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Background: In two-sample Mendelian randomization (MR) studies, sex instrumental
heterogeneity is an important problem needed to address carefully, which however is
often overlooked and may lead to misleading causal inference.

Methods: We first employed cross-trait linkage disequilibrium score regression (LDSC),
Pearson’s correlation analysis, and the Cochran’s Q test to examine sex genetic
similarity and heterogeneity in instrumental variables (IVs) of exposures. Simulation was
further performed to explore the influence of sex instrumental heterogeneity on causal
effect estimation in sex-specific two-sample MR analyses. Furthermore, we chose
breast/prostate cancer as outcome and four anthropometric traits as exposures as an
illustrative example to illustrate the importance of taking sex heterogeneity of instruments
into account in MR studies.

Results: The simulation definitively demonstrated that sex-combined IVs can lead
to biased causal effect estimates in sex-specific two-sample MR studies. In our real
applications, both LDSC and Pearson’s correlation analyses showed high genetic
correlation between sex-combined and sex-specific IVs of the four anthropometric
traits, while nearly all the correlation coefficients were larger than zero but less than
one. The Cochran’s Q test also displayed sex heterogeneity for some instruments.
When applying sex-specific instruments, significant discrepancies in the magnitude of
estimated causal effects were detected for body mass index (BMI) on breast cancer
(P = 1.63E-6), for hip circumference (HIP) on breast cancer (P = 1.25E-20), and for waist
circumference (WC) on prostate cancer (P = 0.007) compared with those generated with
sex-combined instruments.
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Conclusion: Our study reveals that the sex instrumental heterogeneity has non-
ignorable impact on sex-specific two-sample MR studies and the causal effects of
anthropometric traits on breast/prostate cancer would be biased if sex-combined IVs
are incorrectly employed.

Keywords: two-sample Mendelian randomization, sex-specific and sex-combined instrumental variable, sex
heterogeneity, causal effect estimation, summary statistics, breast cancer, prostate cancer, anthropometric traits

INTRODUCTION

In the literature of causal inference in observational studies,
Mendelian randomization (MR) is a novel statistical method
to establish causal relationship between an exposure and
an outcome by leveraging genetic variants as instrumental
variables (IVs) (Lawlor et al., 2008; Sheehan et al., 2008).
To guarantee MR to be valid, each IV needs to satisfy
three critical modeling assumptions: (i) strongly associated
with the exposure of interest; (ii) not associated with other
confounders that are related to both the exposure and
the outcome; (iii) influences the outcome only through the
pathway of the exposure and does not exhibit any horizontal
pleiotropy. The popularity of MR is particularly accelerated by
recent successes in large-scale genome-wide association studies
(GWASs) (Altshuler et al., 2008; Visscher et al., 2017; McMahon
et al., 2019), which make it feasible to choose appropriate single-
nucleotide polymorphisms (SNPs) to be eligible instruments for
a series of exposures.

However, due to the limitation of data sharing and participant
privacy concern, individual-level GWAS datasets are often not
accessible; instead, publicly available summary-level statistics are
employed in practice, which brings one great benefit that the
exposure and the outcome are not required to be measured
on the same set of individuals, leading to the so-called two-
sample MR study (Lawlor, 2016). Briefly, in the two-sample
MR analysis, a genome-wide significant SNP associated with
the exposure is first selected as instrument based on which the
causal effect is estimated with only marginal effect sizes of the
exposure and the outcome. To enhance power, multiple IVs are
often leveraged and the individual causal effects can be combined
with an inverse-variance weighted (IVW) manner (Burgess et al.,
2017). Indeed, the two-sample MR is considerably powerful and
flexible and appears technically straightforward to undertake.
Due to those reasons, the past few years have witnessed the
rapid development and application of MR for causal inference in
genetics and epidemiology (Hartwig et al., 2017b; Davies et al.,
2018; Zeng and Zhou, 2019a; Yu et al., 2020; Yuan et al., 2020;
Liu et al., 2021).

Nevertheless, the two-sample MR still encounters many
practical challenges that need to be addressed carefully. For
example, the individuals of the two GWASs included in
MR studies should take from non-overlapping populations;
otherwise, misleading causal effect estimates may be generated
(Burgess et al., 2016; Haycock et al., 2016). In addition,
because of the difference in SNP effects among diverse
populations, the individuals analyzed in the GWASs of
exposure and outcome should be of the same ancestry

(Zeng and Zhou, 2019b; Zeng et al., 2019). Besides the two
issues mentioned above, another important problem is the
sex heterogeneity of instruments arising in two-sample MR
studies for sex-specific diseases such as breast cancer or
prostate cancer. For instance, it is intuitive and natural to
employ female-specific (or male-specific) IVs when evaluating
the causal association between exposures and breast cancer
(or prostate cancer) via the two-sample MR. Here, we do
not consider male breast cancer, as it only accounts for less
than 1% of cases.

However, this seems not to be true in sex-specific two-sample
MR studies in terms of our literature review, and we discover that
only a few MR studies mentioned in their analyses the problem
of sex-specific instruments (Supplementary Tables 1, 2). It
is a little surprising that a large amount of sex-specific MR
studies exploited sex-combined IVs, which essentially assumed
that no sex heterogeneity was present in IVs. However,
such an assumption may not hold, since previous GWASs
have displayed sex differences in genetic architecture for
many exposures including anthropometric traits (Table 1). For
example, substantial discrepancies were observed at several
adiposity-associated loci, and multiple waist-to-hip ratio (WHR)-
associated SNPs showed consistently stronger effects in females
compared with males (Heid et al., 2011; Randall et al., 2013;
Shungin et al., 2015).

Although it is particularly important, a formal investigation
about the sex instrumental heterogeneity in sex-specific two-
sample MR studies is lacking and its consequence seems to
be also overlooked by many MR researchers. As a result,
improper causal inference might be generated (Lawlor, 2016;
Tan et al., 2019). Therefore, the main goal of this work is
to explore the influence of sex instrumental heterogeneity
on causal effect estimation in two-sample MR analyses when
applying sex-specific and sex-combined effects of IVs. In
the following, we first described sex genetic similarity and
heterogeneity among instruments and demonstrated that the
sex instrumental heterogeneity had a non-ignorable impact
on causal inference in the sex-specific two-sample MR; this
statement was further supported by our numerical simulation.
Moreover, as an illustrative example, we chose breast/prostate
cancer as the outcome and four anthropometric traits as
exposures to explain the possible consequence in real data
analysis. We revealed that the causal effects of anthropometric
traits on both breast and prostate cancers would be to some
extent changed when using sex-specific IVs compared with
those generated with sex-combined instruments. We finally
offered several valuable suggestions in practical sex-specific two-
sample MR studies.
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TABLE 1 | Genetic variants with significant sex difference in effect size for four anthropometric traits.

Traits Gene CHR POS SNP Effect PQ Folds References

Female Male

BMI ZFP64 20 51,087,862 rs6091540 0.030 (0.004) 0.007 (0.005) 9.05E-05 4.3 Locke et al., 2015

BMI SEC16B 1 177,889,480 rs543874 0.060 (0.005) 0.034 (0.005) 5.23E-05 1.8 Locke et al., 2015

WHR LYPLAL1 1 217,820,132 rs2820443 0.062 (0.005) 0.002 (0.005) 2.60E-17 31.0 Shungin et al., 2015

WHR LYPLAL1 1 217,817,340 rs4846567 0.059 (0.005) 0.005 (0.005) 1.18E-13 11.8 Heid et al., 2011

WHR GRB14 2 165,221,337 rs10195252 0.054 (0.005) 0.010 (0.005) 1.41E-11 5.4 Heid et al., 2011

WHR VEGFA 6 43,872,529 rs1358980 0.060 (0.005) 0.015 (0.005) 3.70E-11 4.0 Shungin et al., 2015

WC OR2W5-NLRP3 1 245,717,763 rs10925060 0.002 (0.005) 0.045 (0.006) 1.70E-08 22.5 Shungin et al., 2015

WC CCNJL 5 159,626,935 rs17472426 −0.014 (0.009) 0.052 (0.010) 3.90E-08 3.7 Shungin et al., 2015

HIP KLHL31 6 53,648,294 rs7739232 0.063 (0.011) −0.004 (0.014) 2.90E-05 15.8 Shungin et al., 2015

HIP C5-FBXW2 9 122,533,883 rs7044106 0.039 (0.007) −0.003 (0.008) 1.30E-05 13.0 Shungin et al., 2015

HIP KLF14 7 130,090,402 rs13241538 0.033 (0.005) −0.003 (0.005) 2.00E-09 11.0 Shungin et al., 2015

CHR, chromosome; POS, position; SNP, single-nucleotide polymorphism; BMI, body mass index; WHR, waist-to-hip ratio; WC, waist circumference; HIP, hip
circumference. Note that the SNP effect of WHR, WC, and HIP was generated under the control of BMI.
The value in the parentheses is the standard error.
PQ denotes the P value of the Cochran’s Q-test. Fold is computed based on the absolute effect and is always shown to be larger than 1.

MATERIALS AND METHODS

Genome-Wide Association Study
Dataset Sources and Instrument
Selection
We initially obtained sex-combined and sex-specific summary
statistics of four anthropometric traits [i.e., body mass index
(BMI), waist-to-hip ratio (WHR), waist circumference (WC), and
hip circumference (HIP)] for individuals of European ancestry
from the Genetic Investigation of ANthropometric Traits
(GIANT) Consortium (Locke et al., 2015; Shungin et al., 2015).
For each SNP in the GIANT study, the association was performed
while adjusting for age, age2 and study-specific covariates via
linear regression. In addition, the SNP effect of WHR, WC, or
HIP was estimated under the control of BMI. Based on these
GWAS datasets, we yielded a set of uncorrelated associated SNPs
(P < 5.00E-8) to serve as sex-combined or sex-specific IVs for
each anthropometric trait (Supplementary Table 3).

We next acquired summary statistics of breast cancer
from the Breast Cancer Association Consortium (BCAC)
(Michailidou et al., 2017) and summary statistics of prostate
cancer from the Prostate Cancer Association Group to Investigate
Cancer-Associated Alterations in the Genome (PRACTICAL)
consortium (Schumacher et al., 2018). In the GWAS of the
two types of cancer, the association was also undertaken with
individuals of European descent. The SNP effect size was
estimated via logistic regression with principal components as
covariates and sometimes additionally adjusted for study-specific
covariates. The GWAS datasets employed in our study are
summarized in Table 2.

Detection of Sex Genetic Similarity and
Heterogeneity for Anthropometric Traits
To evaluate genetic similarity between the sex-combined
and sex-specific effects of anthropometric traits as well

as between the male-specific and female-specific effects
of anthropometric traits, we applied cross-trait linkage
disequilibrium score regression (LDSC) to calculate overall

TABLE 2 | Summary information of the GWAS datasets employed in our
sex-specific two-sample MR analysis.

Trait Sample size
(case/control)

k0 M References

BMI

Sex-combined 322,154 97 2,517,828 Locke et al., 2015

Female-specific 171,977 38 2,459,695 Locke et al., 2015

Male-specific 152,893 30 2,443,565 Locke et al., 2015

WHR

Sex-combined 210,086 39 2,542,431 Shungin et al., 2015

Female-specific 116,742 34 2,467,778 Shungin et al., 2015

Male-specific 93,480 3 2,146,136 Shungin et al., 2015

WC

Sex-combined 231,355 70 2,545,772 Shungin et al., 2015

Female-specific 127,470 25 2,473,035 Shungin et al., 2015

Male-specific 104,079 29 2,294,965 Shungin et al., 2015

HIP

Sex-combined 211,117 89 2,540,653 Shungin et al., 2015

Female-specific 117,340 41 2,466,814 Shungin et al., 2015

Male-specific 93,965 31 2,188,855 Shungin et al., 2015

Breast cancer 228,951
(122,977/105,974)Female-specific 13,011,123 Michailidou et al., 2017

Prostate cancer 140,306
(79,194/61,112)Male-specific 16,486,833 Schumacher et al.,

2018

BMI, body mass index; WHR, waist-to-hip ratio; WC, waist circumference; HIP,
hip circumference; SNP, single-nucleotide polymorphism; GWAS, genome-wide
association study; MR, Mendelian randomization.
Note that k0 denotes the number of candidate instruments that were obtained
directly with those associated SNPs (P < 5.00E-8) reported in the original GWAS
papers; M is the total number of SNPs.
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genetic correlation ρg with all available SNPs (Bulik-Sullivan
et al., 2015). The LD scores were computed with genotypes
of 503 European individuals in the 1000 Genomes Project
(The 1000 Genomes Project Consortium, 2015) and then
regressed on the product of Z statistics of two traits. The
regression slope provides an unbiased estimate for ρg . The
software of LDSC (version v1.0.1) was downloaded from
https://github.com/bulik/ldsc.

We also carried out the Pearson’s correlation analysis
to quantify the genetic effect correlation rg among those
independently associated SNPs that served as IVs. Note
that, unlike ρg , which quantifies the global genetic overlap
of two traits using genome-wide variants, rg can be viewed
as a measurement of marginal genetic sharing between
two traits because of only a small set of associated SNPs
involved. We further assessed sex heterogeneity in each IV
via the Cochran’s Q test. Specifically, the sex heterogeneity
was tested based on sex-specific SNP effect estimates
and standard errors; the P value of heterogeneity was
corrected with the Bonferroni’s method to take multiple
comparisons into account. Finally, the sex heterogeneity
was quantified with the I2 statistic that was widely used
in the literature.

Simulation Study to Assess the Influence
of Sex Instrumental Heterogeneity
Given the potential sex instrumental heterogeneity in IVs (Heid
et al., 2011; Randall et al., 2013; Shungin et al., 2015), we
implemented a simple simulation to assess its influence on
causal inference in sex-specific two-sample MR studies. To obtain
exposures, we first generated m uncorrelated genetic variants
with m following a uniform distribution ranging from 50 to
150. The minor allele frequency (MAF) of these SNPs was
independently sampled from a uniform distribution ranging
from 0.01 to 0.50. The genotypes (denoted by G1 or G2) were
separately generated for N1 (1× 105) male or N2 (1× 105) female
individuals under the assumption of linkage equilibrium and
Hardy–Weinberg equilibrium (HWE). The effect sizes (denoted
by α1 and α2) for the two sets of SNPs were drawn from a
bivariate normal distribution with µ = (0, 0) and 6 = ([1, rg],
[rg , 1]), with rg varying from 0.1, 0.3, 0.5, to 0.7. Note that
rg also partly quantified the genetic effect heterogeneity of the
exposure between females and males for these SNPs; that is,
smaller rg indicated larger heterogeneity. The residual error terms
(denoted by e1 or e2) were separately sampled from independent
standard normal distributions. We further rescaled α1 and α2
so that the phenotypic variance explained (PVE) by SNPs can
be set to the given value for the male exposure and the female
exposure.

PVEl =
δ2

l ×
∑m

j=1 α2
lj

δ2
l ×

∑m
j=1 α2

lj + 1
, l = 1 or 2 (1)

where δ is the scale parameter and can be estimated
(denoted by δ̂) in terms of (1). Note that rg would
not be impacted by the scaled effect sizes. After doing

those, the exposures (denoted by x1 and x2) can be
obtained.

x1i = δ̂1 ×

K∑
j=1

G1ijα1j + e1i, x2i = δ̂2 ×

K∑
j=1

G2ijα2j

+e2i, i = 1, · · · , N1or N2 (2)

Then, a female-specific outcome was created as y = x2 × θ +

ε based on the same set of individuals, where θ was the true
causal effect size varying from 0.1, 0.3, to 0.5 and ε was the
residual error term following a standard normal distribution.
The single SNP association analysis was conducted to obtain
summary statistics for each genetic variant (Zeng et al., 2015).
Specifically, the sex-specific summary statistics of the exposure
were yielded by regressing x1 on G1 (or x2 on G2), while the
sex-combined summary statistics of the exposure were yielded
with the fixed-effects IVW meta-analysis based on the two sets of
sex-specific summary statistics. The SNPs with marginal P values
less than 0.05/m were identified to be female-specific or sex-
combined IVs. If no SNPs satisfied this criterion, the one with the
minimum P value would be employed. With the selected IVs, the
female-specific and sex-combined causal effects of the exposure
on the outcome were evaluated with the fixed-effects IVW MR
approach (Burgess et al., 2017; Hartwig et al., 2017a; Yavorska and
Burgess, 2017).

θ̂ =
1∑k

i=1 var(ây
i )
−1(âx

i )
2

k∑
i=1

var(ây
i )
−1ây

i âx
i (3)

where â denotes the marginal effect size of the selected IV, â
denotes the corresponding variance of the estimated effect size,
and k is the number of the used IVs. Note that θ̂ = ây/âx when
only one IV was employed. We can approximately estimate the
asymptotic variance of θ̂ by:

var(θ̂) =
1∑k

i=1 var(α̂y
i )
−1(α̂x

i )
2

(4)

Estimation of Causal Effect With
Two-Sample Mendelian Randomization
Before the formal MR analysis, we performed several stringent
quality control procedures for IVs: (i) excluded SNPs that
were not included in the breast/prostate cancer GWASs; (ii)
excluded SNPs whose alleles were inconsistent between the
exposure and the outcome; (iii) excluded SNPs that were likely
related to breast/prostate cancer if the Bonferroni-corrected
P values < 0.05. Note that this is a conservative way of
protecting against the pleiotropic impact of instruments to ensure
valid causal inference in MR studies (Zeng and Zhou, 2019a;
Zeng et al., 2019). After the quality control, we performed
the two-sample IVW MR to estimate the causal effect of
each anthropometric trait on breast/prostate cancer with sex-
combined or sex-specific IVs. The causal relationship was
mainly illustrated in terms of odds ratio (OR) per standard
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deviation (SD) increase in anthropometric trait because all the
anthropometric traits were previously standardized.

For sex-specific IVs, once a significant causal relationship
was identified between one of the anthropometric traits and
breast/prostate cancer via the IVW approach, we further
implemented the weighted median method (Bowden et al.,
2016b), the maximum likelihood method (Burgess et al.,
2013), the leave-one-out (LOO) analysis (Noyce et al.,
2017), the MR-PRESSO test (Verbanck et al., 2018), and
the MR-Egger regression (Bowden et al., 2016a; Burgess and
Thompson, 2017) as part of sensitivity analyses to examine the
robustness of our results.

Finally, we formally compared the causal effects
generated with sex-combined or sex-specific instruments
(H0: θcombined = θspecific) by a simple u test:

u =
θ̂combined − θ̂specific√

{se(θ̂combined)}
2
+ {se(θ̂specific)}

2

− 2ρ × se(θ̂combined)× se(θ̂specific)

(5)

where θ̂ is the estimated causal effect with the standard error
se(θ̂), and ρ is the correlation coefficient between the two
estimated causal effects that are expected to be highly correlated.
However, it is rather challenging to estimate ρ accurately with
only summary statistics. In the present study, we calculated ρ

with the LOO jackknife method for each anthropometric trait
(Efron, 1982; Efron and Tibshirani, 1993). Specifically, for all

the used sex-combined and sex-specific IVs (Supplementary
Table 3), we removed one at a time and recomputed the causal
effect on breast/prostate cancer using the rest of sex-combined
and sex-specific instruments, respectively. We then calculated ρ

using the sex-combined causal effects and the sex-specific causal
effects. The P value of the u statistic can be easily calculated as it
asymptotically follows a standard normal distribution.

RESULTS

Sex Heterogeneity of Instrumental
Variables
With LDSC, we observe high positive genetic correlation between
male and female anthropometric traits (Figure 1A), with ρ̂g
= 0.920 (se = 0.028) for BMI, ρ̂g = 0.919 (se = 0.046) for HIP, ρ̂g
= 0.755 (se = 0.060) for WC, and ρ̂g = 0.609 (se = 0.085) for WHR.
Similar positive genetic correlations were also detected between
the sex-combined and sex-specific anthropometric traits, with
all ρ̂g larger than 0.85 (Figure 1A). Nearly all these estimated
genetic correlations are substantially larger than 0 (H01: ρg = 0)
but less than 1 (H02: ρg = 1) (Figure 1A); the only exception
is the genetic correlation of HIP between males and females,
which is marginally significant (ρ̂g = 0.919 and P = 0.076 for
H02). In addition, the Pearson’s correlation analysis also showed
that all the correlations between the sex-combined and sex-
specific instruments are less than 1 (H30: rg = 1) (Figure 1B,
Supplementary Figure 1). It needs to note that two negative

FIGURE 1 | Genetic correlation between sex-combined and sex-specific anthropometric traits as well as between male-specific and female-specific anthropometric
traits using (A) linkage disequilibrium score regression (LDSC) and (B) Pearson’s correlation analyses. BMI, body mass index; WHR, waist-to-hip ratio; WC, waist
circumference; HIP, hip circumference.
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Pearson’s correlations even occur, i.e., r̂g = −0.087 (P = 0.472)
for WC and r̂g = −0.577 (P = 1.69E-5) for WHR between males
and females (Supplementary Figures 1C3, D3), indicating that
the marginal genetic effect correlation can have a fully opposite
direction compared with its global counterpart.

Using the Cochran’s Q test, we detect two out of 97 (2.1%)
BMI-associated SNPs, four of 95 (4.2%) HIP-associated SNPs, 10
of 76 (13.2%) WC-associated SNPs, and 17 of 48 (35.4%) WHR-
associated SNPs exhibit sex heterogeneity among candidate IVs
(Supplementary Table 3). In particular, all WC-associated SNPs
but one (i.e., rs17472426 with βmale = 0.052 and βfemale =−0.014,
Phet = 9.31E-07) and all WHR-associated SNPs but three (i.e.,
rs224333 with βmale = 0.036 and βfemale = 0.009, Phet = 1.34E-4;
rs10925060 with βmale = 0.045 and βfemale = 0.002, Phet = 3.68E-8;
rs3791679 with βmale = 0.053 and βfemale = 0.021, Phet = 4.18E-5)
are found to have larger effect sizes on females compared with
males (Supplementary Table 3). These findings, together with
the estimates of genetic correlation described above, indicate
the existence of potential sex genetic effect heterogeneity in the
four anthropometric traits, although they indeed share widely
common genetic components.

Influence of Sex Instrumental
Heterogeneity in Terms of the Simulation
The results of simulation are displayed in Figure 2. We here
clearly find that the use of sex-combined instruments can lead
to biased causal effect estimates in our simulated case of female-
specific two-sample MR. Specifically, the female-specific causal
effect is overestimated if the PVE of the male exposure is smaller
than that of the female exposure (1% vs. 3%) (Figures 2A–C). The
main reason is that under this situation, the average of the sex-
combined effect sizes of the IVs tends to be smaller compared to
the average of female-specific effects of the IVs [see Eq. 1], which
in turn leads to a higher estimate of causal effect when the effect
sizes of the IVs of the outcome remain fixed [see Eq. 3]. On the
other hand, the female-specific causal effect is underestimated if
the PVE of the male exposure is larger than that of the female
exposure (3% vs. 1%) (Figures 2D–F).

Moreover, as can be expected, the sex-combined bias generally
becomes larger as the sex heterogeneity in IVs increases (i.e.,
weaker correlation). For example, when true effect size is 0.5
(Figure 2C), the average of the bias is 0.169 for rg = 0.1, 0.150
for rg = 0.3, 0.131 for rg = 0.5, or 0.127 for rg = 0.7. In
contrast, approximate unbiased estimates of causal effects are
generated when using sex-specific IVs. Overall, this simulation
study explicitly reveals that the use of sex-combined IVs in sex-
specific two-sample MR analyses may lead to a biased causal
effect estimate in many cases and that the extension of the bias
relies on the relative magnitude of the sex-specific effects and the
sex-combined effects of the used IVs.

Causal Effect Estimation With
Sex-Combined Instruments
Like most previous studies (Supplementary Tables 1, 2),
we first employ sex-combined instruments to evaluate the
causal relationship between each anthropometric trait and

breast/prostate cancer as an exploratory analysis. With
the random-effects IVW method, which can account for
instrumental heterogeneity, we identify statistically significant
associations between BMI and breast cancer [OR = 0.85, 95%
confidence interval (CIs) 0.76∼0.95, P = 0.003], between WC
and breast cancer (OR = 0.87, 95% CI 0.77∼0.98, P = 0.020),
as well as between BMI and prostate cancer (OR = 0.87, 95%
CI 0.76∼0.98, P = 0.022) (Tables 3, 4), indicating that higher
BMI can lead to a lower risk for breast/prostate cancer and
that higher WC can result in reduced risk for breast cancer.
These results are considerably consistent with prior observations
(Shu et al., 2018; Kazmi et al., 2019; Qian et al., 2019). After
the removal of IVs exhibiting sex heterogeneity in terms of the
Cochran’s Q test (Supplementary Tables 4, 5), we observe that
the association between WC and breast cancer now becomes
non-significant (P = 0.069), although other causal effects almost
remain unchanged because only a few instruments are excluded,
indicating that the sex heterogeneity in IVs might have a
substantial influence on the statistical inference in sex-specific
two-sample MR analyses.

Causal Effect Estimation With
Sex-Specific Instruments
We now estimate the causal effect using only sex-specific
instruments and show those new results in Tables 3, 4. Several
interesting findings are observed. First, it is observed that there
exists a significantly positive correlation between the causal
effect obtained with sex-specific effects of IVs and that yielded
with sex-combined effects (Supplementary Figures 2, 3), with
all the correlation coefficients [i.e., ρ in the u test in Eq. 5]
larger than 0.9. Second, using the sex-specific IVs, we discover
distinct discrepancy in the significance of estimated causal effects
of anthropometric traits compared with those obtained with
the sex-combined IVs. Specifically, although still maintaining
similar effect sizes (0.866 vs. 0.858), WC is now only marginally
associated with breast cancer (P = 0.057) (Table 3). The analogous
situation is seen for the association between BMI and prostate
cancer, which also becomes marginally significant (P = 0.060),
although the causal effect is not influenced (0.865 vs. 0.862)
(Table 4). Third, when applying sex-specific IVs, significant
discrepancies in the magnitude of estimated causal effects are
detected for BMI on breast cancer (P = 1.63E-6), for HIP on
breast cancer (P = 1.25E-20), as well as for WC on prostate
cancer (P = 0.007) compared with those estimated with sex-
combined instruments (Tables 3, 4). More specifically, we find
that the causal association between BMI and breast cancer is
now more pronounced (Table 3). For example, it is shown
that per SD increase of BMI can result in about 23.7% (95%
CI 11.8%∼33.9%) lower risk of breast cancer when using the
female-specific instruments (OR = 0.76) compared with 15.5%
(95% CI 5.5%∼24.4%) lower risk of breast cancer if using those
sex-combined instruments (OR = 0.85). Here, it needs to be
highlighted that the female PVE of BMI is much larger than
the male PVE of BMI (1.16 vs. 0.77; see Tables 3, 4), partly
explaining why a stronger association was identified when the
female-specific effects of instruments were employed. Note that
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FIGURE 2 | Estimated causal effects with sex-combined or sex-specific instrumental variables in the simulation. (A,D) The true causal effect is 0.1. (B,E) The true
causal effect is 0.3. (C,F) The true causal effect is 0.5. In the top panel, the phenotypic variance explained (PVEs) of the male and the female exposures are 1 and
3%, respectively. In the bottom panel, the PVEs of the male and the female exposures are 3 and 1%, respectively.

TABLE 3 | Association of anthropometric trait with the risk of breast cancer using sex-combined and female-specific instruments.

Exposure Sex-combined IVs Female-specific IVs u (P)

k0/k1 PVE (%) Power (%) OR (95% CI, P) k0/k1 PVE (%) Power (%) OR (95% CI, P)

BMI 97/92 1.51 99.9 0.845 (0.756∼0.945, 0.003) 38/36 1.16 100.0 0.763 (0.661∼0.882, 2.52E-04) 4.795 (1.63E-06)

WHR 39/38 0.95 2.8 1.002 (0.841∼1.194, 0.984) 34/34 1.63 6.7 0.985 (0.858∼1.131, 0.833) 0.610 (0.542)

WC 70/66 1.42 98.0 0.866 (0.767∼0.978, 0.020) 25/25 1.04 96.1 0.858 (0.732∼1.004, 0.057) 0.299 (0.765)

HIP 89/86 2.07 6.1 0.988 (0.885∼1.102, 0.823) 41/39 1.57 93.6 0.890 (0.787∼1.006, 0.063) 9.669 (1.25E-20)

IV, instrumental variable; BMI, body mass index; WHR, waist-to-hip ratio; WC, waist circumference; HIP, hip circumference; MR, Mendelian randomization; PVE, phenotypic
variance explained by IVs that were used in our final MR analysis; power, statistical power; OR, odds ratio; CI, confidence internal.
Note that k0 is the number of candidate instruments, while k1 is the final number of instruments employed in the analysis.

TABLE 4 | Association of anthropometric trait with the risk of prostate cancer using sex-combined and male-specific instruments.

Exposure Sex-combined IVs Male-specific IVs u (P)

k0/k1 PVE (%) Power (%) OR (95% CI, P) k0/k1 PVE (%) Power (%) OR (95% CI, P)

BMI 97/60 1.12 81.3 0.865 (0.764∼0.979, 0.022) 30/22 0.77 67.7 0.862 (0.738∼1.007, 0.060) 0.190 (0.849)

WHR 39/21 0.56 59.2 0.854 (0.681∼1.071, 0.172) 3/1 0.04 5.2 1.094 (0.545∼2.198, 0.800) −0.969 (0.333)

WC 70/50 1.02 14.1 0.954 (0.808∼1.126, 0.577) 29/21 1.15 59.0 0.895 (0.763∼1.050, 0.175) 2.688 (0.007)

HIP 89/64 1.40 5.4 1.016 (0.886∼1.166, 0.817) 31/17 0.83 28.6 1.086 (0.873∼1.350, 0.457) −1.428 (0.153)

IV, instrumental variable; BMI, body mass index; WHR, waist-to-hip ratio; WC, waist circumference; HIP, hip circumference; MR, Mendelian randomization; PVE, phenotypic
variance explained by IVs that were used in our final MR analysis; power, statistical power; OR, odds ratio; CI, confidence internal.
Note that k0 is the number of candidate instruments, while k1 is the final number of instruments employed in the analysis.
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this finding is also consistent with the phenomenon discovered
in the simulation above.

Sensitivity Analyses With Sex-Specific
Instruments
We here perform a wide series of sensitivity analyses to
complement our main MR results obtained above using IVW
with sex-specific IVs. Here, only the significant relationship
between BMI and breast cancer is considered (Table 3). Both
the weighted median method and the maximum likelihood
method yield consistent causal effect estimates compared with
IVW (Figure 3). We also create a scatter plot to examine
whether instrumental outliers are present. Among all these used
female-specific instruments, one index SNP (i.e., rs17024393
on gene GNAT2) has a large effect size of 0.071 on BMI and
may be likely a potential outlier (Supplementary Figure 4A).
However, after removing this IV, the OR is estimated to be 0.78
(95% CI 0.67∼0.90, P = 5.28E-04) (Supplementary Figure 4C),
almost the same as that obtained using all instruments together
(OR = 0.76). In addition, the LOO analysis shows that no single
instrument can substantially influence the overall IVW estimate
(Supplementary Figure 4C). The result of MR-PRESSO displays
the absence of instrument outliers at the significance level of 0.05.
Finally, the intercept of MR-Egger regression is estimated as 0.006
(95% CI −0.009∼0.022, P = 0.418), ruling out the possibility of
directional pleiotropic effects of instruments. The funnel plot also
presents a symmetric pattern around the overall point estimate
(Supplementary Figure 4B), implying that horizontal pleiotropy
unlikely biases our result. In conclusion, depending on female-
specific IVs, we demonstrate that BMI is robustly negatively
associated with breast cancer.

Power Calculation
Finally, we calculate the statistical power to detect the estimated
causal effects of four anthropometric traits on the risk of breast
or prostate cancer when applying sex-specific and sex-combined
IVs. The power calculation is based on observed causal effect
sizes, the number of IVs used, the sample sizes of the exposure,
and the outcome. We implement the power calculation via an
online software tool available at https://sb452.shinyapps.io/power
(Brion et al., 2013).

With regard to the association between WC and breast cancer,
the statistical power calculated with female-specific instruments

(power = 96.1% when IVs = 25 and PVE = 1.04%) is slightly
lower than that computed with sex-combined instruments
(power = 98.3% when IVs = 66 and PVE = 1.42%) (Table 3). The
analogous situation is seen for the association between BMI and
prostate cancer (Table 4). In these analyses, we observe that the
number of valid IVs would become smaller after applying sex-
specific instruments, which can potentially reduce the statistical
power in the MR analysis due to the decrease of PVE.

However, it is also shown that although there is a decrease
in the number of valid IVs after using sex-specific instruments,
the statistical powers of some associations are higher than those
obtained with sex-combined ones (Tables 3, 4). For example, an
improvement of statistical power is detected for BMI on breast
cancer (power = 100.0% when IVs = 36 vs. power = 99.9%
when IVs = 92), for HIP on breast cancer (power = 93.6% when
IVs = 39 vs. power = 6.1% when IVs = 86), as well as for WC on
prostate cancer (power = 59.9% when IVs = 21 vs. power = 14.1%
when IVs = 50) after applying sex-specific instruments. As
mentioned before, these analyses show significant discrepancies
in the magnitude of estimated causal effects. Therefore, we
cannot completely rule out the possibility that the difference
in the causal inference is due to the different number of IVs
used. However, as shown in our real applications, the impact of
sex instrumental heterogeneity on the magnitude of estimated
causal effects is substantial, which is not fully driven by the
decreased number of IVs.

DISCUSSION

The main objective of our study was to investigate the influence
of sex instrumental heterogeneity on causal effect estimation
in sex-specific two-sample MR analyses where in principle sex-
specific rather than sex-combined IVs should be employed. One
of the common cases is the application of MR to breast cancer
or prostate cancer, both of which lead to serious health threat
in females and males worldwide (Bray et al., 2018). Therefore,
the identification of risk factors for the two types of cancer is
important for disease prevention and holds the potential for
better therapeutic strategies in the future. More than 80 empirical
MR studies have been implemented for the two cancers to date
(Supplementary Tables 1, 2); however, only few applied sex-
specific IVs for exposures in these analyses (Au Yeung and
Schooling, 2019; Jung et al., 2019; Ooi et al., 2019; Li et al., 2020;

FIGURE 3 | Estimated causal effects of BMI on breast cancer with different MR approaches. MR-Egger regression was performed after removing the instrument of
rs17024393. BMI, body mass index; IV, instrumental variable; IVW, inverse-variance weighted; OR, odds ratio; MR, Mendelian randomization.
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Mohammadi-Shemirani et al., 2020; Murphy et al., 2020; Ong
et al., 2020; Richardson et al., 2020; Ruth et al., 2020; Watts
et al., 2020). Particularly, for some exposures (e.g., WHR) that
display obvious sex heterogeneity in effect sizes, sex-combined
IVs were still employed; even sex-specific summary statistics
were publicly available (Gao et al., 2016; Shu et al., 2018).
Here, we emphasize again that the issue of sex instrumental
heterogeneity specially occurs only in summary statistics-based
MR studies, which does not arise when individual-level datasets
can be accessible.

In our simulation and empirical analyses, we illustrated
that the sex instrumental heterogeneity had a non-ignorable
impact on the causal inference and that the causal effects of
anthropometric traits on breast/prostate cancer would be greatly
influenced if sex-combined IVs were incorrectly applied. To the
best of our knowledge, our study is among the first to formally
examine the problem of sex-specific instruments in the two-
sample MR.

In sex-specific two-sample MR studies, the use of sex-
combined instruments makes an implicit hypothesis that no
effect differences exist between females and males, which,
however, is not always satisfied in terms of previous observations
(e.g., Table 1). Nevertheless, in practice, applying sex-combined
instruments in MR is not without advantages if such assumption
can be well-established. Under this situation, one of the greatest
benefits is that more IVs would be exploited because of a larger
sample size for the exposure GWAS, which can potentially lead
to the improvement of statistical power due to more phenotypic
variances explained (e.g., Tables 3, 4).

From a more generalized perspective, the females and the
males can be viewed as two diverse populations that have
different genetic foundations (Ober et al., 2008) as well as
distinct morbidities and mortalities of complex diseases (Wang
et al., 2019). Note that to ensure the validity of two-sample
MR, one of the important assumptions is that two sample sets
should come from the same underlying population. Otherwise,
MR may still provide evidence on whether a causal association
exists but not necessarily on the precise magnitude of the causal
effect (Burgess et al., 2015; Haycock et al., 2016). Our study
demonstrated that sex-specific instruments can substantially
influence the significance and magnitude of causal effects,
confirming the importance of this MR assumption. At the same
time, we note that a few sex-specific two-sample MR studies
applying sex-specific IVs were published in recent years (Table 1),
suggesting the growing attention has been paid on the issue of sex
instrumental heterogeneity.

Finally, we offer some suggestions for the issue of sex
heterogeneity of instruments when conducting sex-specific two-
sample MR studies. First, to guarantee to implement MR in
the same population, it is necessary to check the original
GWAS of exposures or contact authors to obtain sex-specific
summary statistics; a clear statement about whether sex-specific
IVs are employed is also highly recommended (Ong et al.,
2020; Richardson et al., 2020). Second, when sex-combined
instruments are employed, sex heterogeneity in instruments
should be carefully examined, followed by extensive sensitivity
analyses. When using sex-specific instruments, various sensitivity

analyses also should be carried out to ensure the robustness of the
results. Third, when only sex-combined summary statistics are
available and one has to apply sex-combined IVs for exposures,
explaining possible biases in the causal inference due to sex
instrumental heterogeneity is strongly advocated (Au Yeung and
Schooling, 2019; Jiang et al., 2020; Papadimitriou et al., 2021).

In summary, although the two-sample MR is technically
easy to undertake, the principal modeling assumptions should
still be validated in sex-specific two-sample MR studies strictly.
Especially in the sex-specific two-sample MR analyses, the choice
of appropriate IVs for exposures can reduce the bias of causal
effect estimation and make MR results more reliable.

CONCLUSION

Our study reveals that the sex instrumental heterogeneity may
have a non-ignorable impact on sex-specific two-sample MR
studies, and the causal effects of anthropometric traits on
breast/prostate cancer would be biased if sex-combined IVs are
incorrectly employed.
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