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Abstract The coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome

coronavirus 2 (SARS-CoV-2) infection is currently a global pandemic. Extensive investigations have

been performed to study the clinical and cellular effects of SARS-CoV-2 infection. Mass

spectrometry-based proteomics studies have revealed the cellular changes due to the infection

and identified a plethora of interactors for all SARS-CoV-2 components, except for the longest

non-structural protein 3 (NSP3). Here, we expressed the full-length NSP3 proteins of SARS-CoV

and SARS-CoV-2 to investigate their unique and shared functions using multi-omics methods.

We conducted interactome, phosphoproteome, ubiquitylome, transcriptome, and proteome analy-

ses of NSP3-expressing cells. We found that NSP3 plays essential roles in cellular functions such as

RNA metabolism and immune response (e.g., NF-jB signal transduction). Interestingly, we showed

that SARS-CoV-2 NSP3 has both endoplasmic reticulum and mitochondrial localizations. In addi-

tion, SARS-CoV-2 NSP3 is more closely related to mitochondrial ribosomal proteins, whereas

SARS-CoV NSP3 is related to the cytosolic ribosomal proteins. In summary, our integrative

multi-omics study of NSP3 improves the understanding of the functions of NSP3 and offers poten-

tial targets for the development of anti-SARS strategies.
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Introduction

A few clusters of severe pneumonia from unknown sources
were reported from Wuhan at the end of 2019 [1]. The causa-

tive factor of this pneumonia was soon isolated, sequenced,
and designated as severe acute respiratory syndrome coron-
avirus 2 (SARS-CoV-2), and the disease was named coron-

avirus disease 2019 (COVID-19) [1–4]. Although
approximately 80% of SARS-CoV-2-infected patients have
mild to no symptoms, 15% of patients could develop pneumo-
nia and dyspnea, whereas the remaining 5% of patients, espe-

cially those with chronic disease, including lung diseases or
asthma, are at high risk of developing severe illness with high
rates of mortality and morbidity [5,6]. As SARS-CoV-2 is

easily transmitted via respiratory droplets, COVID-19 has
spread worldwide very rapidly and became a pandemic by
March 2020 [7]. As of Aug 25th, 2021, more than 210 million

infections and 4.4 million deaths were reported according to
the Center for Systems Science and Engineering at the Johns
Hopkins University (https://coronavirus.jhu.edu/). Encourag-

ingly, the research society has made tremendous progress in
understanding of the molecular mechanisms behind the viral
infection, as well as in the development of antiviral compounds
and vaccines to treat COVID-19 [8,9].

SARS-CoV-2 is a beta coronavirus and possesses a � 30 kb
positive, single-strand genome. Phylogenetic sequence analysis
revealed that the SARS-CoV-2 is closely related to two human

transmissible beta coronaviruses, SARS-CoV (80% gene
sequence similarity) and MERS-CoV (50% gene sequence sim-
ilarity) [6,10]. Bioinformatic predictions suggest that SARS-

CoV-2 encodes four structural proteins, nine accessory pro-
teins, and two long polypeptides (pp1a and pp1ab) [4,11].
These two long polypeptides are translated from ORF1a and
ORF1ab. ORF1ab is produced via a �1 ribosomal frameshift

from the stop codon of ORF1a. These two polypeptides
together produce a total of 15 non-structural proteins (NSPs)
via proteolysis. The processing of pp1a and pp1ab requires

the protease activity of NSP3 (papain-like protease, PLpro)
and NSP5 (chymotrypsin-like protease, 3CLPro) [11].

Previous studies on SARS-CoV revealed that NSPs are the

primary constituents for the assembly of the replication and
transcription complex (RTC), where viral genome RNA syn-
thesis occurs, and double-strand RNA is abundantly expressed

[12]. Co-expression of NSP3, NSP4, and NSP6 induces the for-
mation of double-membrane vesicles (DMVs), which are con-
tinuous with the endoplasmic reticulum (ER) membrane.
These DMVs have similar morphology to the organelle-like

structures induced by SARS-CoV infection [12,13]. This multi-
ple protein- and membrane-containing organelle-like RTC
facilitates the synthesis of positive-strand RNA viruses where

no interference from the host cell innate immune system occurs
[14]. The NSP3 of SARS-CoV is the largest and most essential
component of the RTC complex. It has 1922 amino acids and

multiple functional domains with single-strand RNA (ssRNA)
binding, deMARylation, G-quadruplex binding, and cysteine
protease activities [15,16]. Therefore, it is not surprising that
NSP3 plays pivotal roles in the viral life cycle, and the inhibi-

tion of NSP3 PLpro activity prevents SARS-CoV replication
[17]. NSP3 of SARS-CoV-2 is a polypeptide of 1945 amino
acids that has conserved functional domains with an overall

86% protein sequence similarity to that of SARS-CoV. Recent
studies have demonstrated the deMARylation, deubiquitina-
tion, and deISGylation functions of the Macro and PLpro
domains of NSP3 from SARS-CoV-2 [16,18–20]. More impor-

tantly, two studies showed that PLpro inhibition results in
excellent anti-SARS-CoV-2 activity [18,19]. However, despite
years of extensive research into the functions of NSP3 from

SARS-CoV and recently into SARS-CoV-2, the functions of
full-length NSP3 are still only partially understood. We only
found two reports that successfully expressed full-length

NSP3, one for SARS-CoV, and one for SARS-CoV-2
[12,19]. In addition, three very recent interaction studies were
performed for SARS-CoV-2 NSP3, with two studies using
deletion mutants, whereas the third one failed to detect the

expression of NSP3 [21–23].
In this study, we successfully cloned and expressed full-

length NSP3 proteins of SARS-CoV and SARS-CoV-2. Using

these plasmids, we presented the transcriptomic and proteomic
(interactome, proteome, phosphoproteome, and ubiquitylome)
landscapes of NSP3. These parallel studies were used to inves-

tigate the similarities and differences between NSP3 proteins.
Specifically, we investigated how NSP3 protein interacts with
host cells. Furthermore, we assessed the signaling pathways

that are regulated by the NSP3 protein. Lastly, we also aimed
to offer a list of compounds that could potentially be repur-
posed for further investigations of COVID-19 treatment.

Results

Expression of the full-length NSP3 proteins of SARS-CoV and

SARS-CoV-2

Current studies into the functions of NSP3 proteins (Figure 1A)
of both SARS-CoVs (hereafter referred to as CoV1-NSP3 and
CoV2-NSP3) are mainly limited to their truncated deletions.
We successfully cloned the wild-type (WT), catalytically inac-

tive (CS-mutated), or dGG-mutated (last two glycine residues
deleted, resistant to PLpro cleavage) full-length NSP3 proteins
of both SARS-CoVs (without codon optimization) into a len-

tivirus vector containing a C-terminal Enhanced Green Fluo-
rescent Protein (EGFP) tag, as illustrated in Figure S1A. We
expressed all six plasmids in HEK293T cells and detected their

expression using anti-EGFP antibody. As shown in Fig-
ure S1B, the expression of CS- and dGG-mutated NSP3 pro-
teins was detected using anti-EGFP antibody (� 250 kDa),

whereas no obvious expression of WT-NSP3 proteins was
detected. This is due to the self-cleavage activity of PLpro
toward the Leu-Lys-Gly-Gly of its C-terminus, as dGG-
NSP3 is expressed well [24]. We verified this hypothesis by

treating cells with the PLpro inhibitor GRL0617 [17,18]. As
shown in Figure 1B, anti-EGFP antibody could detect the
WT-NSP3 proteins in GRL0617-treated cells. This observa-

tion also explains why a previous study failed to detect the
expression of NSP3 using a C-terminal tag [22].

Next, we performed immunoblotting using an antibody

specific for CoV1-NSP3. The specificity of this anti-CoV1-
NSP3 antibody to CoV2-NSP3 was verified by immunoblot-
ting and immunostaining (Figure S1B and C; hereafter
referred to as anti-NSP3 antibody). Interestingly, we noticed

that CoV2-NSP3 had a lower molecular weight than
CoV1-NSP3, with both anti-EGFP and anti-NSP3 antibodies
(Figure 1B, Figure S1B). This implies that either the amino

https://coronavirus.jhu.edu/
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acid composition of NSP3 protein affects its molecular weight
or that CoV2-NSP3 undergoes extra processing at its
N-terminus. We therefore subcloned NSP3 into a vector with

N-terminal Flag and C-terminal EGFP tags (Figure 1C). Inter-
estingly, we observed a very specific processed band of
~ 15 kDa for all three CoV2-NSP3 proteins (Figure 1D,

anti-Flag antibody). In addition, anti-Flag antibody detected
most of CoV1-NSP3 proteins at the correct position, thought
multiple smaller signals were also observed, suggesting the

existence of extra processing (Figure 1D).
A
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stained NSP3-expressing cells with ER, autophagosome, endo-
some, and mitochondrial makers, as all four organelles are
potential origins of DMVs [25–28]. Both CoV1-NSP3 and

CoV2-NSP3 proteins showed no obvious co-localization with
the endosome marker RAB7 or autophagosome marker LC3
(data not shown). As shown in Figure S2A, we found that

CS-CoV1-NSP3 co-localized with the ER marker Calnexin
(CANX), particularly in the large vesicle-like structures, but
not with mitochondrial marker TOMM20 (Figure S2B). In

contrast, CS-CoV2-NSP3 protein showed partial co-
localization with both TOMM20 and CANX (Figure S2A
and B). We next investigated whether the extra N-terminal
processed band might somehow affect the localization of

CoV2-NSP3. As shown in Figure S2C, anti-NSP3 antibody
showed less co-localization signals with Flag-CS-CoV2-
NSP3, compared to the co-localization signals of anti-NSP3

and anti-EGFP antibodies. In addition, anti-Flag antibody
also detected vesicle-like structures, though smaller in size than
those in CS-CoV1-NSP3-expressing cells (Figure S2C). These

vesicle-like structures showed strong co-localization with
TOMM20, but not with CANX (Figure 1E, Figure S2D).
Interestingly, the EGFP signals of CS-CoV2-NSP3 still co-

localized with CANX (Figure S2D). These observations indi-
cate that there are two cellular localizations of CoV2-NSP3,
influenced by the extra processing at its N-terminus. In con-
trast, Flag staining of CS-CoV1-NSP3 showed the same local-

ization pattern with CANX as with EGFP (Figure S2D).
Finally, extracting data from interactome studies verified the
localization preference of different NSP3 proteins

(Figure S2E).

The N-terminus determines the localization of CoV2-NSP3 to

mitochondria

To further investigate the cellular localization of CoV1-NSP3
and CoV2-NSP3, we exchanged their Ubl1 and HVR domains

reciprocally (Figure 2A). We also exchanged their PLpro
domains, as the CS-CoV1-NSP3 mutant showed large
vesicle-like structures. As shown in Figure 2B, when CoV2-
NSP3 was equipped with the Ubl1 and HVR domains of

CoV1-NSP3, the N-terminal extra band disappeared. In
Figure 1 Expression and subcellular localization of NSP3 proteins of

A. Schematic illustration of NSP3 proteins of SARS-CoV and SARS-C
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contrast, a 15-kDa band was observed when CoV1-NSP3
was equipped with the Ubl1 and HVR domains of CoV2-
NSP3. In addition, we showed that the PLpro domain has

no obvious influence on processing of the CoV2-NSP3 protein
(Figure 2B).

Next, we used immunostaining to study the localization of

these fused proteins (Figure 2C). As expected, CS-CoV1-
NSP3, detected with anti-Flag antibody, co-localized with
TOMM20 when its N-terminus was replaced to that of

CoV2-NSP3. In contrast, CS-CoV2-NSP3 fused with the
N-terminus of CoV1-NSP3 was predominantly co-localized
with CANX. However, the EGFP signals of both fused
proteins were still co-localized with CANX. Therefore, we con-

cluded that the C-terminus of both NSP3 proteins co-localizes
with ER, whereas the N-terminus of CoV2-NSP3 prefers to
bind to mitochondria. Furthermore, we showed that the

exchange of the PLpro domain has no obvious influence on
NSP3 protein localization (Figure S3).

Interactome analysis of NSP3 proteins

To study how NSP3 protein contributes to cellular function
regulation during infection, we conducted a multi-omics study

(interactome, phosphoproteome, ubiquitylome, proteome, and
transcriptome) on NSP3-expressing cells (Figure S4A). We
performed all experiments in biological triplicates, and we
showed that the distribution of total intensity was consistent

within every experimental condition (Figure S4B). We first
analyzed the interactome of NSP3 using Flag-
immunoprecipitation coupled with mass spectrometry (Flag-

IP/MS) identification. As shown in Figure S5A, principal com-
ponent analysis (PCA) of the top 1000 variable proteins
showed a strong correlation within the triplicate experiments

for NSP3 proteins. In addition, the interactomes of the WT
and CS-mutated NSP3 proteins showed a good correlation,
implying that the catalytic activity has minor effects on the

NSP3 interactome. In total, 211 and 226 of significant interac-
tors were enriched for CoV1-NSP3 and CoV2-NSP3, respec-
tively, using thresholds based on the fold change (FC) > 4
and adjusted P < 0.001 (Table S1). Next, we compared these

two NSP3 interactomes side by side to study their shared and
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specific interactions (Figure 3A; Table S1). We noticed that
RCHY1, a known interactor of the macrodomain and PLpro
of NSP3, was enriched by both NSP3 proteins [29]. However,

the overall similarities between the two NSP3 interactomes was
low (55 out of 382 interactors; Figure 3A, Figure S5B). Gene
Ontology (GO) and Reactome [30] analyses of significant

interactors highlighted the roles of both NSP3 proteins in
RNA splicing, NF-jB signaling, and the regulation of transla-
tion (Figure 3B, Figure S5C and D; Table S1). The most strik-

ing difference between the two interactomes was that CoV2-
NSP3 was linked to mitochondrial translation, whereas
CoV1-NSP3 was associated with cytosolic translation. We
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crosslinking experiments were found in non-crosslinking
experiments for CoV2-NSP3 and CoV1-NSP3, respectively.
Strikingly, most of the interactors of CoV2-NSP3 were mito-

chondrial proteins including mitochondrial ribosomal protein
large subunits (MRPLs), mitochondrial ribosomal protein
small subunits (MRPSs), and coenzyme Q proteins (COQs)

(Figure S6C). In addition, GO biological process (BP) analysis
showed that proteins that related to the mitochondrial gene
expression, quinone biosynthetic process, and cellular respira-

tion were significantly enriched with CoV2-NSP3 (Figure S6D;
Table S2), further validating the intimate interaction between
CoV2-NSP3 and mitochondria.

Because the extra processing of CoV2-NSP3 at its

N-terminus, it was therefore necessary to study the interac-
tome with a EGFP tag that localized to the C-terminus of
the NSP3 protein (Figure S7A–D; Table S3). As shown in

Figure S7B, RCHY1 was again enriched with both NSP3
proteins again. The overall similarities between the two EGFP
interactomes was a slightly higher than those of Flag-IP (27%

vs. 15%; Figures S5B and S7C). Consistent with immunostain-
ing results using anti-EGFP antibody, interactors of both
NSP3 proteins were related to the ER (Figure S7D;

Table S3). In addition, shared interactors were enriched in
IL-1 signaling and regulation of RNA metabolism.

To study the differences between the NSP3 interactomes
obtained with full-length protein and deletions. We compared

our result with previously reported NSP3 interactomes that
based on deletions. Here, we combined reported NSP3 interac-
tion data from BioGRID database [32] and from a recently

published study using three deletions to cover the NSP3 protein
[23]. Among the 68 NSP3-interacting proteins that were found
in at least two previous studies, 26 were identified in our studies

(Figure 3D; Table S3). Importantly, interactors that have
higher identification frequency in previous studies had a better
chance to be identified in our study (Figure 3E), indicating that

interactome based on full-length NSP3 is more reliable. There-
fore, 346 specific interactors for full-length NSP3 in our study
are novel candidates for further investigation.

Viral protein–host protein interaction network

To study how the NSP3 protein is connected to other SARS-
CoV-2 proteins and host proteins, we mined our data with

reported SARS-CoV-2 interactors [29,33]. Here, we combined
Figure 3 Interactome analysis of NSP3 proteins and host proteins

A. Clustering of significant interactors of NSP3 proteins. Significant i

interactions (Table S1). Red indicates enrichment, while blue indicates

interactome are left empty. RCHY1 and NSP3 proteins are indicated

diagram showing representative enriched GO items of identified intera

interactome result. HEK293T cells transfected with Flag-NSP3-EGFP

used to detect the enrichment. LFQ intensity of each protein was extra

intensity identified in EGFP condition. Black asterisk indicates non-sp

D. Venn diagram showing the overlap of CoV2-NSP3 interactors identi

[32] and Almasy and his colleagues [23]. 68 interactors identified in at

study. E. Heatmap showing the enrichment (log2 FC) of 68 previously

the heatmap indicates the frequency of previously reported interactors i

[23]. The 26 reported interactors also significantly enriched (log2 FC >

information about the comparison is available in Table S3. GO, Gen

molecular function; FC, fold change; IP, immunoprecipitation; LFQ,

3

all our identified NSP3 interactors with reported interactors
for all other SARS-CoV-2 proteins. As shown in Figure 4

and Table S4, NSP3 was linked to multiple viral proteins via

its interacting partners, suggesting that they work coordinately
to regulate host cell functions. We found that NSP3, ORF3,
and NSP6 shared multiple ER-localized interactors, which is

consistent with the observation of ER-localization of both
NSP3 proteins. Furthermore, both NSP3 proteins were linked
to NSP6 via ATP metabolism-related proteins. Interestingly,

only CoV2-NSP3 was associated with NSP8 and M proteins
via mitochondrial-related proteins. One exception is that
MTHFD1L also interacts with CoV1-NSP3. In addition,
ORF7A almost exclusively interacted with CoV2-NSP3, but

not with CoV1-NSP3. These results indicate that NSP3 coor-
dinates with other viral proteins to regulate cellular functions.

Taken together, our interactome results indicate the

following: 1) regulation of RNA metabolism could be the main
function of NSP3; 2) both NSP3 proteins are associated
with protein translation but employ different translation

machinery; 3) the N-terminus of CoV2-NSP3 determines the
interaction with mitochondria; and 4) NSP3 functions together
with other SARS-CoV-2 proteins to control host cell

functions.

Phosphoproteome analysis of NSP3-expressing cells

We next explored the effects of NSP3 on the phosphoproteome

of host cells using a highly sensitive phosphoproteome prepa-
ration and identification workflow (EasyPhos) [34]. Differen-
tially enriched phosphorylated peptides (DEPPs) were

identified if they appeared at least three times in one condition
based on an ANOVA test, with thresholds of a Benjamini–
Hochberg (BH) adjusted P < 0.01, and |log2 FC| > 2. For

all analyses, we chose 0.7 as the minimum cutoff for the local-
ization probability (Table S5). In total, 659 DEPPs were iden-
tified for NSP3-expressing cell lines. Moreover, some of the

DEPPs showed specificity in either NSP3-expressing cell line
(Figure 5A, Figure S8A; Table S5). We validated the serine
and threonine phosphorylation of UBE2O and TNIP1 using
IP followed by immunoblotting (Figure 5B). BP and Reactome

analyses of NSP3-shared DEPPs (Clusters 5 and 6; Figure 5A
and C) showed that terms related RNA metabolism, the regu-
lation of viral transcription, and potential therapeutics for

SARS were enriched for both NSP3 proteins. Interestingly,
nteractors of NSP3 were analyzed to show the shared and unique

lack of enrichment. Interactors that do not present in either NSP3

on the left. C1–C10 on the right indicate Clusters 1–10. B. Circos

ctors. Full list of GO terms is shown in Table S1. C. Validation of

plasmids were harvest for Flag-IP assay. Indicated antibodies were

cted from IP-MS result, log2-transformed, and then substracted its

ecific signal, whereas green asterisk indicates leaked EGFP signal.

fied in our study and interactors obtained from BioGRID database

least two individual studies were compared with interactors in this

reported CoV2-NSP3 interactors in this study. Number on top of

dentified in BioGRID database [32] and Almasy and his colleagues

2, FDR < 0.05) in our IP assay were labeled by red. Detailed

e Ontology; CC, cellular component; BP, biological process; MF,

Label Free Quantification.
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The interactors of NSP3 proteins were combined with reported interactors of all other SARS-CoV-2 proteins to create viral protein–host

protein interaction network (Table S4). Interactors specific for CoV1-NSP3 and CoV2-NSP3 are displayed as different colors. Cytoscape

was used to create the connection map of NSP3, interactors, and other SARS-CoV-2 proteins as described in Material and methods.
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similar BP and Reactome terms were found for DEPPs in
Cluster 2 and Cluster 4, although they were specific DEPPs
for CoV2-NSP2 and CoV1-NSP3, respectively. To dissect the

contributions of NSP3 to the host cell phosphoproteome dur-
ing viral infection, we compared our results with recently
reported SARS-CoV-2 phosphoproteome datasets [35,36]. In

total, 90 DEPPs in our dataset were matched to previous
reports, and a large proportion of them showed similar regula-
tion trends (Figure S8B). For example, DEPPs with similar

regulatory trends were found for SRRM2, UBE2O, SRSF3,
and SIPA1L1, emphasizing the contributions of NSP3 to these
phosphorylation events during viral infection.
We then mapped our DEPPs to kinases that regulate these
phosphorylation sites and visualized the data using Kin-
Map [37] (Figure 5D; Table S5). We found that the altered

activities of CDK4, CK1a, TBK1, and DYRK2 were con-
served in both NSP3-expressing cell lines. However, the activ-
ities of multiple CDKs were up-regulated in CoV1-NSP3-

expressing cells, whereas only CDK4 activity was up-
regulated in CoV2-NSP3-expressing cells. The decrease of
CDK2 activity in CoV2-NSP3-expressing cells is consistent

with the results obtained from virus-infected cells [36]. As
CDKs play an important role in cell cycle progression, we
showed that the expression of both NSP3 proteins caused a
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prolonged G2 phase compared to that of control cells (Fig-
ure S8C). We also mapped inhibitors to kinases for which
the activity was significantly changed in NSP3-expressing cells
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(Figure S8D and E). We retrieved 12 kinases and 18 kinase
inhibitors from our phosphoproteome data of CoV2-NSP3-
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were found for CoV1-NSP3-expressing cells. Further, one of
the inhibitors, fostamatinib, a treatment for chronic immune
thrombocytopenia targeting multiple mapped kinase pathways

[38], has been investigated as a potential treatment for acute
lung injury for COVID-19 patients [39]. Interestingly, we
noticed that the interferon activators, IKK-family and TBK1

kinases, were significantly present in CoV1-NSP3-expressing
cells (Figure S8E and F), indicating the different phosphoryla-
tion regulatory effects of NSP3 proteins.

Ubiquitylome analysis of NSP3-expressing cells

Ubiquitination is used by both viruses and host cells to combat

each other [40]. For SARS-CoVs, they both have a PLpro pro-
tease domain within NSP3 proteins that is involved in deubiq-
uitination and deISGylation activities [18]. We used the
antibody-based K-e-GG peptide enrichment method to study

the effects of WT and CS-mutated NSP3 proteins on the ubiq-
uitylome of the host cells. Because the levels of ISGylation and
neddylation are relatively low in cells, we referred to the

enriched peptides as ubiquitinated peptides (ubiquitylome)
hereafter.

In total, 449 differentially enriched ubiquitinated peptides

(DEUPs) showed significant differences with thresholds of
localization probability > 0.7, |log2 FC| > 2, and adjusted
P < 0.001 (Figure 6A, Figure S9A; Table S6). We noticed that
most of the ubiquitination events, except some in Clusters 1, 4,

and 8, were not consistent in NSP3-expressing cells. However,
GO analysis showed similar enriched terms, such as positive
regulation of viral life cycle, mRNA splicing, cell cycle regula-

tion, and translation initiation, for both NSP3 proteins (Fig-
ure 6B). These results indicate that two NSP3 proteins have
similar cellular functions, although they might function

through different substrates. In addition, only 22 DEUPs
and 26 DEUPs showed catalytic activity-dependent regulation
in CoV2-NSP3- and CoV1-NSP3-expressing cells, respectively

(Figure S9B). This observation suggests that the marked
effects of NSP3 on the cellular ubiquitylome are catalytic
activity-independent, which has also been observed for other
deubiquitinases [41].

We next mapped all ubiquitinate sites of NSP3 proteins to
their functional domains and found that the overall ubiquiti-
nation sites were conserved in both NSP3 proteins

(Table S6). The three domains, HVR, Ubl2, and TM/3Ecto/
AH1, had almost no ubiquitinated sites, explained by the fact
Figure 5 Phosphoproteome analysis of NSP3-expressing cells

A. Clustering of DEPPs in NSP3-expressing cells. DEPPs showing sig

cells compared to control cells were clustered together. C1–C6 on the le

Representative DEPPs with highlighted GO in (C) were shown on t

schematic representation of phosphorylated sites of indicated proteins

expressing cells, whereas circle indicates a DEPP with significant chan

transfected with indicated plasmids were subjected to IP assays (anti-

immunoblotting with phosphorylated serine/threonine antibodies. Ima

its matching loading control. C. Representative enriched GO BP and

clusters in (A). Full list of the GO and Reactome terms is shown in T

right of (A). D. KinMaps showing altered kinases whose activities m

DEPPs in CoV1-NSP3- and CoV2-NSP3-expressing cells were matc

interface. Red indicates up-regulation, whereas cyan indicates down-re

differentially enriched phosphorylated peptide.

3

that these domains only have a few lysine residues. Interest-
ingly, we noticed that the N-terminus of CoV1-NSP3 had three
ubiquitinated sites, whereas no such ubiquitination was

observed in CoV2-NSP3 (Figure 6C). However, these three
lysine amino acids were also conserved in CoV2-NSP3 (Fig-
ure 6D), raising questions about why the N-termini of NSP3

proteins are differently ubiquitinated, as well as the mecha-
nisms underlying and consequences of these differences.

Transcriptome and proteome changes in NSP3-expressing cells

We also measured the transcriptome and proteome of control
and NSP3-expressing cells using deep-sequencing and filter-

aided sample preparation (FASP)-based proteomics analyses.
As shown in Figure 7A, differentially expressed genes (DEGs)
were calculated using thresholds of false discovery rate
(FDR) < 0.05 and |log2 FC| > 1 compared with the expres-

sion in control cells (Table S7). Using motif enrichment anal-
ysis, we found that RELB-, NF-jB1-, and NF-jB2-binding
motifs were highly represented in the up-regulated DEGs,

whereas ZBTB7A-, ZBTB7B- and AFF4-binding motifs were
enriched in the down-regulated DEGs (Figure 7A; Table S7).
We then matched our gene lists with C2 collection (curated

gene sets; containg two sub-collections: chemical and genetic
perturbations and canonical pathways) and C5 collection (on-
tology gene sets; containing two sub-collections: GO and
Human Phenotype Ontology) from the Molecular Signatures

Database (MsigDB) by gene set enrichment analysis (GSEA)
[42,43]. As shown in Figure 7B and Table S7, our up-
regulated genes were correlated with multiple reported gene

sets, and a large portion of them was related to perturbations
in NF-jB signaling. More importantly, our gene sets had a
significant correlation with that of SARS-CoV-2 infection of

Calu-3 and A549 cells and respiratory syncytial virus infection
of A549 cells.

Our proteomics (interactome, phosphoproteome, and ubiq-

uitylome) analysis identified the significant enrichment of pro-
teins related to mRNA splicing. Therefore, we performed the
alternative splicing analyses of our transcriptome results. We
observed 381 and 514 alternative splicing (AS) events in

CoV2-NSP3- and CoV1-NSP3-expressing cells, respectively
(Figure 7C; Table S7). Among them, a large portion of AS
events were detected on the exon cassettes and intron retention

(IR) regions, indicating that NSP3 proteins alter host cell
RNA processing.
nificantly differences in CoV1-NSP3- and CoV2-NSP3-expressing

ft indicate Clusters 1–6. Full list of DEPPs is available in Table S5.

he right. B. Validation of phosphoproteome studies. Top panel:
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Further, we performed FASP-based proteome analysis of
NSP3-expressing cells in parallel. Differentially expressed pro-

teins (DEPs) were calculated with thresholds of FDR < 0.05,
and |log2 FC| > 1 (Figure 7D; Table S8). Among them, we
found that a known target of CoV1-NSP3, p53, was
down-regulated by both NSP3 proteins, and this down-
regulation was not CS-dependent [44]. Unfortunately, no

significantGO terms or pathways were enriched for theseDEPs.
We compared our results with the proteome data after SARS-
CoV-2 infection reported by Bojkova and colleagues [45] and
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highlighted overlapping proteins on the left of the heatmap (Fig-
ure 7D; Table S8). A comparison of transcriptome and pro-
teome data revealed that NF-jB2 was up-regulated at both

levels, indicating a positive feedback regulation, and highlight-
ing the pivotal roles of NSP3 in NF-jB signaling (Figure 7E).
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known PPIs and regulation events to expand the connections
of our candidates. Among the many cellular events we found,
p53 was one of the proteins that were extensively regulated by
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expanding the diffusion network. Therefore, we concluded that
CoV2-NSP3 attacks p53 at multiple levels to circumvent the
antiviral defense effects of p53 [44,46]. Furthermore, the innate

immune response, a surveillance system that SARS-CoV-2
needs to evade [47], was determined to be regulated by
CoV2-NSP3 expression (Figure S10). Besides regulating antivi-

ral effects, CoV2-NSP3 contributes to SARS-CoV-2-induced
RNA AS [35]. We observed that proteins related to RNA splic-
ing are regulated by CoV2-NSP3 at post-translational levels

(Figure 8B). For example, the phosphorylation of splicing fac-
tors and ubiquitination of heterogeneous nuclear ribonucleo-
proteins were changed in CoV2-NSP3-expressing cells.
Collectively, these data imply that CoV2-NSP3 has diverse cel-

lular effects in SARS-CoV-2 infection.
Finally, we analyzed our data to identify proteins that were

significantly enriched in at least two omics studies of NSP3-

expressing cells (Figure 8C; Table S9). In the meantime, we
searched these candidate proteins against the drug database
drugbank (https://go.drugbank.com/). In total, 13 proteins

were regulated by both NSP3 proteins, and two (JAK1 and
PPP2CA) out of them had 9 Food and Drug Administration
(FDA)-approved drugs (Table S9). Importantly, drugs that

target JAK1 are under investigation for COVID-19 [48–50].
Therefore, it would be interesting to investigate the antiviral
effects of these candidate proteins with FDA-approved drugs.

Discussion

As the largest polypeptide of SARS-CoV, NSP3 interacts with

host cellular functions in a versatilely manner and plays a
pivotal role in the viral life cycle. To meaningfully study the
functions of NSP3, it needs to be expressed in its full-length

form in mammalian cells. Recent reports demonstrated that
PLpro alone is not sufficient to cleave the NSP1-NSP2
polypeptide, and the PLpro domain has a very similar interac-
tome with NSP3 without the transmembrane region, suggest-

ing that the localization and integrity of NSP3 are important
for its function and interaction with host cells [18,21]. A previ-
ous study using deletions showed that CoV2-NSP3 has a gen-

eral cytosolic localization, which is contradictory to our results
[51]. We showed that CoV2-NSP3 has both ER and mitochon-
drial localizations, whereas CoV1-NSP3 localizes to ER as

reported [15]. By comparing our results with recently published
interactome studies using NSP3 deletions, we found that
approximately 40% of interactors from at least two reported

studies were found in our study. Importantly, reported interac-
tors with high identification frequency are prone to be identi-
fied in our study. These results indicate that the expression
of full-length NSP3 protein with proper cellular localization

is important for its interaction with host cell proteins. For
instance, we observed a strong association between NSP3 pro-
teins and ribosomal proteins in our study, which is lacking in

the previous studies.
Understanding the contributions of each SARS-CoV-2 pro-

tein to the functions of host cells is important to follow the

pathogenesis of viral infection, and eventually develop antivi-
ral compounds. Multi-omics methods, such as proteomics-
based interaction and proteome studies have been proven to
be useful tools for studying virus–host cell interactions

[29,45]. In this study, we combined the interactome, phospho-
proteome, transcriptome, proteome, and ubiquitylome to
provide an integrative landscape of unique and shared func-
tions of the NSP3 proteins. These parallel multi-omics datasets
provide a rich resource for future mechanistic studies on how

NSP3 regulates host cell functions in detail. Overall, we
showed that NSP3 proteins are connected to multiple funda-
mental cellular functions, including RNA metabolism,

immune response, cell cycle, translation, transcription, and
others (Figure 9). These host cellular functions and signaling
pathways are also largely affected by SARS-CoV-2 infection

[29,45], indicating that NSP3 is one of the key polypeptides
of SARS-CoVs in attacking host cell functions. Interestingly,
multi-omics results showed that although NSP3 proteins regu-
late similar cellular functions, they utilize different proteins to

achieve these regulatory functions. For example, CoV2-NSP3
prefers to associate with the mitochondrial translational
machinery, whereas CoV1-NSP3 is linked to the cytosolic

translational machinery. These results suggest a conserved cel-
lular effect of SARS-CoV NSP3 proteins during the evolution.

Previous studies on SARS-CoV have suggested that the

combination of three transmembrane-localized NSPs (NSP3,
NSP4, and NSP6) induces DMV formation, which together
with other NSPs and host cell proteins, forms the RTC. There-

fore, the membrane localization of NSP3 might be a key factor
that the virus uses to select the organelles for RTC formation.
In the present study, we found that unlike CoV1-NSP3, CoV2-
NSP3 has two cellular localizations, N-terminal mitochondrial

and C-terminal ER localizations. In addition, we showed that
the N-terminal enrichment of CoV2-NSP3 extensively results
in the IP of mitochondrial proteins. Furthermore, Wu and col-

leagues [52] showed that the SARS-CoV-2 RNA genome and
small-guide RNAs (sgRNAs) are enriched in the host mito-
chondrial matrix using computational modeling. These results

suggest that during SARS-CoV-2 infection, NSP3 might
exploit both ER and mitochondria to initiate the RTC forma-
tion. In addition, we showed that proteins related to mRNA

exporting and translation are enriched for both NSP3 proteins.
In combination with the fact that the RTC is the location for
RNA synthesis, we speculate that NSP3 couples RNA trans-
port and translation together to rapidly synthesize viral pro-

teins. However, we should note that the interaction between
ribosomal proteins and NSP3 is not mediated by RNA, as
we introduced universal nucleases to our cell lysis processes.

In summary, we expressed and studied the localization of
NSP3 proteins. We identified a rich candidate resource for
studying the functions of NSP3 proteins and provided a sys-

tematic analysis of how NSP3 contributes to the regulation
of cellular functions. Importantly, we showed that although
both NSP3 proteins shared extensive similar functions,
SARS-CoV-2 NSP3 is different from SARS-CoV NSP3 in its

connection with mitochondrial proteins. Moreover, we pro-
vided a list of FDA-approved compounds that could serve as
a starting point for drug repurposing with some already under

investigation.

Materials and methods

Plasmids, cell culture, transfection, immunoblotting, and IP

Full-length coding sequences of SARS-CoV NSP3 (GenBank:
FJ882960) and SARS-CoV-2 NSP3 (GenBank: MN988669)
with earlier inserted stop codon but without codon optimization

https://go.drugbank.com/
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were synthesized from IGEbio, Guangzhou, China. Polymerase

Chain Reaction (PCR) amplified products were subcloned into
homemade lentivirus vector either with a C-terminal EGFP tag
or N-terminal Flag and C-terminal EGFP tags. Mutagenesis
PCR was performed to mutate the earlier stop codon to gener-

ate WT NSP3 using Phanta Max Super-Fidelity DNA Poly-
merase (Catalog No. P505-D2, Vazyme, Nanjing, China). The
same method was used to create catalytic inactivated (CS-

mutated), GlyGly deficient (dGG-mutated), and domain
exchanged NSP3 plasmids. UBE2O plasmid was described
before [53] and TNIP cDNA was amplified from HeLa cDNA

and cloned in to pCS2 vector with Flag tag. All batches of puri-
fied plasmids (Catalog No. 12165, Qiagen, Hilden, Germany)
were confirmed by DNA sequencing (IGEbio).

HEK293T cells from American Type Culture Collection

(ATCC) were cultured in Dulbecco’s Modified Eagle’s
Medium (Catalog No. C11995500BT, ThermoFisher Scien-
tific, Waltham, MA) supplemented with 10% fetal bovine

serum (FBS; Catalog No. SV30160.03, Cytiva, Boston, MA)
and 1� penicillin/streptomycin (Catalog No. SV30010-10,
Cytiva). HEK293T cells were tested mycoplasma free using

MycoAlert Detection Kit (Catalog No. LT07-318, Lonza,
Basel, Switzerland) before the whole experiments.

HEK293T cells were transfected using Polyethylenimine (PEI;

Catalog No. 24765-2, Polysciences, Warrington, PA) with a ratio
of plasmid:PEI = 1:3. Cells were harvest using whole cell lysate
buffer (0.5% NP-40, 150 mM NaCl, 50 mM Tris at pH 8.0, and
10% glycerol) with 1� cOmpleteTM Protease Inhibitor Cocktail
(Catalog No. 11873580001, Sigma, St Louis, MO) 48 h post-

transfection, following with a maximum speed centrifugation at
4 �C. Supernatant was collected and protein concentration was
measured using BCA assay kit (Catalog No. 23225, Thermo-
Fisher Scientific, Rochford, IL). Equivalent amounts of proteins

were boiled with 1� LDS loading buffer (Catalog No. NP0008,
ThermoFisher Scientific) for 5 min at 95 �C and resolved by
sodium dodecyl sulfate polyacrylamide gel electrophoresis

(SDS–PAGE) and immunoblotting. For Flag-IP assays, anti-
Flag-M2 agarose beads (Catalog No. A2220, Sigma) were used
to enrich NSP3 and interactors. For phosphorylation validation,

1� PhosSTOP (Catalog No. 4906837001, Sigma) was added to
lysis buffer, and IP assays were performed either with anti-Flag
agarose beads for 2 h or with 1 lg anti-UBE2O antibody (Cata-
log No. A301-873A, Bethyl, Montgomery, AL) overnight fol-

lowed by 1.5 h incubation with 15 ll prewashed protein A/G
beads (1:1 mixture; Catalog Nos. 1614013 and 1614023, Bio-
Rad, Hercules, CA). Bound proteins were boiled with 1� LDS

loading buffer for 5 min at 95 �C after 3 washes with lysis buffer.
Antibodies used in these experiments included anti-Flag (Catalog
No. F1804, Sigma), anti-EGFP (Catalog No. 50430-2-AP,

Proteintech, Rosemont, IL), anti-NSP3 (Catalog No. ab181620,
Abcam, Cambridge, UK), anti-UBE2O (Catalog No. A301-
873A, Bethyl), pSerine (Catalog No. gtx26639, GeneTex, Irvine,

CA), pThreonine (Catalog No. 9386, Cell Signaling, Beverly,
CA), anti-TAB2 (Catalog No. A302-759A, Bethyl), anti-TAB3
(Catalog No. A302-208A, Bethyl), anti-RPL5 (Catalog No.
A303-933A, Bethyl), anti-RPS6 (Catalog No. A300-556A,
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Bethyl), anti-MRPL13 (Catalog No. 16241-1-AP, Proteintech),
anti-MRPL23 (Catalog No. 11706-1-AP, Proteintech), anti-
MRPL44 (Catalog No. 16394-1-AP, Proteintech), anti-USP34

(Catalog No. A300-824A, Bethyl), anti-DHX38 (Catalog No.
A300-858A-T, Bethyl), anti-IPO4 (Catalog No. 11679-1-AP,
Proteintech), anti-IPO11 (Catalog No. 14403-1-AP, Proteintech),

anti-NUP85 (Catalog No. 19370-1-AP, Proteintech), and
GAPDH-HRP (Catalog No. KC-5G4, KANGCHENG,
Shanghai, China).

Immunofluorescence

Cells grown on 0.1% gelatin coated coverslips were transfected

with indicated plasmids for 36 h. 4% paraformaldehyde (Cat-
alog No. D60714, Deweibio, Guangzhou, China) was used to
fix the cells at room temperature for 30 min followed by
quenching with 2 mg/ml glycine. Cells were then permeabilized

with 0.2% Triton X-100 (Catalog No. X-100, Sigma) and
blocked with 10% FBS. Indicated first antibody and second
antibody were added for overnight at 4 �C and 1 h at room

temperature, respectively. Cells were mounted with ProLong
Gold Antifade Reagent with DAPI (Catalog No. 8961S, Cell
Signaling). Images were taken and processed using LSM800

and LSM900 (Zeiss, Oberkochen, Germany). Antibodies used
for the experiments are: anti-CANX (Catalog No. 2679, Cell
Signaling), anti-TOMM20 (Catalog No. ab56783, Abcam),
anti-Flag (Catalog Nos. F1804 and F7425, Sigma), and anti-

NSP3 (Catalog No. ab181620, Abcam).

Fluorescence-activated cell sorting

Cell cycle and mitochondrial potential experiments were per-
formed using Fluorescence-activated cell sorting (FACS).
For cell cycle analysis, approximately 1 ml of 1 � 106/ml cells

transfected with indicated plasmids were harvest and fixed with
70% ethanol (Catalog No. 1.00983.1011, Sigma) overnight.
0.1% Triton X-100 was used to permeabilize cells before the

staining with propidium iodide (Catalog No. P4864, Sigma)
for 15 min at room temperature. Cells were analyzed with
phycoerythrin (PE) channel using Beckman CytoFLEX.

Interactome sample preparation

HEK293T cells transfected with indicated plasmids in
biological triplicates were lysed using whole cell lysis buffer

[50 mM Tris at pH 8.0 (Catalog No. 15504020, Thermo-
Fisher Scientific), 150 mM NaCl (Catalog No. 106443,
Sigma), 10% glycerol (Catalog No. 104032, Sigma), and

0.5% NP-40 (Catalog No. I8896, Sigma)] with fresh added
1� Complete Protease inhibitors and Universal Nuclease
(1:5000; Catalog No. 88702, ThermoFisher Scientific). For

crosslinking IP-MS with RIME method, transfected cells
were incubated with 2 mM discuccinimidyl glutarate (Cata-
log No. sc-285455A, Santa Cruz, Dallas, TX) for 20 min at
room temperature first, then replaced with 1% formalde-

hyde (Catalog No. F8775, Sigma) for 10 min at room
temperature, followed by quenching with 0.1 M glycine for
another 10 min at room temperature. Cells were incubated

for 2 h at 4 �C on a rotation wheel. Soluble cell lysates were
collected after maximum speed centrifugation at 4 �C
for 15 min. 1 mg of cell lysates were incubated with
anti-Flag-M2 (Catalog No. M8823, Sigma) or GFP (Catalog
No. gtma, Chromotek, Planegg-Martinsried, Germany)
magnetic agarose for 1.5 h. On-bead digestion was per-

formed to digest immunoprecipitated protein to peptides
for MS measurements [54]. In short, beads after incubation
were washed 3 times with cell lysis buffer and 1 time with

phosphate-buffered saline (PBS; Catalog No.
C10010500BT, ThermoFisher Scientific). After complete
removal of PBS, beads were incubated with 100 ll of elution
buffer [2 M urea (Catalog No. U5378, Sigma), 10 mM
dithiothreitol (DTT; Catalog No. D9779, Sigma), and
50 mM Tris at pH 8.5] for 20 min. Afterwards, iodoac-
etamide (IAA; Catalog No. I1149, Sigma) was added to a

final concentration of 50 mM for 10 min in the dark, fol-
lowed by partial digestion with 250 ng of trypsin (Catalog
No. V5280, Promega, Madison, WI) for 2 h. After incuba-

tion, the supernatant was collected into a separate tube.
The beads were then incubated with 100 ll of elution buffer
for another 5 min, and the supernatant was collected in the

same tube. All these steps were performed at room temper-
ature in a thermoshaker C at 1500 r/min. Combined elutes
were digested with additional 200 ng of trypsin overnight

at room temperature. Finally, tryptic peptides were acidified
to pH < 2 by adding 10 ll of 10% trifluoroacetic acid solu-
tion (TFA; Catalog No. 1002641000, Sigma).

Phosphoproteome sample preparation

HEK293T cells transfected with indicated plasmids in
biological triplicates were lysed using sodium deoxycholate

(SDC) buffer [4% SDC (Catalog No. D6750, Sigma),
100 mM Tris at pH 8.5], and phosphoproteome sample prepa-
ration was performed according to the previous report [34]. In

brief, 200 lg of cell lysates were reduced and alkylated with
Tris (2-carboxyethyl) phosphine hydrochloride (TCEP; Cata-
log No. 75268, Sigma) and 2-chloroacetamide (CAA; Catalog

No. C0267, Sigma) at 45 �C for 5 min, following with over-
night digestion with Lys-C (Catalog No. 129-02541, Wako
Chemicals, Osaka, Japan) and trypsin (Catalog No. T6567,
Sigma). TiO2 beads (Catalog No. 5010-21315, GL Sciences,

Tokyo, Japan) were used to enrich phosphorylated peptides,
and homemade C8 StageTip (Catalog No. 66882-U, Sigma)
was used to trap the TiO2 beads for washes. Eluted phospho-

rylated peptides were loaded into homemade SDB-RPS Stage-
Tip (Catalog No. 66886-U, Sigma) for desalting.

Ubiquitylome sample preparation

HEK293T cells transfected with indicated plasmids in
biological triplicates were lysed using buffer containing 8 M

urea, 50 mM Tris-HCl at pH 8, 150 mM NaCl, 1 mM EDTA
(Catalog No. EDS, Sigma), 1 mM CAA, and 1� Complete
Protease inhibitors. K-e-GG Ubiquitin Remnant Motif
Enrichment Kit (Catalog No. 5562, Cell Signaling) was used

to enrich K-e-GG peptides. The whole process was performed
according to the manufacturer’s instruction except in the steps
of digestion and peptide desalting. We used Lys-C to digest

3 mg of proteins in 8 M urea buffer for 3 h at 37 �C first,
and then diluted the buffer to 2 M urea and performed
trypsinization overnight at 37 �C. For peptide desalting, we

used the Blond Elute LRC-C18 200 mg column (Catalog



Shi R et al / Multi-omics Analysis of NSP3 723
No. 12113024, Agilent, Santa Clara, CA), followed by
lyophilization for 2 days.

Proteome sample preparation

HEK293T cells transfected with indicated plasmids in biological
triplicates were lysed with 8 M urea with 10 mM DTT and

0.1 M Tris (pH 8.5). Soluble cell lysates were collected after
10 cycles of sonication for 30 s followed by 30 s at 4 �C using
a Biorupter Pico Sonicator (Diagenode, Liége, Belgium), fol-

lowed by maximum speed centrifugation at room temperature
for 15 min. Whole proteome peptides were prepared using the
FASP protocol as described before [54]. In brief, 50 lg of sol-

uble lysates were added onto 30 kDa cutoff filter
(MRCF0R030, Sigma) and centrifuged at 11,000 r/min at
20 �C for 15 min. 50 mM IAA in urea buffer was used to alky-
late proteins at 20 �C for 15 min. After 3 washes with urea lysis

buffer and 3 washes with 50 mM ammonium biocarbonate
(ABC; Catalog No. 09830, Sigma) buffer, 500 ng of trypsin in
50 ll of 50 mM ABC buffer was used to digest proteins in a

wet chamber overnight at 37 �C. Peptides were extracted by
50 mM ABC buffer and acidified to pH < 2 by adding 10 ll
of 10% TFA.

RNA-seq

HEK293T cells transfected with indicated plasmids in
biological triplicates were harvested, and total RNA was

isolated using ipureTRizol kit (Catalog No. K417, IGEbio)
according to manufacturer’s instruction. Sequencing libraries
were generated using Next UltraTM RNA Library Prep Kit

for Illumina (Catalog No. E7760, NEB, Ipswich, UK) follow-
ing manufacturer’s recommendations. In brief, mRNA was
captured using mRNA capture beads, followed by fragmenta-

tion and cDNA synthesis using random hexamers. DNA clean
beads were used to purified dsDNA after the second strand
synthesis, followed by end repairing, A tailing, adapter

ligation, PCR amplification, and library purification. Sequenc-
ing was done by Illumina NovaSeq platform (IGEbio).

MS measurements

Desalted peptides were separated and analyzed with an Easy-
nLC 1200 (ThermoFisher Scientific) connected online to
Fusion Lumos or Fusion Eclipse (crosslinking experiment,

ThermoFisher Scientific) mass spectrometer equipped with
FAIMS pro (high-Field Asymmetric waveform Ion Mobility
Spectrometry, ThermoFisher Scientific) using different gradi-

ent of buffer B [80% acetonitrile (Catalog No. 1000041001,
Sigma) and 0.1% formic acid (Catalog No. 1002641000,
Sigma)]. For interactome study, a gradient of total 140 min

of buffer B (2%–22%, 100 min; 22%–28%, 20 min; 28%–
36%, 12 min; 100%, 8 min) was used; for proteome and ubiq-
uitylome analyses, a gradient of total 240 min of buffer B (2%,
1 min; 2%–7%, 10 min; 7%–28%, 200 min; 28%–36%,

15 min; 36%–60%, 5 min; 95%, 7 min) was used; for phospho-
proteome analysis, a gradient of total 120 min of buffer B
(2%–22%, 80 min; 22%–28%, 20 min; 28%–40%, 12 min;

95%, 8 min) was used. Data dependent analysis was used as
data acquisition mode. Detailed information about the
gradient and the setting of the MS can be found in the raw files
(ProteomeXchange: PXD023927). Raw data were first trans-
formed using FAIMS MzXML Generator and then analyzed

using MaxQuant version 1.6.17.0 [55] search against Human
Fasta database with CoV1-NSP3 and CoV2-NSP3 protein
sequences. Label-free quantification and match between run

functions were enabled for all analyses. For phosphoproteome
and ubiquitylome analyses, pSTY (phospho-Serine, Thre-
onine, Tyrosine) and Gly-Gly (K, not C-term) in variable

modifications were added.

PCA

PCA for all omics studies were performed using top 1000 vari-
able events with maximum standard deviation of NSP3-
expressing cells. PC1–PC2 scatterplot exhibits the magnitude
of the difference between samples.

Proteome and interactome data analysis

The MaxQuant output files ‘‘proteinGroups” were used for the

subsequent analysis of proteome and interactome. We filtered
out the protein that labeled as reverse or potential contami-
nant, and analyzed the non-crosslinking interactome and pro-

teome data using DEPs [56]. The significant thresholds were
log2 FC > 2, FDR < 0.001 for interactome analyses, and
|log2 FC| > 1, FDR < 0.05 for proteome analyses. For
crosslinking interactome analysis, we used an alternative

method described before, which used a variable filter combin-
ing log2 FC (enrichment) and adjusted P value [57]. Briefly, to
determine enriched interactors, we used a cutoff line with the

function y > c/(x � x0) on scatters where x is the log2 FC
and y is adjusted P value (c = curvature, x0 = minimum
FC). The distribution of log2 FC between NSP3 overexpres-

sion and EGFP control was fitted to a Gaussian curve using
least squares fitting (excluding outliers) to determine the stan-
dard deviation r. We set a stringent FC cutoff x0 to 2r, while
selected a relatively loose c to get a higher positive
coverage rate. Then we verified the overlap between crosslink-
ing IP-MS and non-crosslinking IP-MS under selected curva-
ture c.

PPI network and pathway annotation of interactors were
constructed by Cytoscape plugin ReactomeFI v7.2.3 [58].
Interactors of NSP3 were divided into 3 groups (CoV1-

NSP3-specific, CoV2-NSP3-specific, and both) and enriched
GO terms were shown using clusterProfiler package [59]. Cir-
cos plots were performed using circlize package [60].

Phosphoproteome data analysis

The MaxQuant output files designated ‘‘Phospho(STY)sites”

were used for testing intensity differences of phosphosites
between control and NSP3-expressing cells. We performed
Student’s t-test as two-sample-test and one-way analysis of
variance (ANOVA) test following Tukey’s significant honest

difference post-hoc test (THSD) as multiple-sample-test. P val-
ues were adjusted by BH method. We defined peptides with
adjusted P < 0.01, |log2 FC| > 2, and localization possibility

> 0.7 as significant enriched peptides.
To study change of kinase activities, we ranked phospho-

sites by log2 FC and performed Kinase-Substrate Enrichment
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Analysis (KSEA) using KSEAapp package [61] in combination
with a reported kinase-substrate relationship [62]. We filtered
out the kinases of which matching sites were less than 3 or

Z-score was lower than 1 and created human kinome tree illus-
tration using KinMap [37]. The targeting drugs that regulate
activity-changed kinases were extracted from drugbank

(https://go.drugbank.com/).

Ubiquitylome data analysis

The ubiquitylome data were analyzed as described for phos-
phoproteome. Here, we defined peptides with adjusted
P < 0.001, |log2 FC| > 2, and localization possibility > 0.7

as significant enriched peptides.

Transcriptome data analysis

Raw reads (GSA: HRA000634) were aligned to the human

genome (hg38) using HISAT2 [63]. Next, we assembled reads
to transcripts and quantified the read counts of each gene uti-
lizing StringTie [64]. Lowly expressed genes were filtered out

using a Counts per million (CPM) threshold. We kept genes
with CPM greater than 1 in at least 2 samples, and analyzed
theDEGs using edgeR [65]. Top 5000 up-regulated and 5000

down-regulated genes were extracted and ordered by log2 FC
as the gene list input of GSEA. DEGs between control and
NSP3-expressing cells were characterized for each sample with
thresholds of |log2 FC| > 1 and FDR < 0.05.

Motif enrichment

The DEGs were divided into 2 gene sets according to their

expression change statuses (Clusters 1 and 2 for up-regulated
genes and Clusters 3 and 4 for down-regulated genes) as repre-
sented in Figure 7A. Then, the putative transcription factor

(TF)-targeting regulons of these 2 gene sets were identified
by employing RcisTarget [66]. We choose human motif collec-
tion v9 as TF annotations and the motif-rankings in 10 kb

around transcription start sites (TSSs) of hg38 genome as
region databases. The motifs with most target genes as well
as a normalized enrichment score (NES) lager than 3 were
determined as significant enriched regulons.

AS analysis

We performed AS analysis based on transcription raw reads

with vast-tools V2.5.1 [67] in combination with vastdb
hs2.23.06.20. To determine significant AS events, we kept the
AS events which have more than 10 reads in at less two sam-

ples and applied a further filter by setting a noB3 parameter
to alternative exon (AltEx) and a 0.05 binomial-test p_IR
parameter to IR in vast-tools’ diff module. Significant AS

events were defined according to the following requirements:
change was greater than 10 delta Percent-Spliced-In (dPSI)/
delta Percent-Intron-Retention (dPIR), and minimal difference
value (where P > 0.95) was greater than 0.

GO and GSEA

GO and GSEA were implemented based on clusterProfiler

package. C2 (chemical and genetic perturbation sub-collection)
and C5 (GO sub-collection) from MSigDB v7.2 [42] and the
pathway gene sets from Reactome Pathway Database [30] were
chosen for GSEA. Significant terms were chosen by the thresh-

old that P < 0.05, FDR < 0.25, and |NES| > 1. Most signif-
icant terms were selected to plot heatmap.

Both GO and Reactome pathway enrichments were applied

using the Over Representation Analysis (ORA) based on the
hypergeometric distribution and P value of each term was
adjusted by BH method. GO analyses of BP, cellular compo-

nent (CC), molecular function (MF) were performed using
enrichR in clusterProfiler package. Reactome pathway analysis
was performed using enrichPathway function in ReactomePA
packages [8]. Gene sets large than 500 or less than 15 genes were

excluded from ORA. Significant GO terms were enriched by a
threshold of adjusted P value < 0.05 and q-value < 0.25.

Data availability

The mass spectrometry proteomics data have been deposited

to the ProteomeXchange Consortium via the iProX partner
repository (ProteomeXchange: PXD023927) [68], and are pub-
licly accessible at http://proteomecentral.proteomexchange.
org. The raw sequence data are deposited in the Genome

Sequence Archive [69] at the National Genomics Data Center,
Beijing Institute of Genomics, Chinese Academy of Sciences /
China National Center for Bioinformation (GSA:

HRA000634), and are publicly accessible at https://ngdc.
cncb.ac.cn/gsa-human/.
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