

cells can be treated as a uniform population. For example, Maini

and coworkers [2,3] studied a scratch assay and showed that the

solution of a reaction–diffusion partial differential equation led to

constant-speed, constant-shape moving fronts that were consistent

with experimental measurements. Similarly, Sengers and cowork-

ers [10,11] studied a circular cell spreading assay and showed that

the solutions of an axisymmetric reaction–diffusion equation

matched the time evolution of the observed experimental cell

density profiles. These studies made an implicit assumption that

the motion of cells within the population could be described using

a constant value of the cell diffusivity D, and that the proliferation

rate of cells could be described by a constant value of the cell

proliferation rate, l. Similar assumptions are often made in

discrete models of collective cell motion [12]. For example, Cai

and coworkers [13] used a random walk model to study

experimental observations of a scratch assay where the motility

of isolated individual agents and the birth rate of isolated

individual agents in the discrete models were treated as constants.

Similarly, Binder and coworkers [14] applied a discrete random

walk model of cell migration and cell proliferation on a growing

tissue while Khain and coworkers [15] applied a discrete random

walk model incorporating cell migration, cell proliferation and

cell-to-cell adhesion to a scratch assay performed with glioma cells.

Khain’s discrete model treated the cell motility, cell proliferation

rate and cell-to-cell adhesion strength as a constant for each

isolated agent in the simulations.

In contrast to many mathematical models, there are a range of

experimental observations which suggest that cell motility and cell

proliferation rates are not constant and might vary considerably

amongst a population of cells. For example, during the develop-

ment of the drosophila nervous system, time-lapse observation of

individual glia cell migration and proliferation have reported the

formation of glial chains which appear to be an essential

component of normal development [16,17]. Time-lapse imaging

and cell ablation experiments suggest that a certain subpopulation

of the glial cells act as pioneer (or leader) cells, and that these pioneer

cells guide the behavior of the remaining follower cells. A similar

chain migration model has been proposed to explain time-lapse
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observations of the development of the enteric nervous system

which involves a population of precursor cells, called neural crest

cells, moving along the developing intestines in the form of chains

of cells [18–22]. The details of this developmental system have

been studied experimentally and the results suggest that cells at the

leading edge of the population follow directed trajectories whereas

cells located behind the leading edge of the population followed

less directed, more random trajectories [19]. These observations

have been recently incorporated into a discrete mathematical

model of observed behavior in a related experimental system

[23,24] where it was found necessary to make an explicit

distinction between the behavior of pioneer and follower cells to

replicate the observed patterns [25].

Experimental observations that are consistent with the existence

of pioneer and follower cells have also been made in various in vitro

assays. For example, Cai and coworkers recorded trajectories of

individual cells within a scratch assay and showed that cells at the

leading edge of the population moved along trajectories that were

qualitatively different to other cells located behind the leading

edge [13]. Distinct roles for pioneer and follower cells have been

observed in cell populations that interact with collagen fibres [26]

and in two–dimensional monolayers of cells that have been

wounded [27]. Other biological systems which suggest a role for

pioneer and follower subpopulations of cells include the immune

system [28–30], three—dimensional tumor spheroid growth [31]

and various aspects of development [32,33]. We note that, very

recently, heterogeneity amongst circulating tumor cells in patients

with advanced primary cancer has been proposed to explain

variations in metastatic disease patterns [34].

In this work we investigate whether an apparently homogeneous

population of motile cells is composed of functionally distinct

subpopulations that could be interpreted as a pioneer subpopu-

lation and a follower subpopulation. This investigation makes use

of both experimental measurements as well as a simplified

mathematical model of collective cell behaviour that we use to

represent both individual cell behavior and the emergent collective

behavior of the entire cell population. We perform a three–

dimensional transwell assay [35] where we stop the experiment

after a relatively short period of time and remove those cells which

have moved through the porous membrane as well as those cells

which have not moved through the porous membrane. Both these

populations of cells are cultured separately, and individual cell

trajectories are recorded so that we can investigate whether there

are any differences between the two groups of cells. Our

experimental measurements are interpreted using a discrete

three-dimensional mathematical model of cell migration in a

transwell. Although, in principle, our mathematical model can be

used to study a very general population of cells where each cell has

a unique motility and proliferation rate, we take the simplest

possible approach and interpret our experiments by making the

assumption that the total population is composed of just two

subpopulations which we refer to as (i) subpopulation 1 with cell

diffusivity, D1, and cell proliferation rate, l1, and (ii) subpopula-

tion 2 with cell diffusivity, D2, and cell proliferation rate, l2. Using

our model we show that our transwell results are consistent with

the hypothesis that the two subpopulations are distinct since we

find D1wD2. Although we make no experimental measurements

of collective behavior involving cell proliferation, we conclude by

presenting some simulations of a scratch assay where proliferation

plays an important role. In these simulations we treat the entire

population as two interacting subpopulations and our modeling

suggests that an initially well–mixed population of cells can form a

spatially organized spreading front of cells where the more motile

subpopulation dominate at the leading edge of the spreading

population whereas the less motile subpopulation is practically

absent from the leading edge.

Materials and Methods

1.1 Experimental methods
Mouse fibroblast feeder cells [36] (3T3 cells) (ATCC, CCL-92,

Manassas, VA, USA) were used to perform the transwell migration

assay. The 3T3 cells were cultured in Dulbeccos modified Eagle

medium (DMEM; Invitrogen, Australia) supplemented with 5%

foetal calf serum (FCS; Hyclone, New Zealand), 2 mM L-

glutamine (Invitrogen) and 1% v/v Penicillin/Streptomycin

(Invitrogen) in 5% CO2 and 95% air at 37uC.

A schematic of the transwell apparatus is shown in Fig. 1A, and

the assay was performed as previously described [37]. In brief, the

3T3 cells were serum starved for four hours by incubating in

serum free medium (SFM). The SFM was DMEM without FCS.

The cells were harvested, and the flasks washed with phosphate–

buffered saline (PBS; Invitrogen) followed by exposure to 0.05%

trypsin–EDTA (Invitrogen) for one-to-two minutes at room

temperature. The cell suspension was collected in a 50 mL falcon

tube and centrifuged twice at 1000 rpm for five minutes to

eliminate the trypsin. The supernatant was discarded and the

pellet re-suspended in 10 mL of SFM. The viable cells were

counted using a trypan blue exclusion test and a haemocytometer.

Fifty thousand 3T3 cells suspended in SFM were seeded into the

upper compartment of a 12 mm pore transwell (Corning, New

York, USA) where the under-surface of the porous membrane had

been pre-coated with with 10% FCS. Each transwell was placed in

a 12—well plate which was incubated for two hours at 37uC with

5% CO2 and 95% air. After two hours, those cells that had moved

into the lower compartment and those cells that remained in the

upper compartment were collected separately using 0.05%

trypsin–EDTA. The transwell inserts were first rinsed with PBS

and then trypsin was introduced into the upper and lower

compartments to collect the two groups of cells separately. The

collected cells were centrifuged at 1000 rpm for five minutes to

remove trypsin and re-suspended in 1 mL of 3T3 medium.

Both groups of cells were separately re-seeded onto a 24–well

tissue culture plate and monitored using a widefield microscope

(Leica, Australia). Images were captured at five minute intervals

over a period of 16 hours.

1.2 Mathematical modeling tools
An interacting random walk model, that explicitly incorporates

cell-to-cell crowding effects, is used to simulate the experiments. The

model is implemented on a three—dimensional square lattice with

spacing D. Each site is indexed (i,j,k), where i, j, k[Z, and has

position (x,y,z)~(iD,jD,kD). A random sequential update method

[38] is used to perform the simulations so that if there are N(t)
agents at time t, during the next time step of duration t, N(t) agents

are selected at random, one at a time, and given the opportunity

move with probability Pl
m[½0,1�, where l~1,2,3, . . . ,N(t). Speci-

fying different values of Pl
m allows different agents in the model to

move with a different, unique, motility rate. A motile agent at site

(i,j,k) attempts to step to: (i) (i+1,j,k) with probability (1+rx)=6,

(ii) (i,j+1,k) with probability (1+ry)=6, or (iii) (i,j,k+1) with

probability (1+rz)=6. The parameters rx[½{1,1�, ry[½{1,1� and

rz[½{1,1� control the motility bias: setting rx~ry~rz~0 means

that the motion is unbiased. If an agent attempts to step to an

occupied site, then that motility event is aborted. Once the N(t)
potential motility events have been assessed, another N(t) agents are

selected at random, one at a time, and given the opportunity to
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proliferate with probability Pl
p[½0,1�. We model proliferation with

an unbiased mechanism whereby a proliferative agent at (i,j,k)
attempts to deposit a daughter agent at (i+1,j,k), (i,j+1,k) or

(i,j,k+1), with each target site chosen with equal probability 1/6.

Potential proliferation events that would place an agent on an

occupied site are aborted [35,39,40].

This basic modeling framework will be applied to two different

experimental scenarios. First, we will apply this three–dimensional

model directly to the geometry of the transwell apparatus as we

have done previously [35]. Second, we will consider a simpler

two–dimensional application of the model which is consistent with

a two–dimensional in vitro assay, such as a scratch assay [41]. We

Figure 1. Experimental results and three dimensional mathematical modeling results for a transwell assay. Schematic of a transwell
apparatus illustrating that the cylindrical insert is 12 mm in diameter, and that the upper and lower compartments are separated by a porous
membrane (A). At the conclusion of the two hour transwell migration assay those cells that moved into the lower compartment were collected and
placed on a cell culture plate. The trajectories of individual cells were recorded over a period of 16 hours. The white scale bar is 100 mm (B). Similarly,
at the conclusion of the two hour transwell assay those cells that remained in the upper compartment of were collected and placed on a tissue
culture plate. The trajectories of individual cells were recorded over a period of 16 hours. The white scale bar is 100 mm (C). The trajectories of 20
individual cells from those that moved into the lower compartment were analyzed to produce 40 estimates of the cell diffusivity D, shown as a
histogram (D). The average cell diffusivity of those cells that had moved into the lower compartment was SDT~102 mm2/minute. The trajectories of
20 individual cells from those cells that remained in the upper compartment of the transwell were analyzed to produce 40 estimates of the cell
diffusivity D, shown as a histogram (E). The average cell diffusivity of those cells that had not moved into the lower compartment of the transwell was
SDT~31 mm2/minute. Three dimensional simulation results of a transwell assay initialized with 25000 cells from subpopulation 1 and 25000 cells
from subpopulation 2 (F–G). Simulation results show SN1T and SN2T, corresponding to the average number of cells associated with subpopulation 1
and subpopulation 2 remaining in the upper compartment as a function of time. The average simulation results were obtained using M~100
identically prepared realizations of the three dimensional random walk model. Simulation results correspond to two cases: (i) identical
subpopulations with P1

m~P2
m~1 and P2

p~P2
p~0 (F), and (ii) distinct subpopulations with P1

m~1, P2
m~0:3 and P1

p~P2
p~0.

doi:10.1371/journal.pone.0085488.g001
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note that the three–dimensional modeling framework can be used

to simulate a two–dimensional assay simply by considering a

three–dimensional lattice with a single layer in the vertical

direction, so that k~1. In the simpler two–dimensional format a

motile agent at site (i,j) will attempt to step to: (i) (i+1,j) with

probability (1+rx)=4, or (ii) (i,j+1) with probability (1+ry)=4.

Similarly, a proliferative agent at (i,j) attempts to deposit a

daughter agent at (i+1,j) or (i,j+1), with each target site chosen

with equal probability 1/4.

Although, in principle, our discrete modeling framework can be

applied to a very general system by allowing every single agent

within the population to have a unique motility and proliferation

rate, we will implement our model using the simplest possible way

to investigate the role of variability within the total population by

making the assumption that the population is composed of two

subpopulations: (i) subpopulation 1, which is composed of cells

which have a probability of motility per time step of P1
m and a

probability of proliferation per time step of P1
p, and (ii)

subpopulation 2, which is composed of cells which have a

probability of motility per time step of P2
m and a probability of

proliferation per time step of P2
p [40].

We would like to point out that while our mathematical model

explicitly incorporates physical interactions between cells in the

population by incorporating cell–to–cell crowding and volume

exclusion effects, our mathematical model is an idealization of

collective cell behaviour. One important aspect that our model

neglects is any consideration of biochemical interactions amongst

the population of cells, which can play an important role in

collective cell behaviour [20,21]. The neglect of such biochemical

interactions is a standard assumption made in many mathematical

modelling studies of collective cell migration [2–5,8,10,11,13,15]

and the focus of our present work is not to build a mathematical

model which incorporates every detail of collective cell migration.

Instead, the focus of our present work is to investigate the role of

variability amongst a population of cells since traditional mathe-

matical models of collective cell behaviour routinely treat the

motility of cells as a simple constant value across a population of

cells [2,3,10,11,13]. Similarly, most traditional mathematical

models of collective cell behaviour routinely treat the proliferation

rate of cells as a simple constant value across a population of cells

[2,3,10,11,13]. The aim of our work is to explore the validity of such

assumptions and to use a simplified mathematical model to

demonstrate the implications of such assumptions.

Results

2.1 Transwell Results
2.1.1 Estimating the cell diffusivity. Once the cells were

harvested at the conclusion of the two hour migration period in the

transwell apparatus, those cells that had migrated into the lower

compartment of the transwell (Fig. 1A) were collected separately

from those cells that remained in the upper compartment (Fig. 1A).

These two groups of cells were placed on separate culture plates

and individual cells within the two groups were imaged using time-

lapse microscopy for a period of 16 hours so that we could

characterize the motility of both populations. At the conclusion of

the 16 hour period the time-lapse images were analyzed using

ImageJ to record the trajectories of individual cells within the

population [42]. For simplicity we will refer to those cells that

migrated through into the lower compartment of the transwell as

subpopulation 1, and those cells that remained in the upper

compartment of the transwell as subpopulation 2.

To characterize the motility we estimate the squared displace-

ment for the x-coordinate and y-coordinate of each trajectory

x2(t)~(x(t){x(0))2, y2(t)~(y(t){y(0))2, ð1Þ

where (x(t),y(t)) are the two–dimensional Cartesian coordinates

of the cell after time t. An estimate of the random motility

coefficient, also known as the cell diffusivity, in each orthogonal

direction is then obtained by fitting a least–squares straight line to

the data [43],

x2(t)~2Dxt, y2(t)~2Dyt, ð2Þ

where Dx and Dy are the diffusivities in the x and y directions. We

analyzed 20 randomly chosen cell trajectories from each subpopula-

tion, being careful that we only considered trajectories that did not

collide with other cells during the 16 hour observation period. This

gave us 20 estimates of Dx and Dy for both subpopulations. Averaging

these data, for both subpopulations, indicated that SDxT&SDyT
which is reasonable since the substrate is isotropic [44]. Therefore, for

each subpopulation we pooled the Dx and Dy data which are

presented as histograms in Fig. 1D and Fig. 1E for subpopulations 1

and 2, respectively. In both histograms the data shows that the

majority of observed trajectories are associated with a diffusivity in the

range Dv100 mm2/minute. However, both subpopulations con-

tained some cells that were much more motile, and we observed

some trajectories corresponding to cell diffusivity estimates with

D&500 mm2/minute. Averaging the 40 diffusivity estimates for each

subpopulation gives SD1T&102 mm2/minute and SD2T&31 mm2/

minute. These results indicate that subpopulation 1 is, on average,

approximately 3.3 times more motile than subpopulation 2.

2.1.2 Discrete simulations using the transwell data. To

investigate how the variations within the cell population could

affect our interpretation of a transwell assay we apply the three–

dimensional mathematical model to the transwell apparatus using

the same procedure outlined previously in [35]. In brief, the

transwell is cylindrical with an inner diameter of 12 mm and the

3T3 cells are, on average, approximately 25 mm in diameter [45].

We represent the upper compartment using a three dimensional

lattice with D~25 mm. The three dimensional lattice has five

layers in the vertical direction giving 1ƒkƒ5, and each layer is a

square with length 1ƒiƒ480 and width 1ƒjƒ480. The length

and width are chosen to accommodate the 25 mm 3T3 cells in the

12 mm diameter transwell so that we have 12=(0:025)~480. To

represent the cylindrical geometry, all sites in the region

(i{240)2z(j{240)2
ƒ2402 are labeled as active sites, meaning

that they can can be occupied by agents. The remaining sites

where (i{240)2z(j{240)2
w2402 are labeled inactive sites, which

cannot be occupied by agents. Each layer in the lattice contains

p2402&180956 active sites so that our model can accommodate

up to 5(p2402)&904778 agents. The porous membrane separates

the upper and lower compartments and is approximately 15%
pore space [35]. To model the porous membrane we randomly

select 15% of the active sites on the lower (k~1) layer of the lattice

and assume that these sites, called downward permeable sites, represent

a pore in the membrane. The remaining 85% of active sites on the

lower (k~1) layer are downward impermeable sites. In our model a

motile agent residing on a downward impermeable site (i,j,k), steps to

(i) (i+1,j,k) with probability (1+rx)=6, (ii) (i,j+1,k) with

probability (1+ry)=6, and (iii) (i,j,kz1) with probability

(1zrz)=6 and (i,j,k{1) with probability zero owing to the

presence of the porous membrane. In comparison, a motile agent

residing on a downward permeable site (i,j,k) is permitted to move in
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the negative z direction in the usual way as this agent is not

blocked by the membrane.

During a transwell assay cells are placed in the upper compartment

and rapidly settle onto the porous membrane [35]. We model this by

placing agents on the lattice to mimic the way that cells are distributed

after they have settled onto the membrane. For example, to model

our experiments described in Section 1.1 we initially randomly

occupy 27:7%~100|50000=180956 of active lattice sites on the

lower (k~1) layer of the lattice. To represent the movement of cells

in the transwell experiments we set rz~{1 to prevent agents

moving vertically upward which is consistent with our observations of

cell movement in a transwell [35]. We also set rx~ry~0, which is

appropriate because we do not expect any bias in the horizonal plane.

During the simulations some agents move vertically down through

the pore space and we assume that these agents leave the system and

no longer interact with other agents during that simulation. Any

potential motility event that would place an agent on an inactive site,

or on a site that is already occupied, is aborted [35,39,40]. Our model

predictions are made by counting the number of agents leaving the

system through the lower layer of the lattice. Since the algorithm is

stochastic we present results by averaging over many identically

prepared realizations of each simulation.

Results in Fig. 1F correspond to a simulation where the transwell

experiment was initialized with 25000 agents from subpopulation 1

and 25000 agents from subpopulation 2. In this case we make the

standard assumption that both subpopulations are identical with

P1
m~P2

m~1. We note that many transwell assays are performed for

periods of time that are much shorter than the cell cycle time [35].

This means that any increase in cell number due to cell proliferation

is negligible during such experiments. To make our modeling

consistent with this we set P1
p~P2

p~0. Averaged modeling results in

Fig. 1F show the number of agents in each subpopulation that

remain in the upper compartment as a function of time and we see

that the time taken for both subpopulations to exit the upper

compartment are the same. After approximately 100 time steps

almost all of the agents have moved into the lower compartment.

This result makes sense intuitively since we have specified that both

subpopulations behave identically so we might have anticipated that

both subpopulations will exit the upper compartment of the transwell

at the same rate. We would like to point out that the results in Fig. 1F

are reported for an arbitrary duration of each time step, t. If, for

example, we chose t~1:02 minutes, our simulations would

correspond to D1~D2&102 mm2/minute since we have

D1~(P1
mD

2)=(6t) and D2~(P2
mD

2)=(6t).

Results in Fig. 1G correspond to a simulation where the

transwell experiment was initialized with 25000 agents from

subpopulation 1 and 25000 agents from subpopulation 2. In this

case we assume that the subpopulations are distinct and we choose

the motility parameters to reflect the differences we observed in

the experimental data reported in Section 2.1.1. By choosing

P1
m~1 and P2

m~0:3, we simulate two distinct subpopulations

where subpopulation 1 is approximately 3.3 times more motile

than subpopulation 2. Again, to be consistent with standard

transwell protocols, we neglect any increase in cell number by cell

proliferation by setting P1
p~P2

p~0 [35]. The averaged modeling

results in Fig. 1G show that we observe very different behavior

from the results in Fig. 1F where we made the standard

assumption that all the cells agents in the system behaved

identically. In this case our modeling shows that subpopulation 1

moves into the lower compartment much faster than subpopula-

tion 2 (Fig. 1G). In particular, we see that after 100 time steps

almost all of subpopulation 1 has moved into the lower

compartment whereas almost 300 time steps are required for

almost all of subpopulation 2 to move into the lower compartment

(Fig. 1G). This difference in the behavior of the two subpopula-

tions is expected since we have P1
mwP2

m, and so we anticipate that

agents from subpopulation 1 are able to migrate around in the

transwell much more efficiently than members of subpopulation 2.

This would mean that agents belonging to subpopulation 1 are

more likely to find the location of the pores in the membrane

through which they can move into the lower compartment. We

also note that the results in Fig. 1G are reported for an arbitrary

duration of each time step t. If, for example, we chose t~1:02
minutes, then this would correspond to D1&102 mm2/minute and

D2&31 mm2/minute which is consistent with our cell diffusivity

estimates from our experiments as reported in Fig. 1D and Fig. 1E.

In summary, our modeling results indicate that our interpretation

of transwell assays could be very sensitive to differences amongst the

motility rates of the cells. Examining the results in Fig. 1G indicates

that if we stopped the simulation after a relatively short period of

time, say 50t, then almost all of subpopulation 1 would have moved

into the lower compartment while the majority of subpopulation 2

would remain in the upper compartment. These averaged

simulation results are consistent with our experimental observations

in Fig. 1D and Fig. 1E since our experimental data indicates that the

group of cells that moved into the lower compartment after a

relatively short time period were, on average, more motile than the

group of cells remaining in the upper compartment.

2.2 Scratch assay
Since our modeling results in Fig. 1F and Fig. 1G imply that a

transwell assay could be very sensitive to differences amongst the

motility rate of the cell population, we now extend these ideas to a

scratch assay [2,3,41]. Scratch assays are often performed in a

narrow channel geometry where a confluent population of cells is

wounded, or scratched, to reveal a sharp front that separates the

confluent region from a vacant region. Typically, a scratch assay is

monitored by measuring the location of the leading edge of the

population as it spreads and the initially vacant region becomes

occupied [2,3,41]. To model this we apply the discrete mathe-

matical model on a two–dimensional lattice where each site is

indexed (i,j), and each site has position (x,y)~(iD,jD). Here we

choose D~25 mm to correspond to the diameter of 3T3 cells. We

apply this model on a two-dimensional domain with 0ƒxƒ25
mm and 0ƒyƒ1:25 mm, to mimic the narrow channel geometry.

Reflecting boundary conditions are applied along all boundaries.

To be consistent with our results in Fig. 1F and Fig. 1G, we

consider the initial population of agents to be composed of two

subpopulations. Each simulation is initialized so that the central

region of the lattice, where 12ƒxƒ13 mm, contains a confluent

monolayer. This initial confluent monolayer contains, on average,

50% of agents from subpopulation 1 and 50% of agents from

subpopulation 2. Two different types of simulations are performed.

In the first simulation (Fig. 2A–D) we make the standard

assumption that both subpopulations are identical with

P1
m~P2

m~1 and P1
p~P2

p~0:001. Unlike transwell assays, many

scratch assays are reported for a period of time that is longer than

the cell cycle time so that proliferation plays an important role

[2,3,41] and therefore we include proliferation in these simulations

[39]. Results in Fig. 2A–D show snapshots of the simulation after

0, 1000, 5000 and 10000 time steps, where each time step has a

duration t. These simulations show that the population spreads

into the initially vacant region. Individual agent motility and

proliferation events lead to the formation of two fronts, one

moving in the positive x–direction and the other moving in the

negative x–direction. The formation of such fronts is consistent
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with experimental observations where these fronts often move with

constant speed [2,3]. We observe that the total population grows

rapidly with time, and our simulation indicates that the two

subpopulations remain well–mixed for all time and at all locations.

The results in Fig. 2A–D are reported for an arbitrary duration of

each time step, t. If, for example, we chose t~1:53 minutes, this

would correspond to D1~D2&102 mm2/minute since we have

D1~(P1
mD

2)=(4t) and D2~(P2
mD

2)=(4t) in two–dimensions.

Similarly, choosing t~1:53 minutes corresponds to l1~l2&
0:00065/minute since we have l1~P1

p=t and l2~P2
p=t. This

proliferation rate corresponds to a doubling time of td&18 hours

since we have td~loge2=l [35].

In the second simulation (Fig. 2I–L) we allow the two subpopu-

lations to behave differently by setting P1
m~1 and P2

m~0:3, so that

subpopulation 1 is approximately 3.3 times more motile than

subpopulation 2. Again, this difference in the motility rate between

the two subpopulations is consistent with our experimental results in

Fig. 1D and Fig. 1E. Since we have not made any measurements of

the proliferation rate of cells we assume that both subpopulations

proliferate at the same rate with P1
p~P2

p~0:001. Results in Fig. 2I–

L show a snapshot of the simulation after 0, 1000, 5000 and 10000

time steps, where each time step has a duration of t. Just like the

uniform population in Fig. 2A–D, we see that the population spreads

into the initially vacant region of the domain and the model predicts

the formation of two fronts, one moving in the positive x–direction

and the other moving in the negative x–direction. Again, the total

population grows rapidly with time, however in this case our results

indicate that the two initially well–mixed subpopulations remain

mixed for a short period of time only (Fig. 2I–J) before becoming

segregated at later times (Fig. 2K–L) where we see that the leading

edge of the population is dominated by subpopulation 1. This result

implies that the leading edge of the spreading population becomes

dominated by the subpopulation that is more motile. The results in

Fig. 2I–J are reported for an arbitrary duration of each time step, t.

If, for example, we chose t~1:53 minutes, this would correspond to

D1&102 mm2/minute and D2&31 mm2/minute which is consistent

with our experimental observations in Fig. 1D–E.

2.3 Continuum description
The simulation results in Fig. 2A–D and Fig. 2I–L correspond

to single realizations of the discrete model. To provide additional

Figure 2. Two-dimensional modeling results for a scratch assay. Discrete snapshots of a two dimensional scratch assay in a narrow channel
geometry with 0ƒxƒ25 mm and 0ƒyƒ1:25 mm (A–D, I–L). The initial condition for two different simulations corresponds to a confluent
monolayer of agents in the central region of the domain, where 12ƒxƒ13 mm. The initial population is made up of 50% subpopulation 1 (red disks)
and 50% subpopulation 2 (blue disks). The first simulation corresponds to identical subpopulations with P1

m~P2
m~1 and P1

p~P2
p~0:001 (A–D) and

the second simulation corresponds to distinct subpopulations with P1
m~1, P2

m~0:3, P1
p~P2

p~0:001 (I–L). Snapshots are shown after 0 (A,I), 1000

(B,J), 5000 (C,K) and 10000 (D,L) time steps, where each time step has a duration of t. Both types of discrete simulation were repeated using M~100
identically prepared realizations to to produce the averaged density profiles for the case where both subpopulation are identical (E–H) and where the
subpopulations are distinct (M–P). The numerical solution of Equation (5) was obtained for the initial condition given by Equations (8)–(9) and
superimposed on the averaged discrete results (E–H, M–P). The numerical solutions were obtained using dx~2:5|10{3 mm and dt~0:1t.
doi:10.1371/journal.pone.0085488.g002
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information about these simulations we consider M identically

prepared realizations and generate averaged density profiles. In

the mth identically prepared realization of the model, site (i,j) can

be either, (i) occupied by an agent from subpopulation 1,

Cm
1 (i,j)~1, (ii) occupied by an agent from subpopulation 2,

Cm
2 (i,j)~1, or (iii) vacant with Cm

1 (i,j)~0 and Cm
2 (i,j)~0. From our

simulations we can estimate the average occupancy of agents from

subpopulation 1 at site (i,j) as SC1 (i,j)T~(1=M)
PM

m~1 Cm
1 (i,j), and

the average occupancy of agents from subpopulation 2 at site (i,j)

as SC2 (i,j)T~(1=M)
PM

m~1 Cm
2 (i,j).

Results in Fig. 2E–H show SC1 (i,j)T and SC2 (i,j)T associated with

the simulations in Fig. 2A–D for M~100. These averaged profiles

confirm that both subpopulations spread across the domain with

time and form two moving fronts, one moving in the positive x–

direction and the other moving in the negative x–direction. The

averaged density profiles in Fig. 2E–H confirm that both subpop-

ulations remain well mixed since we have SC1 (i,j)T&SC2 (i,j)T at all

locations and for all time. Results in Fig. 2M–P show SC1 (i,j)T and

SC2 (i,j)T associated with the simulations in Fig. 2I–L for M~100.

These profiles confirm that two moving fronts of cells form with time

and that one moves in the positive x –direction and the other moving

in the negative x–direction. The averaged density profiles in

Fig. 2M–P show that the two subpopulations do not remain well

mixed since we see that the leading edge of the moving fronts are

eventually dominated by subpopulation 1.

To describe these averaged simulation results using a continuum

mathematical framework we form two discrete conservation

statements for dSC1 (i,j)T and dSC2 (i,j)T, which describe the the

change in average occupancy of subpopulation 1 and 2,

respectively, at site (i,j), during the time interval from time t until

time tzt. The discrete conservation statements are given by

dSC1 (i,j)T~
P1

m(1zrx)

4
SC1 (i{1,j)T(1{SC1 (i,j)T{SC2 (i,j)T)

z
P1

m(1{rx)

4
SC1 (iz1,j)T(1{SC1 (i,j)T{SC2 (i,j)T)

z
P1

m(1zry)

4
SC1 (i,j{1)T(1{SC1 (i,j)T{SC2 (i,j)T)

z
P1

m(1{ry)

4
SC1 (i,jz1)T(1{SC1 (i,j)T{SC2 (i,j)T)

{
P1

m(1zrx)

4
SC1 (i,j)T(1{SC1 (iz1,j)T{SC2 (iz1,j)T)

{
P1

m(1{rx)

4
SC1 (i,j)T(1{SC1 (i{1,j)T{SC2 (i{1,j)T)

{
P1

m(1zry)

4
SC1 (i,j)T(1{SC1 (i,jz1)T{SC2 (i,jz1)T)

{
P1

m(1{ry)

4
SC1 (i,j)T(1{SC1 (i,j{1)T{SC2 (i,j{1)T)

z
P1

p

4
SC1 (iz1,j)T(1{SC1 (i,j)T{SC2 (i,j)T)

z
P1

p

4
SC1 (i{1,j)T(1{SC1 (i,j)T{SC2 (i,j)T)

z
P1

p

4
SC1 (i,jz1)T(1{SC1 (i,j)T{SC2 (i,j)T)

z
P1

p

4
SC1 (i,j{1)T(1{SC1 (i,j)T{SC2 (i,j)T),

ð3Þ

and

dSC2 (i,j)T~
P2

m(1zrx)

4
SC2 (i{1,j)T(1{SC1 (i,j)T{SC2 (i,j)T)

z
P2

m(1{rx)

4
SC2 (iz1,j)T(1{SC1 (i,j)T{SC2 (i,j)T)

z
P2

m(1zry)

4
SC2 (i,j{1)T(1{SC1 (i,j)T{SC2 (i,j)T)

z
P2

m(1{ry)

4
SC2 (i,jz1)T(1{SC1 (i,j)T{SC2 (i,j)T)

{
P2

m(1zrx)

4
SC2 (i,j)T(1{SC1 (iz1,j)T{SC2 (iz1,j)T)

{
P2

m(1{rx)

4
SC2 (i,j)T(1{SC1 (i{1,j)T{SC2 (i{1,j)T)

{
P2

m(1zry)

4
SC2 (i,j)T(1{SC1 (i,jz1)T{SC2 (i,jz1)T)

{
P2

m(1{ry)

4
SC2 (i,j)T(1{SC1 (i,j{1)T{SC2 (i,j{1)T)

z
P2

p

4
SC2 (iz1,j)T(1{SC1 (i,j)T{SC2 (i,j)T)

z
P2

p

4
SC2 (i{1,j)T(1{SC1 (i,j)T{SC2 (i,j)T)

z
P2

p

4
SC2 (i,jz1)T(1{SC1 (i,j)T{SC2 (i,j)T)

z
P2

p

4
SC2 (i,j{1)T(1{SC1 (i,j)T{SC2 (i,j)T):

ð4Þ

Positive terms on the right of Equation (3) represent events that

place an agent of subpopulation 1 at site (i,j), while the negative

terms on the right of Equation (3) represent events that remove

agents of subpopulation 1 from site (i,j). A equivalent interpre-

tation applies to the terms on the right of Equation (4) with respect

to agents from subpopulation 2. All the terms on the right of

Equations (3) and (4) involve factors like SC1(i,j)T and

(1{SC1(i,j)T{SC2(i,j)T) which we interpret the probability that

site (i,j) is occupied by an agent from subpopulation 1, or the

probability that site (i,j) is vacant, respectively. We interpret

products of these terms as net transition probabilities which means

that we are making the usual assumption that the occupancy of

lattice sites are independent [46–48]. As we shall later demonstrate

(Fig. 2) this assumption appears to be a reasonable for the

problems we consider here.

The discrete conservation statements, given by Equation (3) and

(4) are related to a system of partial differential equations in the

appropriate limit as D?0 and t?0 and the averaged data,

SC1 (i,j)T and SC2 (i,j)T are written in terms of two continuous

variables C1(x,y,t) and C2(x,y,t). To find this relationship we

expand all terms in Equations (3) and (4) in a truncated Taylor

series about site (i,j), keeping terms up to O(D2). Dividing the

resulting expressions by t, we consider the limit as D?0 and t?0

simultaneously, with the ratio (D2=t) held constant. In the

continuum limit, the partial differential equations governing

C1(x,y,t) and C2(x,y,t) can be written as
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LC1

Lt
~D1

L
Lx

(1{S)
LC1

Lx
zC1

LS

Lx

� �
zD1

L
Ly

(1{S)
LC1

Ly
zC1

LS

Ly

� �

{v1 x

L
Lx

C1(1{S)½ �{v1 y

L
Ly

C1(1{S)½ �zl1C1(1{S),

ð5Þ

LC2

Lt
~D2

L
Lx

(1{S)
LC2

Lx
zC2

LS

Lx

� �
zD2

L
Ly

(1{S)
LC2

Ly
zC2

LS

Ly

� �

{v2 x

L
Lx

C2(1{S)½ �{v2 y

L
Ly

C2(1{S)½ �zl2C2(1{S),

where

D1~ lim
D?0,t?0

P1
mD

2

4t

 !
, D2~ lim

D?0,t?0

P2
mD

2

4t

 !

v1 x~ lim
D?0,t?0

P1
mrxD

2t

� �
, v1 y~ lim

D?0,t?0

P1
mryD

2t

 !

v2 x~ lim
D?0,t?0

P2
mrxD

2t

� �
, v1 y~ lim

D?0,t?0

P2
mryD

2t

 !

l1~ lim
D?0,t?0

P1
p

t

 !
, l2~ lim

D?0,t?0

P2
p

t

 !
, ð6Þ

and S(x,y,t)~C1(x,y,t)zC2(x,y,t) is the total density [35,39]

We note that for the special case where the motion is unbiased

rx~ry~0, and that both subpopulations are identical with

D1~D2~D, l1~l2~l, we can re-write Equation (5) in terms of

the total population density as

LS

Lt
~D

L2S

Lx2
z

L2S

Ly2

 !
zlS(1{S), ð7Þ

which is the two-dimensional analogue of the well known Fisher

Kolmogorov equation [49,50]. This standard reaction diffusion

model is a particular case of the more general system derived here.

We note that Equation (5) is written in terms of the two-

dimensional (x,y) Cartesian plane. If we consider an initial

condition, C1(x,y,0) and C2(x,y,0), that is independent of the

vertical coordinate y, and either periodic or reflecting boundary

conditions are applied on both boundaries parallel to the x
coordinate, the solution of Equation (5) is independent of y for all

tw0 and we have C1(x,y,t)~C1(x,t) and C2(x,y,t)~C2(x,t)
[35,39,40]. These initial conditions and boundary conditions are

relevant when considering an in vitro experiment in a narrow

channel geometry, such as a scratch assay [2,3,15] or the discrete

simulations in Fig. 2A–D and Fig. 2I–L. For other types of assays

where the geometry is genuinely two-dimensional, such as barrier

assays [45,51–54], we must consider the complete two-dimension-

al partial differential equations as demonstrated previously in [40].

To investigate how the solution of Equation (5) relates to the

averaged discrete data in Fig. 2E–H and Fig. 2M–P, we solved

Equation (5) numerically on 0ƒxƒ25 mm with reflecting

boundary conditions for both subpopulations at both boundaries.

To match the averaged discrete simulation data we use the same

initial condition as in the discrete simulations

C1(x,0)~

0, 0 ƒ x ƒ 12 mm ,

0:5, 12 v x v 13 mm ,

0, 13 v x ƒ 25 mm ,

8><
>: ð8Þ

and

C2(x,0)~

0, 0 ƒ x ƒ 12 mm ,

0:5, 12 v x v 13 mm ,

0, 13 v x ƒ 25 mm :

8><
>: ð9Þ

We solve Equations (5) using a non-iterative operator split method

[55]. To solve the transport terms in Equation (5) we use central

difference approximation with mesh spacing dx, and implicit Euler

stepping with a time step of dt. To solve the reaction terms in

Equation (5) we use a fourth order Runge-Kutta method with time

step dt [56].

The numerical solution of Equation (5), with D1~D2 and

l1~l2, is superimposed in Fig. 2E–H where we see that C1(x,t)
and C2(x,t) match the averaged discrete data, SC1(x,t)T and

SC2(x,t)T, very well at all locations and for all times considered.

Similarly, the numerical solution of Equation (5) with D1=D2 and

l1~l2 are superimposed in Fig. 2M–P where we also see that

these solutions match the averaged discrete data very well at all

locations for all times considered. We would like to reiterate here

that the key result is that when the subpopulations are identical we

have C1(x,t)~C2(x,t) whereas when we consider distinct

subpopulation with D1=D2, we observe an influence on the

spatial and temporal organization of the two subpopulations. In

particular, we see that the more motile subpopulation, C1(x,t),
dominates the total population at the leading edge whereas the less

motile subpopulation, C2(x,t), is absent from the leading edge.

Therefore, locally at the invasive front we have S(x,t)&C1(x,t)
and C2(x,t)&0. We note that these kinds of differences, where

cells at the leading edge of an invasive population are appear to be

functionally distinct from cells located well behind the leading edge

of the invasive population have also been observed experimentally

in various in vivo [19] and in vitro contexts [13].

Discussion and Conclusions

Mathematical and computational modeling has played an

important role in improving our understanding of collective cell

spreading in a range of applications [2–5,13,22]. Despite a range

experimental evidence that suggests otherwise, most mathematical

models of collective cell behavior make the simplifying assumption

that the cell motility rate and the cell proliferation rate are

constants and do not vary amongst the cell population. These

kinds of simplifying assumptions give rise to mathematical models

that take the form of reaction diffusion equations with constant cell

diffusivity [2–5], or discrete random walk models of collective cell

behavior where isolated individual agents in the system have

constant rates of motility [13,15,35,39].

In this work we have sought to explore the validity of these

standard assumptions by performing a transwell assay with 3T3

cells. By stopping the assay after a short period of time we aimed to

test the hypothesis that those cells amongst the total population

with high motility rate would move into the lower compartment of

the transwell faster than those cells amongst the total population

with a lower motility rate. Indeed our time lapse data suggests that

those cells that moved into the lower compartment in a short
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period of time were, on average, approximately three times more

motile that those cells remaining in the upper compartment of the

transwell. We illustrated the role that such variability can have by

applying an existing model of cell migration through a transwell

[35] which we generalize so that each agent in the simulation can

have a distinct motility rate and distinct proliferation rate. Taking

the simplest possible approach where we consider the total

population to be composed of two subpopulations, we show that

the mathematical model predicts very different behavior in the

transwell assay where we account for differences in the motility

rate between subpopulation 1 and subpopulation 2.

We also apply our mathematical model to the situations where

we idealize a total population of cells as two possibly distinct

subpopulations, to a scratch assay. Our simulations and analysis

indicate that when we make the standard assumption that both

subpopulations have identical cell diffusivity (D1~D2) and

identical cell proliferation rate (l1~l2), with the further

assumption that the initial condition is a well mixed population

where both subpopulations are present in equal proportions, we

observe the formation of moving fronts of cells where both

subpopulations are well mixed throughout. In contrast, if we

assume that the subpopulations have distinct cell diffusivities

(D1wD2) and identical cell proliferation rates (l1~l2) our

modeling shows that the moving fronts of cells that forms is very

different. In this case the two subpopulations do not remain well

mixed, and instead we observe that the subpopulation with the

higher diffusivity dominates at the leading edge of the population.

This idea that the cells at the leading edge of invasive fronts are

more motile than their counterparts well behind the leading edge

is consistent with previous experimental observations [13,19].

There are several ways that the modeling results can be

extended. For example, when we considered the scratch assay

simulations in Fig. 2 we always made the simplifying assumption

that both subpopulations were initially present in equal propor-

tions so that we had C1(x,0)~C2(x,0). In the case that we have

distinct subpopulations with D1wD2, we note that our main

result, showing that the two subpopulations do not remain well

mixed after a sufficiently long period of time, also holds when we

vary the initial condition. For example, our results in Fig. 2 made

the assumption that the central region of the domain was equally

composed of both subpopulations, C1(x,0)~C2(x,0)~0:5
(Fig. 2I). If, instead, we suppose that subpopulation 2 dominates

initially by setting C1(x,0)~0:1 and C2(x,0)~0:9 in this central

region, our modeling framework predicts that subpopulation 1,

with D1wD2, will eventually dominate the leading edge of the

spreading front despite the fact that there is only a small

proportion of subpopulation 1 present at the beginning of the

experiment.

Another simplifying assumption made here is that we supposed

that the total population of cells in the system could be idealized as

two subpopulations. This assumption was invoked so that we could

illustrate our results as simply as possible and we note that our

discrete modeling framework, outlined in Section 1.2, and the

associated continuum partial differential equation description, can

be generalized so that we can consider dividing the total

population into an arbitrary number of subpopulations. For

example, if instead of treating the total population in Fig. 2 as two

subpopulations, we could consider the total population to be

composed of N§1 subpopulations. Taking the same approach

leads to the following system of coupled partial differential

equations

LCk

Lt
~{

LJxk

Lx
{

LJyk

Ly
zSk, k~1,2,3, . . . ,N, ð10Þ

where Jxk is the flux of subpopulation k in the x–direction, Jyk is

the flux of subpopulation k in the y–direction and Sk is the source

term for subpopulation k. These terms can be written as

Jxk~{Dk 1{
XN

l~1

Cl

 !
LCk

Lx
{DkCk

L
Lx

XN

l~1

Cl

 !
zvk xCk 1{

XN

l~1

Cl

 !
,

Jyk~{Dk 1{
XN

l~1

Cl

 !
LCk

Ly
{DkCk

L
Ly

XN

l~1

Cl

 !
zvk yCk 1{

XN

l~1

Cl

 !
,

Sk~lkCk 1{
XN

l~1

Cl

 !
, ð11Þ

where

Dk~ lim
D?0,t?0

Pk
mD

2

4t

 !
,

vk x~ lim
D?0,t?0

Pk
mrxD

2t

� �
,

vk y~ lim
D?0,t?0

Pk
mryD

2t

 !
,

lk~ lim
D?0,t?0

Pk
p

t

 !
: ð12Þ

We note that the question of determining the appropriate number

of subpopulations, N, which accurately reflects the collective

behavior of a real population of cells is an open question that

requires further experimental and theoretical investigation.

Our experimental methods focused on a transwell assay which

are typically conducted over an interval of time that is much

shorter than the cell cycle time [35]. As a consequence, our

experimental methods were aimed at investigating the variability

of cell motility amongst the population rather than focussing on

the variability of the cell proliferation rate. To make such an

assessment, a different kind of experimental system could be

considered, such as a barrier assay [45,51–53] or a scratch assay

[2,3,41], which are often conducted for periods of time that are

longer than the doubling time. We leave such an investigation of

the role of variations in the proliferation rate of cells for future

investigation.

We conclude with a brief discussion about the limitations of our

mathematical modelling framework, together with a brief discus-

sion about the suitability of our mathematical modelling frame-

work for this particular study. One of the limitations of our

mathematical model is that it neglects to explicitly incorporate any

details regarding biochemical cell to cell interactions. It is

important to acknowledge this limitation since biochemical cell
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to cell interactions are thought to influence collective cell

behaviour [20,21]. Since the focus of our work is to explore the

role of variability amongst a population of cells, it is appropriate

for us to use a mathematical modelling framework that can

explicitly examine the role of variability rather than a mathemat-

ical model that incorporates, potentially complicated, biochemical

cell to cell interactions. Once again, we would like make the point

that many traditional mathematical models of collective cell

behaviour treat the motility of cells as a simple constant value

across a population of cells [2,3,10,11,13]. Similarly, many

traditional mathematical models of collective cell behaviour treat

the proliferation rate of cells as a simple constant value across a

population of cells [2,3,10,11,13]. In contrast, our experimental

data showed that measurements of cell diffusivity from a single

population of cells can lead to a wide range of cell diffusivity

estimates and our modelling framework showed that the neglect of

this variability leads to significantly different predictions than when

this variability is incorporated.
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