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Abstract The neural crest is a migratory population of

embryonic cells with a tremendous potential to differenti-

ate and contribute to nearly every organ system in the adult

body. Over the past two decades, an incredible amount of

research has given us a reasonable understanding of how

these cells are generated. Neural crest induction involves

the combinatorial input of multiple signaling pathways and

transcription factors, and is thought to occur in two phases

from gastrulation to neurulation. In the first phase, FGF and

Wnt signaling induce NC progenitors at the border of the

neural plate, activating the expression of members of the

Msx, Pax, and Zic families, among others. In the second

phase, BMP, Wnt, and Notch signaling maintain these

progenitors and bring about the expression of definitive NC

markers including Snail2, FoxD3, and Sox9/10. In recent

years, additional signaling molecules and modulators of

these pathways have been uncovered, creating an increas-

ingly complex regulatory network. In this work, we provide

a comprehensive review of the major signaling pathways

that participate in neural crest induction, with a focus on

recent developments and current perspectives. We provide

a simplified model of early neural crest development and

stress similarities and differences between four major

model organisms: Xenopus, chick, zebrafish, and mouse.
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Abbreviations

NC Neural crest

NPB Neural plate border

NP Neural plate

NNE Non-neural ectoderm

pNC Prospective neural crest

pNP Prospective neural plate

DLMZ Dorsolateral marginal zone

ES Embryonic stem

EpiSC Epiblast stem cell

hESCs Human embryonic stem cells

Introduction

The neural crest (NC) is a remarkable population of mul-

tipotent embryonic cells unique to vertebrates, which

migrate from the dorsal neural tube early in development to

give rise to a diverse array of derivatives, including neu-

rons and glia of the peripheral nervous system,

sympathoadrenal cells, cardiac cells, melanocytes, and

most of the bone and cartilage of the face and skull. Their

origin can be traced to the border of the neural plate—a

region of ectoderm situated between the neural plate (NP),

which gives rise to the central nervous system, and the non-

neural ectoderm (NNE), which forms the epidermis.

Immediately beneath the ectoderm there is a layer of

mesoderm, and together with the NP and NNE, these tis-

sues are collectively believed to contribute to the induction

of the NC. As the neural plate begins to close to form the

neural tube, presumptive NC cells occupy the dorsal tips of

the neural plate (the neural folds), and are laterally flanked

by prospective placodal ectoderm in cranial regions and by

prospective epidermis in the trunk and tail. In all organ-

isms, NC cells undergo an epithelial-to-mesenchymal
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transition (EMT) in a rostrocaudal wave and take on ste-

reotypical patterns of migration and give rise to various cell

types. The rostral, cranial NC cells are the first to delam-

inate—they begin to migrate before neural tube closure in

the mouse, frog (Xenopus), and zebrafish, but cranial NC

cells in the chick begin migration soon after apposition of

the neural folds. At more caudal levels, trunk NC cells

migrate from the dorsal aspect of the forming neural tube.

The early morphogenesis of NC development is outlined in

Fig. 1, using the chick embryo as an example.

NC development is perceived as a step-wise progression

from inductive events to transcription factor expression to

modulation of migration and differentiation (Fig. 1). The

molecules and their interactions have been integrated into a

NC gene regulatory network, providing a rich framework

for continued functional and comparative research [1, 2].

Initially, the NC is induced by a combination of signals,

most notably the bone morphogenetic protein (BMP),

fibroblast growth factor (FGF), and Wnt signaling path-

ways, but also potentially including Notch/Delta, retinoic

acid (RA), Hedgehog, and Endothelin signaling. These

signaling pathways integrate early in development to

induce the expression of a set of regulatory transcription

factors (Msx1/2, Pax3/7, Zic1, Dlx3/5, Hairy2, Id3, Ap2),

which specify the neural plate border (NPB). These factors

along with combinations of the same signaling pathways

then trigger the expression of NC specifiers, a second set of

transcription factors including Snail2, FoxD3, Sox9/10,

Twist, cMyc, and Ap2. NC specifiers are proposed to

ultimately control neural crest behavior, from EMT and

delamination to migration and differentiation. Because

these transcription factors are expressed in other tissues at

these and other times in development, their spatiotemporal

and combinatorial expression must be considered when

associating them with NC development.

Although NC development has been studied in several

species, our knowledge of the earliest inductive signaling

comes primarily from Xenopus and chick research. Recent

evidence from these organisms suggests that the NC is

induced during gastrulation, and its early development can

Fig. 1 Morphogenesis and major events in early neural crest devel-

opment. Images display major morphogenetic changes in the early

stages of neural crest (NC) development from gastrulation to

neurulation, using the chick embryo as an example. The neural plate

border (NPB) and neural crest (NC) progenitors are marked by Pax7 in

red. a Signaling molecules induce NC progenitors at the prospective

NPB before and during the gastrula stage, but the source of inductive

signals varies by organism. b NC progenitors are first identifiable with

molecular markers of the neural plate border (NPB), including Msx1/

2, Pax3/7, Zic1, Dlx3/5, Hairy2, Id3, and Ap2. The NPB is flanked

medially by the neural plate (NP) and laterally by the non-neural

ectoderm (NNE), with a layer of mesoderm found underneath. At the

neurula stage, signaling between these tissues maintains the expression

of NPB markers. c As the NP thickens and rises, the transcriptional

activity of NPB specifiers and additional signaling events lead to the

expression of NC specifiers at the neural folds, including Snail2,

FoxD3, Sox9/10, Twist, cMyc, and Ap2. The pre-placodal ectoderm is

found immediately lateral to the NC in rostral regions. d Soon after the

NC fate is established, NC cells undergo an epithelial-to-mesenchymal

transition and migrate throughout the body and differentiate into a

multitude of derivatives. In the chick, NC cells migrate soon after the

neural tube fuses, but in most other organisms, NC cells begin to

migrate before the neural tube is closed

c
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be explained in a two-step process. An initial phase of FGF

and Wnt signaling during gastrulation induces the NC in the

prospective NPB, and a second phase of Wnt and BMP

signaling during neurulation maintains the NC population.

Although the signaling pathways implicated in NC devel-

opment appear to be conserved among different species, the

source, timing, and precise regulation show considerable

variation.

The study of early NC development has attracted sig-

nificant interest owing to the unique properties of these

cells. As a great model for induction, pluripotency, cell-

fate restrictions, migration and differentiation, NC devel-

opment involves most elements of developmental biology.

Additionally, defects in various aspects of NC development

cause a number of debilitating human health condi-

tions, collectively known as neurocristopathies, including

aggressive tumors such as melanomas and neuroblastomas,

rare syndromes like Hirschsprung and Waardenburg syn-

dromes, and various developmental malformations such as

cleft lip/palate and aganglionic megacolon. Therefore, NC

biology is of clinical relevance as well, and a fuller

understanding of the signaling mechanisms and tissue

interactions giving rise to the NC is critical to develop

better diagnostic and therapeutic tools for these disorders.

Timing and transcription factors

Neural plate border (NPB) specification and neural crest

(NC) induction are mediated by a collection of ectoder-

mally expressed regulatory transcription factors from pre-

gastrula stages until neurulation. Markers of the NPB are

currently the first molecular indication of prospective NC

tissue and begin to be expressed during or shortly after

gastrulation at a similar timepoint to the appearance of

neural tissue (species-specific differences in developmental

timing and tissue organization are presented in Fig. 2).

Many of the genes involved in NPB formation are

expressed in several other tissues and the expression and

participation of a given transcription factor can vary

between organisms, complicating their analyses. In Xeno-

pus, much work has yielded a small set of transcription

factors important for NPB specification, but epitasis studies

demonstrate that an increasingly complex network exists.

Several studies have established Msx1, Pax3, and Zic1 as

crucial regulators of NPB specification [3–5], while more

recently the participation of Hairy2, Gbx2, Pax7, Ap2a,

and Meis3 has also been characterized [6–13]. In the chick,

Pax7 is thus far the sole transcription factor implicated in

regulating NC specifiers and is expressed exclusively in the

NPB at early stages [14, 15]. Other NPB markers are

expressed more broadly, with Msx1 and Pax3 additionally

expressed more caudal and lateral, Zic genes found more

medial, and Ap2 expressed across the lateral NNE [16].

Interestingly, no functional studies have yet confirmed their

participation in chick NC induction. In zebrafish, Msx

genes are expressed at the border and are involved in NPB

specification, but are not necessary for later NC markers

[17–19]. Zic2a and Pax3 are expressed more highly in the

NP during gastrulation and have not yet been implicated in

NPB specification [20]. The expression of Ap2a and FoxD3

overlap in the prospective NC during gastrulation, and their

combined activities are necessary for the earliest steps of

NC induction [21]. Unique to the zebrafish, Prdm1a

(Blimp1) also serves to specify the NPB fate [22–24]. In

the mouse, the expression of Ap2 begins as early as E7

with Pax3/7, Msx1/2, and Zic genes becoming detectable

by E7.5, about the time the neural folds form and slightly

before the expression of NC specifiers and the appearance

of migratory NCCs ([25–28] and our unpublished

observations).

The initial expression of NC specifiers also varies across

species. In Xenopus, most NC specifiers (Snail2, FoxD3,

Sox8/9, others) are first expressed at stage 12, very shortly

after the appearance of the NPB, and before gastrulation

has even completed [29]. In the chick, however, Snail2 is

first evident at stage 6 and not strongly expressed until

stage 8 (4-somite stage), several hours after the NPB has

formed. Furthermore, definitive NC cells expressing a full

complement of NC markers are not apparent until just

before migration at stage 9/10 [16]. Despite these differ-

ences, the avian NC appears to be specified before

gastrulation (having already received the necessary signals

for differentiation when cultured in non-inducing condi-

tions) [30], while Xenopus neural folds isolated even at the

neurula stage do not maintain expression of NC markers

without additional signals [31, 32]. In zebrafish, FoxD3 is

expressed first and along with Ap2a has a unique role early

in gastrulation [21], while Snail2, Sox9/10, and other NC

specifiers label the NC towards the end of gastrulation [33].

In the mouse, NC specifiers such as Sox9/10 [34, 35] and

FoxD3 [36] label the neural folds very soon after the

expression of NPB markers and immediately before cranial

NC migration, which is well underway by E8. Addition-

ally, Snail1/2 seem to have switched expression domains in

the mouse, but even more intriguing, a double knockout

model eliminating both Snail proteins from the epiblast still

generates normal, migrating NC cells [37–39]. Snail pro-

teins are thought to be crucial regulators of both NC fate

and EMT, and thus, other transcription factors must be

providing these essential functions in the double knockout.

One could envision redundancy or compensatory mecha-

nisms, and Twist, Zeb1, and Zeb2 have been considered as

candidates to provide the lost function. While possible,

evidence for significant overlap between the direct targets

of Snail proteins and their putative substitutes is currently
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lacking. Perhaps then, the NC gene regulatory network in

the mouse has diverged evolutionarily, dispensing a critical

role for Snail genes in murine neural crest development.

On this note, knockdown experiments in other organisms

generally cause a significant reduction of the NC markers

tested, but a demonstration of a complete loss of NC would
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require a more extensive study, and this should be con-

sidered when making comparative analyses between NC

gene regulatory networks.

Evidence for the inductive tissues

NC formation is thought to occur by a classic induction

mechanism whereby a tissue or tissues serve as source of

inductive signals that are received by another tissue,

resulting in the formation of a unique cell type. Pioneering

work on NC induction implicated the mesoderm as a

potential source of inductive signals—using salamanders,

Raven and Kloos were able to generate NC derivatives by

grafting presumptive paraxial and lateral plate mesoderm

into the naive ectoderm of the ventral blastocoel [40].

Decades later, the inductive capacity of the mesoderm was

confirmed in another amphibian, Xenopus laevis. Snail2

was induced in the naive ectoderm of the blastocoel roof

following grafts of the organizer or dorsal or lateral

mesoderm [41], or by co-culturing explants of naive

ectoderm and the paraxial mesoderm [42, 43]. The paraxial

mesoderm was subsequently shown to be required for

NC formation, as its removal inhibits Snail2 expression

[42, 44].

Other experiments instead suggested that the interaction

of neural and non-neural ectoderm led to NC induction.

Using two different species of amphibia, Rollhauser-ter

Horst demonstrated that neural and epidermal tissues can

generate NC cells when juxtaposed [45]. Using pigmented

and non-pigmented axolotl embryos in donor/host combi-

nations, Moury and Jacobson later demonstrated that NC

cells could arise from both tissues [46]. Similar experi-

ments in Xenopus and chick, grafting neural tissue into

lateral epidermis, demonstrated both tissues could yield NC

cells in these species as well [43, 47]. A recent Xenopus

paper suggests the competence of the NNE to give rise to

NC diminishes towards the end of gastrulation, while the

NP retains its competence until neurulation [48]. Together,

these findings supported a model where NC induction

results from interactions between the NP, NNE, and

underlying mesoderm. Recent evidence now suggests that

the precise involvement of these tissues is species-specific.

In Xenopus, most current models propose that the dor-

solateral marginal zone (DLMZ) of the gastrula (which

underlies the prospective NC) is the source of NC-inducing

signals. The DLMZ expresses multiple Wnt and FGF

ligands and the BMP antagonist Chordin [31, 41, 49, 50],

molecules known to be involved in NC induction. The

DLMZ also expresses a number of other Wnt and BMP

signaling regulators including Noggin, Cerberus, Frzb1,

Dkk1, Sfrp2, and Crescent. A recent study unveils an

interesting role for Snail2 in mesoderm formation and

implicates this factor in regulating the signals emanating

from the DLMZ, making Snail2 crucial for early events in

NC development as well [51]. By neurula stages of

development, the DLMZ has given rise to the paraxial or

intermediate mesoderm, underlying the proper NC.

Recombination experiments with the DLMZ and animal

caps, or grafts of the paraxial mesoderm into ventral epi-

dermis yield expression of NC markers [31, 32, 50].

Furthermore, explants of the NC at neurula stages do not

retain expression of NC markers unless co-cultured with

paraxial mesoderm, implicating the mesoderm in the

maintenance phase of NC progenitors [31, 32]. A recent

study, however, suggests the mesoderm is not necessary for

Fig. 2 Timing and morphology of early neural crest development in

Xenopus, chick, zebrafish, and mouse. a, d, h, k Timelines for early

events in NC development. Note the appearance of neural plate

border markers (NPB) and neural crest specifiers (NC) occurs during

gastrulation in anamniotes (Xenopus and zebrafish) and after gastru-

lation in amniotes (chick and mouse). Anamniotes progress at a

higher rate of development and the time between events is generally

very short—compare sizes of *4-h time bars. a In Xenopus, markers

of the neural plate border are first apparent at Nieuwkoop and Faber

stage 11.5 and immediately precede expression of neural crest

specifiers at stage 12, before the end of gastrulation. NC migration

(Mig) begins around stage 15. b Lateral view of early Xenopus
gastrula. Animal pole is up, dorsal to the right. Prospective neural

crest tissue (pNC) is found above the dorsolateral marginal zone

(DLMZ), based on fate-mapping studies [31]. LMZ lateral marginal

zone, DMZ dorsal marginal zone. c Dorsal view of a Xenopus neurula.

Anterior is up. d In the chick, neural tissue is specified before the egg

is laid at Eyal-Giladi (EG) stage IX, while neural crest tissue is

specified by Hamburger and Hamilton (HH) stage 2. Markers of the

neural plate border are not apparent until after gastrulation at stage

4?. The first neural crest specifiers are not expressed until stage 6.

Migration begins between stage 9 and 10. e Dorsal view of mid-

gastrula. Prospective neural crest tissue is found in a ring around the

prospective neural plate (pNP) until post-gastrula stages when the

anterior NPB is specified to become pre-placodal ectoderm [30].

f Lateral section through the dotted line in e. At pre-gastrula and early

gastrula stages, the prospective neural crest is situated above the

hypoblast, an extra-embryonic tissue. As mesoderm and endoderm

ingress, the hypoblast is displaced anteriorly, and by the end of

gastrulation prospective neural crest tissue is underlain by mesoderm.

g Dorsal view of neurula, anterior is up. NC specifiers are initially

only expressed in the anterior-most aspect of the neural folds. h In the

zebrafish, neural plate border markers and neural crest specifiers are

first expressed during gastrulation. Migration occurs after 13 h post-

fertilization (hpf). i Lateral view of zebrafish gastrula. Animal pole is

up, dorsal to the right. Location of prospective neural crest is inferred

from expression of Msxb [70] and Pax3 [113]. j Dorsal view of

neurula, anterior is up. k In the mouse, most neural plate border

markers are first detectable around E7.5. Neural crest specifiers are

expressed by E7.75, and NC cells begin migrating almost immedi-

ately after this expression. Listed below the timeline are approximate

stages by Theiler stage, and embryonic days post coitum (dpc).

l Lateral view of mouse gastrula. Anterior to the left. The mouse

embryo develops with the prospective ectoderm as the interior layer.

Location of the prospective neural crest is inferred from the position

of prospective neural and non-neural tissues, and the expression of

NPB markers by E7.5. m Lateral view of neurula. Anterior to the left.

n Section through the dotted line in m. Although the neural tube has

not yet closed, NC cells are migrating extensively

b
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neural or NC induction in Xenopus. Injection of an N-ter-

minally truncated form of Cerberus (CerS) inhibits Nodal

signaling and mesoderm formation, but still yields

expression of Sox3 (a definitive neural marker in Xenopus)

and Snail2 at neurula stages [52]. Although they did not

analyze later stages to see if the NC was maintained, this is

an intriguing finding. The mesoderm appears to be dis-

pensable for NC induction in zebrafish as well; embryos in

which Nodal is inhibited and mutant embryos deficient in

Nodal signaling lack mesoderm and mesoderm-derived

signaling, but still express all NC markers analyzed [53].

In the avian system, various inductive tissues have been

reported. Recombination experiments between nascent

neural tissue and paraxial mesoderm from later stages

(somites/lateral mesoderm) can yield NC derivatives [47].

Juxtaposition of neural and non-neural ectoderm via

grafting approaches in vivo, or via explant co-cultures in

vitro also yields NC formation [47, 54]. Yet, NC cells can

also be generated from epiblast explants at gastrula stages

in the absence of mesodermal and neural markers, and

without the addition of exogenous signaling molecules [14,

30, 55]. Thus, while the participation of mesoderm seems

to be species-specific, it appears that ectodermal signaling

alone may be sufficient to trigger NC induction in the

species tested so far. Importantly, there have been no

studies regarding the tissue interactions that generate NC in

the mouse or any other mammal.

Major signaling pathways involved in neural crest

induction

The molecular era of NC induction was launched in 1993

with studies identifying important effects of FGF2 and

Notch in Xenopus [56, 57], and Dorsalin1 (a TGF-b mol-

ecule) in chick [58]. A series of studies in the following

years firmly established the participation of FGF, BMP,

and Wnt signaling [41–44, 59–66]. Today, much progress

has been gained in understanding the molecular underpin-

nings of these and other molecules during the earliest

stages of NC formation across different species. Here, we

summarize current perspectives on the participation of

BMP, Wnt, FGF, and Notch signaling pathways in NC

induction among the major model organisms: Xenopus,

chick, zebrafish, and mouse.

Bone morphogenetic protein signaling

Bone Morphogenetic Proteins (BMPs) are members of the

TGF-b superfamily of secreted signaling proteins. BMPs

bind to Type I and Type II BMP receptors, and in the

canonical pathway lead to activation of Smad1/5/8 pro-

teins. Upon ligand binding, Type I and II receptors form

hetero-tetramers, with Type I phosphorylating Smad pro-

teins on their C-terminal domains. Activated Smad1/5/8

proteins then form dimers with Smad4 and translocate to

the nucleus and initiate changes in gene expression. BMP

receptors are also capable of activating signaling through

other, non-canonical pathways such as those mediated by

TAK1 (a MAP kinase kinase kinase), but only the canon-

ical Smad1/5/8 pathway is currently known to act in NC

induction. Throughout development, BMPs have multiple

roles in axial patterning, cell-fate decisions, and left–right

asymmetry, and misregulation can lead to cancers (for a

review, see [67–69]).

BMP signaling has a crucial role during early develop-

ment in the establishment of dorsal–ventral polarity and the

promotion of epidermal over neural cell fates. The lateral/

ventral expression of Bmp ligands and the dorsal/medial

expression of BMP antagonists provide the potential to

create a gradient of BMP activity. Since the NC forms at

the interface between medial and lateral tissues, it was

proposed that an intermediate level of BMP signaling is

necessary for NC induction. Indeed, epidermal, NC, and

neural fates can all be induced in explanted Xenopus

ectoderm by increasing levels of Noggin, supporting the

gradient hypothesis [44, 70]. A similar BMP gradient

model was proposed in zebrafish [71], and recent evidence

suggests a BMP gradient may initially specify the pro-

spective NC domain at the late blastula stage [72]. Another

interesting study suggests BMP patterns the ectoderm from

anterior to posterior progressively during gastrulation [73].

Although the BMP antagonists Chordin, Noggin, and Fol-

listatin secreted from the organizer and dorsal mesoderm

are crucial to establishing a gradient, they may not be

necessary for NC development in all organisms. In Xeno-

pus, Chordin morpholinos targeted to the DLMZ cause a

loss of Snail2 expression in conjugates with animal caps

[31], but in zebrafish, morpholino knockdown of all three

BMP antagonists still yields a small domain of NC [53].

Interestingly, double-homozygous null mouse mutants for

Chordin and Noggin actually present increased expression

of NC markers Msx2, Ap2, and Sox10 at early stages. Later

NC populations are expanded and undergo precocious

migration, suggesting that BMP antagonists in the mouse

actually may serve to suppress NC development [74]. Thus,

BMP activity might be modulated to levels permissible for

NC induction by other mechanisms in addition to or apart

from these secreted BMP inhibitors. Other BMP antago-

nists have been identified, and support already exists for

direct regulation of BMP ligands and intracellular regula-

tion of Smad proteins by FGF/MAPK signaling (topics

discussed later).

More recently, an alternative explanation to the gradient

model has been put forth. During gastrulation, a partial or

complete inhibition of BMP signaling is adequate to create

3720 T. J. Stuhlmiller, M. I. Garcı́a-Castro

123



a ‘‘competency zone’’ to allow other signals (Wnts, FGFs)

to specify the NC [31, 53]. Then, BMP signaling must be

activated in the NPB at neurula stages to allow the full

complement of NPB and NC markers to be expressed. An

intriguing new study using Xenopus and zebrafish embryos

has identified a novel nuclear factor, SNW1, which may

mediate this shift in BMP signaling, being responsible for a

domain of BMP activity in the prospective NPB at late

gastrula stages. SNW1 morphants lack a defined NPB and

display clear reductions in early NC markers. Targeted

overexpression of bmp2b in zebrafish can rescue this

phenotype and restore snail2 expression, suggesting the

role of SNW1 in NC development is based on its regulation

of BMP activity [52].

Recent experiments from chick embryos also suggest

that BMP signals act in two phases and argue against a

gradient of activity. Treatment of prospective NC explants

from gastrula-stage embryos with Noggin for the first 10 h

of culture has no effect on their fate, but treatment after

10 h causes a loss of NC markers and an induction of

neural markers. Similarly, treatment of prospective NC

explants with Bmp4 after the first 10 h of culture causes no

change and crest markers arise normally, but if Bmp4 is

applied from the beginning of culture, the explants become

prospective epidermis [30]. Together, these findings sug-

gest that neural and epidermal cell fates require continued

BMP inhibition or BMP activation, respectively, while the

NC is generated by an early phase of inhibition and a late

phase of activation. These findings are supported in vivo—

Smad1/5/8 signaling is essentially absent during gastrula-

tion, but becomes progressively activated throughout the

NPB and NNE by neurula stages, with a sharp drop in

activity at the NPB/NP boundary [75, 76]. Also, inhibition

of Smad signaling causes a loss of NPB markers [76] and

experiments on later-stage (stage 10) chick embryos dem-

onstrate BMP signaling is necessary for the expression of

NC specifiers as well [65]. Overall, these studies suggest

that BMP/Smad signaling can be completely inhibited at

gastrula stages to allow NC induction, but must be acti-

vated in the NPB upon neurulation to maintain NC

progenitors. This activation of BMP/Smad signaling at

neurula stages in the NPB may function to promote the NC

fate over the neural fate, as the addition of Bmp4 to NP

explants from multiple stages can elicit the expression of

Pax7, Snail2, and Sox9 [55, 59, 60, 66, 77, 78].

Although the participation of specific BMP ligands has

not been directly addressed in the chick, Bmp4 expression

closely matches the pattern of Smad1/5/8 activation and is

postulated to establish the majority of BMP activity at early

stages [75]. Expression of Bmp4 and Bmp7 becomes enri-

ched in the neural folds and adjacent ectoderm at later

stages and exogenous Bmp4 protein can induce NC

markers in various contexts in both chick and Xenopus

tissues [30, 31, 55, 59, 60, 66, 77, 78]. In zebrafish, mutants

for both bmp2b (swirl) and bmp7 (snailhouse) lack NC

cells, suggesting a shared role in establishing the necessary

domain of BMP activity [71, 79]. Notably, bmp2b in

zebrafish is proposed to be functionally equivalent to

Xenopus Bmp4 [80].

In the mouse, knockouts for Bmp4, Type I BMP

receptors Alk2 and Alk3, and Type II Bmpr2 die before or

shortly after gastrulation, precluding analysis of NC

induction [81–85]. However, heterozygous mutants for

Bmp4 show some craniofacial abnormalities, suggestive of

a role in NC development [86]. Bmp2-null mutants can

survive until E10.5 and lack migrating streams of cranial

NC cells and do not develop the first two branchial arches

[87, 88]. A follow-up study demonstrates Bmp2 is neces-

sary for migration, but not for induction, since Bmp2-null

mice do express early NC markers Ap2, Snail1, and Id2

[89]. An epiblast-specific (Mox2-Cre driven) knockout for

Alk3 (Bmpr1a) has been generated, and presents expanded

anterior neural markers at the expense of surface ectoderm

and caudal neural markers. NC markers Msx1, Pax3, and

Sox10 are still expressed, however, suggesting Alk3 is not

necessary for initial NC induction in mouse [90]. Another

study uses a Pax3-Cre to conditionally remove Alk3 in the

prospective NC and demonstrates that early NC markers

are still induced in the cranial region, but NC development

in caudal regions is delayed or impaired [91].

A murine line expressing the Cre recombinase from the

Wnt1 locus has provided a fruitful tool to analyze later,

post-induction events in neural crest development. Wnt1 is

first expressed in the dorsal neural tube, specifically in the

NC population at the midbrain region at the four-somite

stage shortly before NC migration. Given the earlier

expression of Msx1/2, Pax3/7, and Ap2, Wnt1-Cre lines

cannot address events leading to the initial induction of NC

cells, but are valuable for the analysis of later events. A

knockdown of Alk2, Alk3, or Alk5 using the Wnt1-Cre

causes severe craniofacial, pharyngeal, and cardiac defects,

indicating a role for BMP signaling in later NC develop-

ment [92–95]. Targeted disruption of Smad4 similarly

causes multiple craniofacial, pharyngeal, and cardiac

anomalies, partially owing to increased levels of apoptosis

[96–98]. Although the expression of Msx1/2, Ap2a, Pax3,

and Sox9 at E8.5 is normal in these embryos, expression

from E9.5 on is strongly downregulated, implicating Smad

signaling in the maintenance of NC markers [98]. Smad4

also participates in Smad2/3 signaling downstream of other

TGF-b family members, however, so these phenotypes

result from a loss of all Smad signaling. Indeed, Wnt1-Cre

mediated Tgfbr2 knockouts present some of the same

defects as those seen in BMP receptor and Smad4 knock-

outs [99, 100]. Together, these results suggest a later role

for BMP/Smad signaling in the mouse, and complement
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the current models from Xenopus and chick that propose a

two-phase BMP requirement for NC induction.

Wnt signaling

Wnts are secreted proteins that initiate a complex cascade

of intracellular events, leading to the stabilization of

b-catenin in the canonical pathway. Normally, b-catenin is

phosphorylated by a complex of proteins including GSK3,

APC, and Axin, and then subsequently degraded. Upon

binding to cell surface receptors belonging to the Frizzled

and LRP families, Wnts cause the activation of Disheveled

proteins, which inhibit the b-catenin destruction complex.

b-catenin is then free to enter the nucleus where it asso-

ciates with TCF/LEF family transcription factors to

modulate gene expression. Wnt signaling can also activate

non-canonical pathways and promote cytoskeletal changes

(via Rho-associated kinase in the PCP pathway) or changes

in intracellular calcium levels (through activation of PLC

and DAG/IP3 signaling). Wnt signaling is implicated in

nearly every facet of development and has roles in the

generation of multiple organ systems in the embryo. Wnt

signaling also maintains a number of adult tissues, and

defects in this pathway commonly contribute to cancers

(for a review, see [101, 102]).

Wnt signaling has long been associated with NC induction

and has recently been proposed to be the inductive signal. In

Xenopus, overexpression of several different Wnt ligands

can induce ectopic NPB and NC marker expression, and

Wnts are capable of inducing NC markers in conjugation and

animal cap assays, but only when combined with BMP

antagonists (Chordin/Noggin) [3, 4, 11, 49, 62–64, 103].

Inhibition of Wnt signaling in Xenopus and chick embryos

using a variety of extracellular and intracellular modulators

has proven the requirement of the canonical b-catenin-

mediated pathway for NC induction and later development

[3–5, 7, 9, 10, 14, 31, 49, 63, 64, 66, 78, 104–112].

Wnt3a and Wnt8 have emerged as strong canonical

candidates to induce the NC in Xenopus, being expressed in

the DLMZ of the gastrula and at later stages in the caudal

NP and paraxial mesoderm, respectively [7, 31, 49]. Spe-

cific knockdown of Wnt3a or Wnt8 using morpholinos or a

dominant-negative Wnt8 construct inhibits a panel of NPB

and NC markers [4, 7, 31, 49]. Interestingly, Wnt3a mor-

phants still express Wnt8, suggesting Wnt3a may act

downstream or independently of Wnt8 in NC induction [7].

Wnt8 is also known to be required for zebrafish NC

induction. Zebrafish wnt8 is a bicistronic gene, yielding

two transcripts (wnt8.1 and wnt8.2), but only morpholinos

that interfere with the translation of Wnt8.1 cause a loss of

NC markers pax3, foxD3, and sox10 [113].

In the chick, Wnt3a and Wnt8a/c are expressed in the

lateral epiblast during blastula stages [114, 115]. At

gastrula stages, Wnt3a is found in the epiblast and primi-

tive streak along with a number of other Wnt ligands

(Wnt1, 2b, 7b), while Wnt8a/c is expressed in the primitive

streak and early mesoderm (S. Chapman, personal com-

munication; http://geisha.arizona.edu/geisha). Addition of

Wnt3a to prospective neural epiblast explants can eliminate

the expression of neural markers and induce the expression

of Msx1, Snail2, and HNK-1 (a marker of migratory NC)

[30, 114]. Furthermore, inhibition of Wnt signaling in

prospective NC explants causes a loss of NC markers,

indicating a requirement for ectodermal Wnt signaling in

the chick [30]. Although the potential roles of specific

Wnts ligands have not been functionally challenged at

early stages, Wnt6 has been implicated in later avian NC

development. One study suggests signaling from the NNE

activates the canonical pathway in the forming neural folds

[66] while another proposes Wnt6 induces the NC through

the Rho/JNK non-canonical pathway [116]. Much more

work is necessary to determine the source and action of the

inductive Wnt molecule(s) in avians, particularly at early

stages.

In the mouse, Wnt1 and Wnt3a are expressed just before

NC migration and participate in later NC development, but

do not play a role in the initial induction. Double-homo-

zygous null mutant mice for Wnt1/Wnt3a initially express

Ap2 normally, but expression is lost from the migrating

cells. Accordingly, these double-mutant mice have severe

abnormalities in NC derivatives [117]. A neural-crest

specific (Wnt1-Cre) deletion of b-catenin replicates the

midbrain/hindbrain defects of Wnt1 deletion, suggesting

Wnt1 signals through the canonical pathway, and addi-

tionally presents a near-complete loss of craniofacial

structures [118]. Although this b-catenin null mutant

makes up for potential canonical Wnt ligand redundancy,

the phenotypes may also be the result of compromised cell

adhesion. Studies of other Wnt ligands during early murine

development do not reveal obvious NC induction defects

(summarized, http://www.stanford.edu/group/nusselab/cgi-

bin/wnt/mouse).

Additional studies have investigated other components

of the Wnt signaling pathway. In Xenopus, the Wnt

receptor Frizzled7 has been implicated in mediating the

initial Wnt signal in the prospective NC domain, with

Frizzled3 likely acting at later stages, perhaps responding

to Wnt1 signaling [104, 105]. Lrp6, an LDL-receptor

related protein, is thought to be a co-receptor for Wnts in

NC induction [109], and participates in signaling with a

transmembrane protein, Kremen2 [106]. A novel intracel-

lular PDZ domain-containing protein, Kermit, was also

shown to be required for NC development, preferentially

mediating Frizzled3 signal transduction [119]. Also in

Xenopus, morpholino knockdown of Disheveled 1 or 2

caused an inhibition of Snail2 and Twist, but depletion of
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Disheveled 3 had no effect [120]. A recent study using

zebrafish and Xenopus embryos has identified a novel

negative regulator of the canonical Wnt signaling pathway,

Kctd15; overexpression of Kctd15 inhibits NC markers,

while morpholino depletion causes their expansion. A

knockdown of Kctd15 rescues Wnt8.1 morphant zebrafish,

suggesting Kctd15 acts downstream of ligand binding to

decrease signal strength [121]. Another novel regulator of

Wnt signaling is ADAM13, a metalloprotease. ADAM13

was shown to be necessary for cranial NC induction, as

morpholinos inhibit expression of Snail2, Sox9, and Twist

in Xenopus tropicalis embryos. Here, ADAM13 cleavage

of Ephrins B1 and B2 is thought to promote Wnt signaling

by preventing inhibitory effects of forward EphrinB sig-

naling, thus allowing sufficient Wnt signaling to activate

Snail2 and induce the NC [122]. Non-canonical Wnt sig-

naling may be required for NC induction in Xenopus as

well—a recent study suggests a crucial role for Wnt11R

signaling from the neuroectoderm. The authors demon-

strate Wnt11 is capable of activating PAR-1 (also known as

microtubule-associated regulatory kinase—MARK) and

both molecules are required for early NC markers (Pax3,

FoxD3, Sox8), independent of the b-catenin pathway [123].

Interestingly, a recent study using chick explants pro-

poses Wnt signaling mediates the temporal activation of

BMP signaling necessary during the second step of NC

induction. Treatment of prospective neural explants with

Wnt3a at gastrula stages upregulates Bmp4 expression and

can induce NC markers, while treatment of prospective NC

explants with a Wnt inhibitor causes a loss of NC markers

and a downregulation of Bmp4 levels [30]. If this same

regulation is also present in Xenopus, it would explain why

animal caps treated with BMP antagonists and Wnt ligands

undergo NC induction: BMP antagonists and Wnt ligands

promote the early induction of NPB markers, and then the

Wnt ligands activate BMP signaling, overpowering BMP

antagonism and leading to the expression of NC specifiers.

Fibroblast growth factor signaling

Fibroblast growth factors (FGFs) comprise a large family

of secreted polypeptides (22 genes in vertebrates) that bind

to transmembrane receptor tyrosine kinases called FGF

receptors (four genes, FGFR1–4 in vertebrates) with the

assistance of extracellular matrix components, notably

heparin sulfate proteoglycans. Following ligand binding,

the receptors dimerize and transphosphorylate one another

and activate one or more intracellular signaling cascades,

including those mediated by Erk1/2 (MAPK), PKC, and

PLC-gamma. Alternative splicing has been reported in

several ligands as well as FGFR1–3, adding to the com-

plexity and specificity of ligand/receptor interactions and

downstream signaling. FGFs have been implicated in

multiple aspects of early development, including meso-

derm and endoderm formation, gastrulation movements,

anterior-posterior and dorsal–ventral patterning, and neural

induction among others (for a review, see [124, 125]).

Several Xenopus studies have demonstrated the impor-

tance of FGF signaling, with a specific focus on Fgf8a as a

NC inducer. This spliceform of Fgf8, unlike Fgf8b, has

little to no involvement in mesoderm development [126].

Fgf8a is expressed in the DLMZ at gastrula stages, but

becomes restricted to more posterior tissues at later stages

of development [49, 50]. An Fgf8a morpholino inhibits

expression of Msx1, Pax3, Hairy2, Snail2, Sox8/10, and

Ap2 [3, 4, 11, 49], and unlike Wnts, Fgf8 is capable of

transiently inducing NC markers in an animal cap assay

without additional BMP inhibitors [50]. Interestingly,

overexpression of Fgf8 in low doses expands the expres-

sion of numerous NPB and NC specifiers, but in higher

doses actually inhibits them [3], suggesting a specific

threshold of FGF activity is necessary for NC induction. A

recent Xenopus study identified a transmembrane protein,

Lrig3, which may participate in modulating FGF levels

[127]. Lrig3 seems to enhance Wnt signaling, but inhibits

Erk1/2 activation and the NC-inducing activity of FGF

ligands, potentially though an interaction with FGFR1.

Morpholino analysis demonstrates that Lrig3 operates

downstream of Pax3 and Zic1 but upstream of NC speci-

fiers Snail2, FoxD3 and Sox9, and could act in the

transition from NPB specification to NC specification.

In Xenopus, FGFs are likely to act during gastrulation

and recent experiments suggest the role of FGF is indirect,

acting on mesodermal tissues to induce Wnt8 expression

[49]. The authors show that Fgf8 overexpression is unable

to rescue the loss of Snail2 and Sox8 in Wnt8 or b-catenin

morphants, but overexpression of Wnt8 or b-catenin can

rescue NC deficiencies brought about by an Fgf8 mor-

pholino. Furthermore, the combination of Chordin and

Fgf8a in an animal cap assay will induce Pax3, Snail2, and

Sox8, but addition of a Wnt8 morpholino blocks induction.

They also demonstrate that Fgf8a overexpression can

expand the domain of Wnt8 expression and that Fgf8

morphants lack Wnt8 expression in the mesoderm at late-

gastrula stages. A previous study, however, instead sug-

gests that FGF signaling acts directly on the ectoderm;

conjugates of DLMZ and animal caps present strong

expression of Snail2, FoxD3, and Sox9, but conjugates of

DLMZ with animal caps injected with a dominant-negative

FGFR1 do not [50]. A similar experiment using a domi-

nant-negative FGFR4a did not cause a loss of NC markers,

suggesting that signaling through FGFR1 is a key modu-

lator of NC induction in the ectoderm. In support of a

potential ectodermal requirement for FGF signaling, con-

jugates of neural and epidermal tissue express Snail2, but

when the neural portion is injected with dominant-negative
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FGFR1, the conjugates no longer express Snail2 [61].

Moreover, Wnt3a has been implicated in the ectodermal

expression of Meis3, a factor capable of directly activating

transcription of Fgf3 and Fgf8 in animal cap assays, sug-

gesting FGF may be activated in the ectoderm [7, 9].

A recent study demonstrates an ectodermal requirement

for FGF signaling in chick as well [76]. In this work,

inhibition of FGF signaling during gastrulation via elec-

troporation of a dominant-negative Fgfr1 or Mkp3

(inhibitor of MAPK signaling) causes a loss of Pax7 and

Snail2, but treatment after gastrulation causes no effect.

Using epiblast explants and by restricting electroporation

to the prospective NPB, this study demonstrates that FGF/

MAPK signaling within the gastrula epiblast is required for

NC induction. Interestingly, FGF receptors 1 and 4 are

expressed in the prospective NC epiblast during this time,

but are not found in the mesoderm [76, 128], suggesting

FGF does not act on the mesoderm in avian NC induction.

FGF signaling is necessary for mesoderm formation [129],

however, and many FGF ligands are expressed in the

mesoderm and primitive streak (http://geisha.arizona.edu/

geisha; 130]). During the stages leading up to gastrulation,

Fgf8 is expressed in the hypoblast (the tissue underlying

the epiblast), and is thought to participate in neural

induction [131], making it an attractive candidate to act on

the prospective NC epiblast. Still, the source of the inductive

ligand has not yet been identified in the chick, and other FGFs

including Fgf3 are expressed in the epiblast itself [132]. The

highest level of FGF/MAPK activity during gastrulation is

found in the primitive streak [76, 128], and during this and

later stages, it is known to regulate the expression of multiple

Wnt ligands expressed there, including Wnt3a, Wnt8a/c, and

Wnt5b [76, 129, 133]. However, FGF was also found to

positively regulate antagonists of the canonical Wnt signal-

ing pathway including NOTUM, Sizzled, Sfrp2, and

Cerberus [129]. It would be interesting to determine whether

FGF/MAPK regulation of these molecules is necessary for

NC induction in addition to its activity within the prospective

NC epiblast itself.

A requirement for FGF signaling in zebrafish NC

induction has not yet been proven, but FGF/MAPK sig-

naling is crucial for dorsoventral patterning during

gastrulation and overexpression of Fgf8 causes an expan-

sion of Ap2 [134, 135]. In the mouse, several FGF

molecules are known to act early in development, but have

not been functionally linked to NC induction. Null mutants

for Fgf4 [136] and Fgfr2 [137] display defects in the inner

cell mass, and knockouts for Fgf8 [138, 139] and Fgfr1

[140–142] do not gastrulate properly and thus die before

NC formation. Studies have not yet assessed later contri-

butions of these molecules, but all other FGF knockouts

generated so far appear to undergo normal NC induction

(see [143] for a summary).

In addition to its ability to modulate the Wnt pathway,

FGF/MAPK signaling also contributes to BMP antagonism

on multiple levels. In Xenopus and zebrafish, FGF signal-

ing positively regulates the expression of Chordin and

Noggin during gastrulation [144–146], and negatively

regulates BMP ligand expression in the chick and zebrafish

[114, 132, 135]. A recent study also shows FGF positively

regulates SNW1 in the chick [129], a molecule thought to

modulate BMP signaling in Xenopus [52]. Additionally, a

compelling intracellular regulation of Smad1 has been

uncovered, directly linking MAPK signaling to Smad

inhibition [147]. MAPK was found to phosphorylate the

linker region of Smad1, leading either to Smurf1-mediated

polyubiquitination and degradation or exclusion from the

nucleus [147–149]. This pathway was shown to be crucial

to Xenopus neural induction [148, 150, 151], and may

operate similarly to cell-autonomously regulate Smad

activity in the prospective NPB. Even more intriguing,

GSK3, active in the absence of canonical Wnt signaling,

was also shown to phosphorylate the Smad1 linker,

downstream of MAPK phosphorylations [148]. This pro-

vides yet another mechanism whereby Wnt signaling could

promote BMP signaling. These findings suggest Smad

signaling is a platform to integrate signals from the BMP,

Wnt, and FGF pathways. If this is found to be conserved

across species, it could account for the reported formation

of NC in zebrafish lacking dorsal BMP antagonists

(Chordin/Noggin/Follistatin) [53].

Notch signaling

Notch proteins are transmembrane receptors activated by

binding to transmembrane ligands on the surface of adja-

cent cells. Following ligand binding, multiple cleavage

events occur, leading to the intracellular release of the

Notch intracellular domain (NICD). The NCID then

translocates to the nucleus where it converts the recom-

bining binding protein suppressor of hairless complex from

transcriptional repressor to an activator with the help of

proteins from the mastermind-like protein family. The

NCID is also able to participate in additional transcrip-

tional activation processes, independent from this

canonical pathway. Notch signaling has been implicated in

numerous developmental processes, particularly involved

in establishing boundaries between different cell types (see

[152] for a review).

Studies from Xenopus demonstrate a crucial role for

Notch/Delta signaling, but the precise time of its activity is

still uncertain. Glavic et al. show that Notch is expressed in

the prospective NC territory, while ligands Delta and

Serrate are expressed in the surrounding regions. They

propose that Delta1 interacts with Notch to activate the

transcription factor Hairy2, which then suppresses Bmp4
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signaling, allowing the inductive phase to proceed [8].

However, this suppression appears to occur during the

second maintenance phase, when BMP signaling must be

activated. A more recent study using the same tools reports

contradictory results, perhaps due to slight differences in

the stage of treatment. This group shows that Hairy2 is not

regulated by Notch, but is positively regulated by BMP

inhibition, the canonical Wnt pathway, and Fgf8, and is

downstream of Msx1, Pax3, and Zic1. They propose that

Hairy2 maintains NC progenitors, as overexpression

represses NC markers and upregulates NPB markers [11].

A follow-up study finds that Hairy2 actually activates the

Notch pathway cell-autonomously, activating Delta1 via

STAT3. Delta1 then acts non-cell-autonomously to

upregulate Id3, Snail2, and Sox9 [12]. This suggests Hairy2

may act as a trigger for Notch/Delta signaling at the

maintenance phase, eventually leading to the expression of

NC specifiers. Another Xenopus study extensively charac-

terizes a novel secreted protein, Tsukushi (Tsk), necessary

for NC induction. Tsk is capable of acting as a BMP

antagonist through direct binding to Bmp4, while also

regulating the Notch pathway by binding to the extracel-

lular domain of Delta1. The authors propose Tsk is

essential to establish the proper level of BMP signaling at

the prospective NPB during gastrulation, together with

Notch signaling [153]. Potentially, Hairy2 and Tsk serve to

modulate Notch and BMP signaling at multiple levels of

NC development, but more research is needed.

In the chick, one study has assessed Notch signaling,

demonstrating a role in refining the NC domain after

induction has taken place. In this instance, Notch seems to

act indirectly. Both overactivation and inhibition of Notch

signaling cause an inhibition of Bmp4 in the epidermis and

Snail2 in the neural fold, but overexpression of Bmp4 in

these embryos can rescue the loss of Snail2 expression.

This suggests Notch acts primarily to regulate Bmp4 levels

[154]. Notch has yet to be implicated in NPB specification

during gastrulation in chicks.

Notch signaling has also been linked to NC development

in zebrafish embryos, though it seems to act primarily by

restricting the neural domain. A loss of Notch/Delta sig-

naling in mindbomb (mib) mutant zebrafish causes a loss of

NC derivatives at the expense of lateral NP derivatives

such as interneurons [155]. Another study suggests Notch

acts via repression of Neurogenin-1 function, restricting

neurogenesis without actively promoting NC formation

[156]. More recent studies suggest Notch/Delta acts earlier,

refining the border of the neural plate specifically through

negative regulation of the transcription factor prdm1a

(Blimp1) [157]. Prdm1a, necessary for NPB specification in

zebrafish, antagonizes another factor olig4, which defines

the lateral edge of the NP and promotes neural cell fates

over NC [23, 157, 158]. It appears olig4 is restricted by

BMP signals during gastrulation, as swirl/bmp2b mutant

zebrafish demonstrate a laterally expanded expression of

olig4 [158]. Importantly, in all these zebrafish studies,

inhibition or loss of Notch signaling primarily affected

trunk, but not cranial NC cells, suggesting it is not

responsible for the initial induction of all NC cells.

Mouse mutants for members of the Notch signaling

pathway generally display an increase in neuronal differ-

entiation markers and a decrease in progenitor markers,

demonstrating a critical role in the early stages of CNS

development (for a review, see [159]), but there is no

support for a role in NC induction. Homozygous null

mutants for Delta1 display proper generation of NC cells,

but show defects in migration and differentiation [160],

consistent with a later role for Notch signaling.

Other signaling pathways

Retinoic acid (RA) signaling has an established role in

caudal neural patterning, and may act in NC development

as well, though it seems to act after the initial induction.

RA signaling is restricted to the caudal portions of the

embryo during early development, owing to the posterior

localization of the RA-synthesizing enzymes (retinalde-

hyde dehydrogenases, Raldhs) and the anterior localization

of RA-degrading enzymes (Cyp26 family members). A

study using Xenopus animal caps showed that induction of

Pax3 by chick mesoderm or NP does not require RA [161]

suggesting RA is not necessary for NC induction. Another

study using Xenopus embryos demonstrated that addition

of exogenous RA or over-activation of RA signaling can

expand Snail2 expression anteriorly, whereas treatment

with a dominant-negative RA receptor causes a posterior

expansion [110], suggesting RA effects on the NC are

secondary to axial patterning. An avian study using vitamin

A-deficient (VAD) quails (which lack the RA precursor)

suggests RA is required for the survival of migrating NC

cells; VAD quails appear to form cranial NC cells properly,

but within a few hours of migration, they undergo exten-

sive apoptosis [162]. A mouse study evaluated RA

signaling in the cranial neural crest and provides a slightly

different perspective [163]. As a result of knocking out

both Cyp26a1 and c1 together, RA signaling is expanded

anteriorly, and although NC markers Snail and Sox9 are

expressed normally in the cranial neural folds, migrating

NC cells are largely absent. Interestingly, crossing Cy26a1/

c1 double mutants with a null mutant for Raldh2 (the only

RA-synthesizing enzyme present at these stages) rescues

the NC migration defect, despite the expected absence of

RA signaling in these embryos. This suggests that although

over-activation of RA signaling can disrupt cranial NC

migration, endogenous RA signaling is not required for

migration. Furthermore, because NC markers were initially
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expressed normally, RA signaling does not appear to

function early in NC induction in the mouse.

A recent study evaluates the role of Indian Hedgehog

(Ihh) in early neural crest development in Xenopus [164].

Here, the authors demonstrate Ihh signaling is necessary

for NC induction, maintenance of progenitors; loss of Ihh

function using morpholinos, dominant-negative constructs,

and chemical inhibition causes a loss of both NPB and NC

specifiers and an expansion of neural and epidermal

markers. They reveal requirements for autocrine signaling

within the prospective NC and paracrine signaling from the

mesoderm, with mesoderm-based signaling further being

necessary for proper migration. A well-characterized

member of the hedgehog family, Sonic hedgehog (Shh),

has established roles in the formation of left/right asym-

metry and ventral patterning of the spinal cord, and

although ectopic application of Shh can repress NC

markers at later stages in the chick [59, 65, 165], an

endogenous role in NC induction has yet to be proven.

Lastly, Endothelin signaling has also been implicated in

Xenopus NC induction [32]. Using a combination of in

vivo and explant approaches, the authors suggest Endo-

thelin-1, released from the mesoderm, functions in both NC

specification and cell survival. They demonstrate that

morpholino knockdown of the Endothelin-A receptor and

chemical inhibition of Endothelin signaling causes a loss of

NC specifiers FoxD3, Sox9 and Sox10, but not the NPB

specifier Msx1, suggesting a role in NC progenitor main-

tenance during the mid-neurula stage. With NC induction

requiring the precise temporal regulation of multiple tran-

scription factors, additional signaling pathways are surely

yet to be uncovered.

Perspectives

Posteriorization and early inducers

Wnts, FGFs, and retinoic acid (RA) are proposed to act as

caudalizing or posteriorizing factors during early devel-

opment. In neural development, it is thought that the NP is

initially composed entirely of rostral or anterior character,

subsequently being posteriorized by the action of Wnts,

FGFs, and RA to give rise to caudal components of the

nervous system (reviewed in [166, 167]). Since these same

factors are involved in NC induction, it was proposed that

the NC is a result of NPB posteriorization [110]. A study in

chick, however, indicates the prospective NPB is initially

specified by gastrula stages to become NC at all axial

levels, requiring the inhibition of Wnt signals at later stages

to allow placodal development anteriorly [30]. Addition-

ally, work in Xenopus suggests Wnt signaling acts directly

to induce the NC, independent of its role in antero-

posterior neural patterning [111]. Recent Xenopus studies

identify two factors, Gbx2 and Meis3, as direct targets of

Wnt/b-catenin signaling necessary for NC induction

[7, 10]. Although both of these genes are involved in

caudal neural patterning, the NC-inducing activity of Gbx2

is separable from its role in NP posteriorization [10]. Gbx2

is also shown to cooperate with Zic1 to specify the NC fate,

while Zic1 activity alone leads to placodal development

[3, 10]. These findings argue that NPB antero-posterior

patterning and NC induction are distinct from events in

early neural development.

Although these studies describe Gbx2 and Meis3 as

some of the earliest-expressed proteins necessary for NC

induction and direct targets of Wnt signaling, another

recent study proposes Ap2a is the earliest-acting factor in

Xenopus [6]. Ap2a is broadly expressed, including the

prospective NPB from the onset of gastrulation (stage 10)

and preceding the expression of all other NPB specifiers

but still downstream of Wnt/b-catenin signaling. They

demonstrate that morpholino depletion of Ap2a causes a

loss of Msx1, Hairy2, Pax3, and Snail2, and a gain-of-

function upregulates them. Although the initial expression

of Ap2a is not affected by morpholinos against other NPB

specifiers, later expression is. A zebrafish study also sug-

gests Ap2a (Tfap2a) is a critical early regulator of the NC

fate, along with FoxD3 [21]. These two factors are

expressed during gastrulation and are necessary and suffi-

cient for NC development. Interestingly, double-mutants of

Ap2a and FoxD3 actually present altered patterns of BMP

and Wnt signaling, suggesting these factors participate in

establishing the signaling environment required for NC

induction. The expression patterns of Ap2 and FoxD3 in

the chick, however, are not consistent with an early role in

NC induction [16]. Instead, Pax7 is currently the earliest-

expressed factor necessary for NC induction in the chick

[14]. This marker is expressed exclusively in the NPB soon

after gastrulation and later labels the entire neural folds.

This contrasts with other NPB specifiers that are found

more lateral (Msx1, Pax3) and NC specifiers, which are

initially only expressed in the cranial NC (Snail2, FoxD3,

Sox9) [16].

Neural and neural crest induction: shared first steps?

Recent studies in the chick and frog describe the initial

induction of the NC taking place during gastrulation,

requiring the activation of FGF and Wnt signaling and the

inhibition of BMP signaling. Studies from these same

organisms suggest neural induction also requires BMP

inhibition and the activation of FGF/Erk signaling from the

blastula to the gastrula stage [114, 131, 132, 168–170]

(reviewed by [171]), prompting the question of whether

neural and NC cells are initially specified together.
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In the chick, Erk1/2 proteins are activated throughout

the epiblast, encompassing both the prospective NP and

prospective NPB from blastula to gastrula stages [76, 128].

Although studies of NC induction have not analyzed

effects of FGF/Erk inhibition at pre-gastrula stages, inhi-

bition at gastrula stages causes a loss of NPB markers in

their endogenous domain, but an upregulation in the NP

[76]. Thus, if FGF is to act similarly on these populations,

it likely does so before gastrulation. Furthermore, activa-

tion or inhibition of Wnt signaling can interchange the

expression of neural and NC markers in explants taken at

pre-gastrula [30, 114] but not post-gastrula stages [55],

suggesting Wnts mediate the initial choice between these

fates before gastrulation. Indeed, Wnt ligand expression

and nuclear b-catenin are found in the lateral epiblast, but

absent from the medial, neural-specified epiblast at blastula

stages [114, 115, 172]. Furthermore, in Xenopus, inhibition

of Wnt signaling causes a strong expansion of neural plate

markers at the expense of NC and placodal markers. Yet,

upregulation of canonical Wnt signaling interferes with

neural induction, and this activity can be separated from

Wnt-mediated NC induction [107].

In Xenopus animal cap assays, addition of BMP antag-

onists such as Chordin or Noggin is sufficient to induce

neural markers (the animal caps are said to be ‘‘neural-

ized’’). To launch and maintain NC markers in this assay,

caps must first be neuralized and then treated with FGF or

Wnt agonists, supporting a potential shared requirement for

BMP antagonism. However, BMP antagonism seems to

behave differently toward markers of neural and NC;

inhibition of BMP signaling can induce ectopic neural and

NC markers prior to the blastula stage, but inhibition at

early gastrula stages only generates ectopic NC [173].

Similarly, inhibition of BMP signaling in lateral ectoderm

of the chick at gastrula stages can induce ectopic NPB and

NC markers [174], but not neural markers [169]. Interest-

ingly, BMP ligands are expressed throughout the epiblast at

blastula stages [132, 175], despite the seeming requirement

for BMP inhibition to initially promote both neural and NC

fates. Perhaps signaling at the blastula stage in chick is

primarily utilized to maintain the pluripotency of the epi-

blast, similar to the situation in the mouse (discussed

below).

Early signaling insights from mouse studies

Although the BMP, Wnt, and FGF signaling pathways are

needed to establish cell fates at gastrula and neurula stages,

studies of mouse embryonic stem (ES) cells (derived from

the inner cell mass of the blastocyst) and epiblast stem cells

(EpiSCs) suggest dynamic and temporally segregated roles

earlier in development. The FGF/Erk signaling cascade

must be inhibited to allow self-renewal and pluripotency in

mouse ES cells, with activation of the pathway driving

them towards differentiation (summarized in [176]). Along

with Erk inhibition, GSK inhibitors are required to retain a

pluripotent state, but this activity seems to be independent

of the Wnt pathway. Alternatively, leukemia inhibitory

factor (LIF) and Bmp4 are capable of maintaining mouse

ES cells in an undifferentiated state. Autocrine Fgf4/Erk

signaling appears to push mouse ES cells towards differ-

entiation [177] and Erk signaling seems to be necessary for

their adoption of the neural fate [170], but an in vivo study

of mouse development suggests FGF signaling is not

necessary for neural induction [178]. Studies of earlier

development support an endogenous role for BMP signal-

ing [178] and FGF/Erk inhibition [179] in maintaining

pluripotency of intact embryos, suggesting the initial dif-

ferentiation activity of FGF may be sufficient to establish

the competence of the epiblast for neural development. In

support, the addition of exogenous FGF ligands is essential

for the self-renewal and pluripotency of EpiSCs (derived

from the gastrula epiblast), with inhibition of the FGF/Erk

signaling leading to differentiation [180]. This is in stark

contrast to mouse ES cells where FGF/Erk signaling pro-

vides the opposite instructions. Indeed, FGF signaling in

EpiSCs actually serves to inhibit neural induction [181].

Together with ES cell studies, these findings suggest FGF

has an initial role in epiblast formation, but then serves to

maintain pluripotency of the epiblast [182]. These chang-

ing roles of FGF signaling caution us to consider temporal

differences in cellular responses and underscore the

dynamic nature of signaling pathways.

Human neural crest development

Advancing our limited understanding of human NC

development will surely improve our capacity to address

the many human maladies associated with improper NC

development. Model organisms have provided invaluable

information on NC development and while many mole-

cules and processes are conserved (as described above), the

deviations that are present make it imperative to specifi-

cally study human NC biology. The morphology of early

human NC development has been depicted from careful

histological analysis [183]. An extensive molecular pro-

filing study was performed on cell lines derived from

human neural tube explants, presumed to be NC, and

indicates the human NC shares many markers with stem

cells. Additionally, the study suggests conservation among

NC cells of the chick and mouse, but also points to unique

traits in the human NC [184]. More recently, a battery of

NC markers were analyzed in cranial and trunk regions of

intact early human embryos (Carnegie stages 12–18),

confirming a broad conservation of expression profiles with

model organisms [185]. This study identified Pax3, Sox9,
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and Sox10 expression in pre-migratory NC at early stages

of caudal trunk development with Ap2, Pax7, Sox9, and

Sox10 expressed during early migration at more anterior

locations. Of note, HNK-1 identified few migratory NC and

while p75 recognized many more, it only labeled a subset

of NC cells. More importantly, p75 also labeled many non-

NC cells. This is particularly relevant, given the broad use

of these two markers amongst stem cell biologists (see

below).

Given the obvious experimental limitations and restric-

tions of studying early human development, human

embryonic stem cells (hESCs) provide an excellent alter-

native to study the human NC. While it is difficult to argue

how close this system replicates embryonic development, it

does have the capability to challenge the potential of cells

in many different contexts and to expose used mechanisms

and restrictions. hESCs can be induced to form NC-like

cells capable of differentiating into nearly all known NC

derivatives. These progenitor cells have been generated by

several different protocols in varying culture conditions

[186–198]. Initial work relied on stromal cell co-cultures

[186, 188, 191], and later progressed to derivation from

embryoid bodies [187, 198] or neurospheres [192, 193,

196]. Cleaner and more efficient protocols have been

recently reported to derive NC from hESCs in cultures of

adherent cells in serum-free defined media, without com-

plex intermediary structures [190, 194, 197].

Culture density of hESC was reported to alter neural and

NC formation in a differentiation protocol including FGF2,

Insulin, and gradual exposure to both BMP and Nodal/

Activin inhibition (Noggin and SB431542) [190, 194].

Another study demonstrated that both BMP and Wnt sig-

naling were necessary for NC markers in cells derived from

neural rosettes, but it was unclear whether these signals

were required for the initial marker expression, or for their

maintenance and the generation of derivatives [193]. In

several of these pioneering studies, HNK-1 and p75 were

used to screen for NC progenitors, but recent findings

highlight complications in the use of these markers. In the

human, p75 marks only subsets of NC and additionally

labels many non-NC cells, while HNK-1 labels a smaller

fraction of NC [185], and in at least one study, their use

was shown ineffective to discriminate between NC and

non-NC [193]. Still, HNK-1-positive, p75-positive cells

induced from hESCs do exhibit the capacity to generate an

array of derivatives characteristic of the NC. In some of

these studies, NC-like cells arise from Pax6? neural pre-

cursors, while in others, an alternative origin has been

proposed. Yet, no studies have addressed their possible

equivalence or distinct differentiation potential. An

intriguing recent study reports a direct protocol for the

generation of NC progenitors from hESCs in 12–14 days

using a GSK3-b inhibitor (BIO) to activate canonical Wnt

signaling, Noggin to inhibit Smad1/5/8 signaling, and

SB431542 to inhibit Smad2/3 signaling [197]. Interest-

ingly, removal of Noggin has no effect, perhaps owing to

the low level of basal Smad1/5/8 activation, but addition of

BMP4 suppresses the generation of these cells, suggesting

high levels of BMP/Smad signaling are not conducive to

the formation of NC-like cells from hESCs. These condi-

tions mimic some of those currently thought to induce the

NC in the model organisms studied, and underscore the

value of continued research in NC induction. Reciprocally,

the study of hESC biology will undoubtedly unveil exciting

new insights into the signaling events in NC development

in vivo.

Fig. 3 Temporal and spatial participation of signaling molecules

involved in Xenopus neural crest induction. a Timeline of signaling

pathway activation and requirement in early NC development. Closed
arrows/lines indicate activation and requirement in NC tissues.

Dotted lines indicate activation in NC tissues, but requirement is

unknown. BMP/Smad signaling must be inhibited during gastrulation,

but activated upon neurulation. The specific stage when Smad

signaling first becomes activated in the NC has not been determined.

FGF/Erk signaling is activated throughout early NC development, but

has only been functionally implicated during early gastrula stages [49,

50]. Wnt/b-catenin signaling is thought to be required at all stages of

early NC development, but becomes more strongly activated by

neurulation [31]. The precise time when Notch is required is still

debated, but may play a role in the initial induction during

gastrulation. b Spatial activation of BMP, FGF, Wnt, and Notch

signaling during Xenopus gastrulation and neurulation. BMP/Smad,

FGF/Erk, and Wnt/b-catenin activation based on data from [199,

200]. Notch/Delta activation inferred from requirements in germ layer

segregation and NC development [8, 12, 201]. Overall, spatiotempo-

ral activation of these pathways is conserved between Xenopus and

zebrafish. c Spatial expression and participation of signaling mole-

cules in Xenopus neural crest induction at the gastrula stage. Diagram

corresponds to dotted box of stage 10 gastrula in b. Molecules in bold

have support from multiple studies. Solid lines indicate known

relationships, dotted lines indicate potential relationships. NC induc-

tion results from the combined action of Wnt/b-catenin, FGF, Indian

Hedgehog, and non-canonical Wnt signaling. Fgf8a is thought to

regulate the expression of Wnt8 in the dorsolateral marginal zone

(DLMZ), but may signal to the prospective neural crest itself. Wnt8

and Wnt3a signaling from the DLMZ activate canonical Wnt

signaling in the prospective neural crest. Multiple agonists and

antagonists of BMP and Wnt signaling are expressed in the Organizer,

DMZ, and DLMZ and function in dorsal–ventral and anterior–

posterior patterning, and these molecules likely also participate in NC

induction (dotted line). Expression of other potential signaling

molecules and regulators is presented. See main text for details on

the participation of individual signaling molecules. d Participation of

signaling molecules in the maintenance of NC progenitors in Xenopus
neurulation. Diagram corresponds to section at dotted line in stage 14

neurula in b. NC maintenance requires activation of Smad1/5/8, Wnt/

b-catenin, Notch/Delta, Indian Hedgehog, and Endothelin-A signal-

ing. BMP and Wnt signals are likely mediated by Bmp4, Bmp7,

Wnt1, and Wnt8, expressed in the neural folds upon neurulation.

Additionally, Wnt8 is present in the paraxial mesoderm and Wnt3a in

the neural plate. Notch signaling is thought to operate both by

regulating Bmp ligand levels and leading to the expression of NC

specifiers. See main text for details on the participation of individual

signaling molecules. Expression data gathered from references in text

and from http://www.xenbase.org

b
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Summary of inductive signals

As we learn more about the molecular events leading to the

specification of the neural crest, we unveil subtleties in the

induction mechanism employed by each organism.

Graphical summaries of the spatiotemporal activation of

signaling pathways and participation of signaling mole-

cules are presented for the two most extensively studied

organisms, Xenopus (Fig. 3) and chick (Fig. 4). Taking the

information from these two models and integrating findings

from zebrafish and mouse, an overall theme of neural crest

induction has emerged. The initial induction of the neural

plate border appears to involve signaling events from the

blastula to the gastrula stage, with continued signaling

taking place during neurulation to maintain neural crest

progenitors and bring about the expression of neural crest

specifiers. In this model, FGF and Wnt signaling are

required for the initial phase of neural crest induction with

Wnt, BMP, and Notch signals acting later to maintain

neural crest development. A simplified model is presented

in Fig. 5.

The first phase requires at least a partial attenuation of

the BMP/Smad signaling pathway, but by neurula stages

BMP signaling must be activated. BMP inhibition is crucial

for both neural and neural plate border specification, and

might be regarded as a required step in establishing the

competency of the prospective ectoderm. BMP attenuation

is likely achieved though multiple redundant methods,

including the limited expression of BMP ligands, the

activity of secreted BMP antagonists (Chordin, Noggin,

and others), and FGF/MAPK-mediated intracellular Smad

inhibition. The activation of BMP signaling at neurula

stages may be temporally regulated by Wnt signaling.

Additionally, the canonical Wnt signaling pathway must be

activated within neural crest progenitors themselves and

throughout early neural crest development. Analogous to

other developmental processes, Wnt signaling is capable of

Fig. 4 Temporal and spatial participation of signaling pathways

involved in chick neural crest induction. a Timeline of signaling

pathway activation and requirement in early NC development. Closed
arrows/lines indicate activation and requirement in NC tissues.

Dotted lines indicate activation in NC tissues, but requirement is

unknown. Smad1/5/8 signaling is active in the entire epiblast at

blastula stages, but is inactivated by gastrulation [75]. Signaling

becomes active with the expression of NPB markers, and remains

active through to migration. Erk signaling is also active in most of the

epiblast at blastula stages, and is required for neural induction until

gastrulation. A requirement for FGF/Erk signaling in NC induction

was only demonstrated during gastrulation. Erk signaling remains

active in the NPB and NC tissues through to migration, but is no

longer required for NC development (gray line). Wnt/b-catenin

signaling is thought to be necessary for all stages of early NC

development. A requirement for Notch/Delta signaling was demon-

strated at mid-neurula stages. b Spatial activation of BMP, FGF, Wnt,

and Notch signaling during chick gastrulation and neurulation. BMP/

Smad activation based on [76]. FGF/Erk activation based on [76,

128]. Wnt/b-catenin activation inferred from expression of agonists

and antagonists, and functional requirements for Wnt signaling.

Notch/Delta activation is based on expression of molecules and

functional requirements [154]. c Spatial expression of relevant

signaling molecules and requirements for chick neural crest induction

during gastrulation. Diagram corresponds to section at dotted line HH

3? gastrula in b. Functional studies have demonstrated a requirement

for FGF/Erk and Wnt/b-catenin signaling, but the participation of

specific signaling molecules has not been challenged. The spatial

expression of some potential signaling molecules is presented.

Multiple FGF and Wnt agonists and BMP and Wnt antagonists are

expressed in the node/primitive streak, but it is unclear whether these

molecules can diffuse the distance to influence the prospective NC

tissue (dotted arrow). d Spatial expression and participation of

signaling molecules and pathways in the maintenance of NC

progenitors during chick neurulation. Diagram corresponds to section

at dotted line in HH 6 neurula in b. Smad1/5/8 and b-catenin are

likely activated by Bmp4, Bmp7, Wnt1, and Wnt3a expressed in the

neural folds and adjacent NNE. Wnt6 in the NNE has also been

implicated in NC development, but may act through the non-

canonical Rho/JNK pathway. Notch signaling likely participates

indirectly by regulating Bmp4 expression. Spatial expression of other

potential signaling molecules is presented. Expression data gathered

from references in the text and from http://geisha.arizona.edu/geisha

b

Fig. 5 A model of signaling participation during the two phases of

neural crest induction. In this figure, we present a simplified model of

the major signaling events thought to occur in NC induction, drawing

on evidence from all four of the organisms discussed. Since the

precise time, source, and cross-regulation between pathways vary

between species, the model organism is noted where a specific

interaction or activity is known to occur. X Xenopus, C chick,

Z zebrafish, M mouse. During gastrulation, FGF and Wnt signaling

are both known to induce the neural crest at the prospective NPB,

activating the expression of NPB specifiers. Xenopus studies demon-

strate that FGF regulates Wnt signaling during this first phase, but

evidence from chick and Xenopus suggests FGF acts directly as well.

BMP signaling must be at least partially inhibited for this first step,

and FGF participates in BMP attenuation on multiple levels. The

transition to the second phase involves the activation of BMP

signaling, and research on chick explants suggests Wnts may

participate in this BMP activation. Since FGF contributes to BMP

antagonism before and during gastrulation, the restriction of FGF

activity or insensitivity of the NPB to FGF signals also likely plays a

role in this transition. In the second phase, BMP and Wnt signaling

converge to maintain the expression of NPB specifiers and initiate the

expression of NC specifiers. Notch signaling is known to refine the

domain of BMP activity, but some evidence suggests Notch acts

directly on the neural crest population as well. Throughout later

neural crest development, these signaling pathways continue to

participate in migration and differentiation
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mediating cell-fate decisions, and likely directs the choice

between neural and neural crest progenitors. Notch also

promotes neural crest development over neural cell fates at

multiple points in development, but the precise mecha-

nism(s) remain to be understood. Lastly, a functional FGF

signaling pathway is necessary for the initial induction of

neural plate border specifiers. However, FGFs are capable

of regulating Wnt and BMP signaling and are crucial for

several other developmental events (including neural

induction, mesoderm development, gastrulation move-

ments, and early epiblast pluripotency and competence), all

of which could influence NC induction. In the years to

come, the real challenge will be to understand the cross-

regulation and combinatorial inputs of these and other

signaling pathways, their precise temporal effects, and how

they integrate to establish the neural crest program. Since

recent studies have found that the NC is specified at pre-

gastrula stages, a more thorough analysis of these signaling

pathways is called for at early stages of development to

understand the complete transcriptional cascade of events

that enable the amazing plasticity of the neural crest.
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