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Abstract

Integrating gene regulatory networks (GRNs) into the classification process of DNA microarrays is an important issue in
bioinformatics, both because this information has a true biological interest and because it helps in the interpretation of the
final classifier. We present a method called graph-constrained discriminant analysis (gCDA), which aims to integrate the
information contained in one or several GRNs into a classification procedure. We show that when the integrated graph
includes erroneous information, gCDA’s performance is only slightly worse, thus showing robustness to misspecifications in
the given GRNs. The gCDA framework also allows the classification process to take into account as many a priori graphs as
there are classes in the dataset. The gCDA procedure was applied to simulated data and to three publicly available
microarray datasets. gCDA shows very interesting performance when compared to state-of-the-art classification methods.
The software package gcda, along with the real datasets that were used in this study, are available online: http://biodev.cea.
fr/gcda/.
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Introduction

Very often, biologists and bioinformaticians have prior

knowledge about the relationships that exist between genes under

specific biological conditions. These structured priors are usually

represented by a graph, called a gene regulation network (GRN)

throughout this paper, in which the nodes are the genes and the

edges represent interactions between genes. Integrating such a

structured prior knowledge into the classification of microarray

data is an important bioinformatics research field and has recently

been addressed in the literature (for example, [1–4]). The

properties of the Laplacian’s graph eigen values are used by

Rapaport et al. [2] and Li et al.[1] to compute a classifier intended

to be ‘‘smooth’’ across the graph. Zhu et al. [3] encodes the graph

by means of additional specific constraints in the support vector

machines (SVM) [5] optimization problem (in a way that is also

suggested by Rapaport et al. [6]). Binder et al. [4] proposed that the

graph be incorporated in a boosting framework. All of these

methods pursue the same general objective: two variables

connected in the GRN must have close weights in the classification

function. This type of constraint yields a better interpretability of

the resulting classifier, but not necessarily better performance.

In this paper, we propose a new method - called graph constrained

discriminant analysis (gCDA) - , which is a constrained version of the

discriminant analysis [7], with constraint depending on information

that is represented by one or more graphs. Here, we present a fully

operational and validated method that has resulted from preliminary

works reported in [8]. In the discriminant analysis (DA), the decision

function involves the inverse of the within-class covariance matrix. In

the high-dimensional setting (n%p) considered here, the usual

maximum likelihood covariance estimator is singular. As a result, the

use of shrinkage estimators for the covariance matrix is needed, as

described in the regularized discriminant analysis (RDA) [9]. Our

approach is two-fold: first, the within-class covariance estimation is

shrunk by integrating the information contained in GRNs. Then, the

new estimator is entered into a DA framework. The underlying

motivation for this approach is to improve the accuracy of the

predictions, at least when compared to RDA.

The present work is structured as follows: the first section is

dedicated to the presentation of gCDA and of the state-of-the-art

methods to which it is compared. The second part is devoted to

the validation of gCDA on a simulated dataset and three publicly

available gene expression microarray datasets [10–12].

Methods

The integration of a graph into the classification process of

microarray data requires that GRNs describing the dependencies

between genes and a given microarray dataset are considered. The

structure of these two objects is radically different, and the

challenging task we attempt to overcome in this paper is to

combine these two sources of information.

Notations
Let x be a n|p matrix containing the expression profiles of the

n individuals distributed in two classes. Each individual is
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associated with a response variable. In this paper, we evaluate only

binary classification problems: an individual from class 1 will have

a response variable equal to y1~{1 and equal to y2~z1
otherwise. The set of the individuals belonging to class k is denoted

by Ck. Let Xk,k~1,2 be the two p-variate random variables that

model the expression of the p genes in each class. The means and

covariance matrices of these variables will be denoted as mk and

Sk, respectively. Moreover, the variables Xk,k~1,2 are supposed

to be multivariate and following Gaussian distributions. Therefore,

an individual from the dataset, x, is a realization of a multivariate

Gaussian mixture variable of density f ~
P

k pkN (mk,Sk), with pk

representing the probability that an individual belongs to class k.

We consider finite, undirected graphs to model GRNs. A graph,

G, is an object defined by the set of its edges, E, and the set of its

vertices, V. A vertex represents a gene. Hence, V contains p
vertices. Let w be the function w : V|V? 0,1f g such that w(j1,j2)
is 1 if there is an edge between vertices j1 and j2 and 0 otherwise.

The Laplacian of a graph G, denoted by LG, is a semi-definite,

positive, p|p matrix whose coefficients are:

LG½ �(j1,j2)~

{w(j1,j2) ,if j1=j2

dj ,if j1~j2~j

8><
>: ,

with dj representing the connectivity degree of vertex j. Thus,

each null term in LG corresponds to an absence of an edge in G.

Related work
Rapaport et al. [2] proposed that a spectral transformation be

applied to the Laplacian LG. This gives a semi-definite, positive

matrix, which is then used as a kernel matrix that is loaded into

SVM. The authors of this work do not report any improvement of

the performance of classification, but they suggest that this

approach results in better interpretability of the classification

model.

In a more recent study [6], Rapaport et al. integrate the given

graph by adding constraints to the classical SVM optimization

problem. These additional constraints encode the fact that two

adjacent variables must have close weights in the final model. This

idea is further developed by Zhu et al. [3], who proposed a method

called network-based (NB)-SVM. This approach aims to solve the

following optimization problem:

min
b0,b

PN
i~1

xizl
P

j1*j2

M(j1,j2)

Vi~1,:::,N,yi(b0zxT
i b)§1{xi

Vj1*j2,
bj1

wj1

�����
�����ƒM(j1,j2)and

bj2

wj2

�����
�����ƒM(j1,j2),

with M(j1,j2)~ max
bj1

wj1

����
����, bj2

wj2

����
����

� �
, where xi the expression

profile of the ith individual and wj a weight that is dependent on

the degree dj of gene j in the graph G. The values proposed by [3]

are wj~1, dj or
ffiffiffiffi
dj

p
. In the comparison presented in our paper,

we considered the case wj~dj .

The two methods described above are intended to solve the

issue that variables connected in a given graph must have close

coefficients in the decision function. This type of constraint clearly

helps the interpretation of the resulting classifier, but it is not

specifically designed to improve the performance of the classifi-

cation, even if Zhu et al. [3] show results on simulated data that

support such an improvement. By contrast, the method proposed

here is explicitly designed to improve the classification accuracy.

In a nutshell, we propose to regularize the estimation of the

covariance matrix by integrating information contained in the

GRN(s). The resulting estimator can then simply be used in the

context of DA. As described by [2], the key element of our

integration procedure is the p|p Laplacian matrix of G. As we will

see in the section describing the Gaussian graphical model, the

Laplacian matrix can be considered to be homogeneous to the

inverse of a covariance matrix and will be used in our shrinkage

target.

Discriminant Analysis
DA is a simple, yet very popular, classification method [7,13].

To implement gCDA, we focused more particularly on the

Fisher’s DA. This analysis aims to first determine a linear

transformation, defined as V, of the dataset that is able to

maximize the between versus within-class covariance ratio:

V~ arg max
v[Rp

vT Sbv

vT Swv
,

with Sw~p1S1zp2S2, the within-class covariance matrix and

Sb~p1p2(m1{m2)(m1{m2)T , and the between-class covariance

matrix.

Considering that there are only two classes, the transformation

V defines a 1-dimensional space: the discriminant axis. Once an

individual z[Rp is projected onto this discriminant axis, one can

predict its class based on the following Bayesian decision function:

d : z. ln
P(z[C1jVT z)

P(z[C2jVT z)
, ð1Þ

if d(z)w0, it is decided that z belongs to class 1. Otherwise, z is

attributed to class 2. The Gaussian assumption helps substantially to

simplify the expression of d because VT z is the realization of either a

Gaussian variable N (m1,s2
1) or N (m2,s2

2), with probabilities equal

to p1 and p2, respectively. This formula (1) can be rewritten as:

d(z)~ ln
p1s2

p2s1

� �
z

(VT z{m2)2

2s2
2

{
(VT z{m1)2

2s2
1

: ð2Þ

It was shown (for example, [14]) that the unknown parameters of d,

defined in the equation (2), can be re-expressed as a function of mk, Sk:

V~S{1
w (m1{m2)~ p1S1zp2S2ð Þ{1

(m1{m2)

sk~VT SkV and mk~VT mk, k~1,2:

Moreover, we can consider the linear and quadratic cases in the

DA framework:

Graph Integration for Microarray Data Analysis
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N in the linear case, S1 is supposed to be equal to S2. If this is

the case, then d is a linear function of the components of z.

N in the quadratic case, S1 and S2 are supposed to be

different from each other, and, as a result, d is a quadratic

function of the components of z. Moreover, the quadratic case

allows us to consider situations in which the GRNs from the

two classes are different. In that case, we can integrate one

GRN per class. Such an interesting property cannot be found in

the methods presented in the literature [2],[1],[3], although it

could be of interest to the biologist. Indeed, for example, new

approaches have been developed with the purpose of estimating

differences between GRNs that exist between two classes of

patients [15]. Plus, the fact that our method is able to integrate

one GRN per class is of interest in the cases where unexpected

differences in phenotype are observed (e.g. some types of cancer

with similar excision histology but different survival times). In

those cases, differences in the connectivity of the GRN might be

expected and may help in building a two-class predictor.

Conversely, a better classification rate obtained when using two

GRN variants could bring a validation of their biological

relevance.

Due to the n%p setting, the estimation of the covariance matrix

used in the discriminant analysis has to be regularized. In gCDA,

the GRNs are integrated into the covariance matrix estimator

using Gaussian graphical models, hence realizing at the same time

the needed regularization.

Gaussian Graphical Models
The theory of Gaussian graphical models [16] (GGM) allows

for the description of the dependencies between variables by a

graph and the formulation of correspondences between the

graph and the covariance matrix of the considered Gaussian

variables. Let X be a random, multivariate, Gaussian variable

with mean m and covariance matrix S. According to GGM, two

variables, Xj1 and Xj2 , are independent conditionally to the

remaining variables if S{1
� �

j1,j2
~0. If the graph G describes the

conditional independence between variables, then S has to

respect the constraint:

j1 6*j2u S{1
� �

j1,j2
~0: ð3Þ

With this property in mind, we propose the following shrinkage

target, which integrates the a priori information encoded in G:

S{1
G ~LGzIp, ð4Þ

where Ip is the p|p identity matrix and the Laplacian matrix LG
is a semi-positive matrix respecting (3).

Integrating the GRN
In the n%p case, the empirical covariance matrix, S, is an

unbiased estimator of the covariance matrix, but it shows poor

performance with regard to its variance.

Guo et al. [17] propose to regularize this estimator in the

following way: bSS~aSz(1{a)Ip. Schäfer et al. [18], propose to

replace Ip with the so-called ‘‘target matrix’’ and provide a closed-

form expression for the parameter a. Our method is inspired by

those ideas: in gCDA, we use the model (4) to build our own target

matrix SG~ LGzIp

� 	{1
, which in turn is used to regularize the

estimation of the covariance matrix

bSS~aSz(1{a)SG:

The value of the parameter a is determined with a cross-

validation procedure. Let us note thereafter ~SSw the estimation of

the within-class covariance matrix we propose.

In the Linear gCDA, each class is supposed to have the same

covariance, and there is only one GRN:

~SSw(a)~aSwz(1{a)SG,

with Sw representing the empirical, within-class covariance

matrix.

In the Quadratic gCDA, each class is characterized by a

different GRN:

~SSw(a1,a2)~
n1

n
a1S1z(1{a1)SG,1ð Þz n2

n
a2S2z(1{a2)SG,2ð Þ,

with SG,k and Sk representing the target matrix and the empirical

covariance matrix for class k~1,2, respectively. The quadratic

gCDA allows for the integration of two graphs, corresponding to

two biological situations, into a classification process.

Results

In this section, we apply gCDA to simulated and real datasets.

The performance is evaluated in a Monte Carlo cross validation

(MCCV) framework: The dataset is randomly split into a training

dataset (two thirds), and the rest of the dataset is used as a test

dataset. The whole procedure is iterated 100 times. The tuning

parameters (e.g. a or (a1,a2) for gCDA) of the considered

Figure 1. Graph used to generate simulated data: an Erdös-
Rényi graph.
doi:10.1371/journal.pone.0026146.g001
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classification methods are computed with an internal, 10-fold cross

validation. We compared gCDA to the network-based support

vector machines (NB-SVM) presented by Zhu et al. and to the

reference method they considered [3], namely linear program-

ming (LP)-SVM [19]. Rapaport’s method is not considered in the

comparison because the authors stated that it does not perform

better than a regular SVM classification. We also computed the

performance of the regular SVM method (as implemented in the

R package e1071 [20]) and the RDA (implemented in the package

rda [21]).

The results presented here were obtained from simulated and

microarray data. In the latter case, the performance assessment

and comparisons were performed while varying the method to get

the GRN and the number of GRN nodes.

Results obtained on simulated datasets
To demonstrate the performance of the presented methods, we

generated simulated data. We used Erdös-Rényi’s graphs (see

Figure 1) to model the interactions between genes, which allows

loops, hubs, and multiple connected components. We used the

following algorithm:

(i) compute one Erdös-Rényi graph G for both classes or two

graphs G1 and G2 (one per class),

(ii) for each graph, use the model given in equation (4) to build a

covariance matrix,

(iii) and model the two classes by random multivariate Gaussian

variables X1*N (0,S1) and X2*N (m,S2). m represents the

mean difference between the two datasets.

A comparison of the results obtained from simulated data for

gCDA, NB-SVM, RDA, and SVM is presented in Table 1. The

key result of these simulations is that the integration of the known

model for the covariance matrix greatly improves the classification

performance (see the performance of RDA compared to the results

of gCDA). Finally, the performance is always better for gCDA

than NB-SVM, the other method that integrates the known graph.

To explore the limits of gCDA, we also run the linear version of

the method on a simulated dataset containing p~1000 variables

and n~100 individuals split into two classes. The computation

times of a single MCCV iteration lasted 667.82 s for gCDA

against 12.65 s for SVM (on a personal computer with a processor

Pentium(R) Dual core CPU E5800 3,20GHz62 and 3.42 GB

RAM). It has to be stated that the methods LP-SVM and NB-

SVM could not be used on this dataset due to limited computer

memory. The results are quite interesting, since SVM (86% of

mean good classification rate) performs as well as gCDA (87%),

whereas RDA performs as bad as a random assignment of the

classes (47%). It shows that the regularization of the estimation of

covariance matrices we apply in gCDA is more efficient than the

one in RDA.

Additionally, Figure 2 depicts the values of the parameter a that

was selected by cross validation: the selected values are close to 0,

which reveals that the graph was taken into account in the

estimation of the covariance matrix.

The classification performance of gCDA also depends on the

quality of the integrated graph.

We empirically observed the evolution of gCDA’s performance

as a function of the quality of the integrated graph on simulated

data. Starting with the graph that was used to simulate the dataset,

we generated a set of gradually different graphs by randomly

reassigning some of its edges to different vertices. The difference

between two graphs is calculated as the number of different

vertices between the union of the two graphs and their

intersection, which corresponds to the structural Hamming

distance [22] because the considered graphs are undirected. The

results are shown on Figure 3. Although the best results are

obtained with the real graph, our method performs robustly in

spite of misspecified edges in the integrated graph. Moreover, we

see that gCDA maintains its performance at least at the same level

as the SVM’s, even when the graph is incorrectly specified.

Table 1. Results using simulated datasets.

Setting p RDA SVM LP-SVM NB-SVM gCDA

S1~S2 p~50 66.12
(13.79)

80.32
(6.55)

69.97
(10.04)

70.24
(10.54)

88.74
(5.07)

p~100 76.00
(21.37)

92.59
(3.58)

70.91
(11.90)

74.76
(9.70)

96.56
(2.81)

p~200 65.26
(19.36)

81.24
(7.21)

70.56
(13.10)

67.06
(8.79)

93.38
(4.13)

S1=S2 p~50 71.44
(12.90)

77.50
(6.43)

71.97
(9.09)

70.94
(9.06)

80.29
(6.24)

p~100 70.59
(18.73)

84.47
(5.76)

71.59
(9.97)

70.47
(9.79)

86.65
(5.92)

p~200 72.35
(21.70)

87.50
(5.44)

73.65
(12.57)

73.74
(11.77)

92.56
(4.66)

Mean of the good classification percentage (and standard deviation) over 100
MCCV iterations. Results obtained using simulated datasets. p is the number of
variables. The number of individuals is set to n~100. We used the linear version
of gCDA when S1~S2 and the quadratic version when S1=S2 .
doi:10.1371/journal.pone.0026146.t001

Figure 2. Histogram of the optimal values of a. These values were selected by 10-fold cross validation obtained on simulated data (linear
setting, p~200 and n~100).
doi:10.1371/journal.pone.0026146.g002

Graph Integration for Microarray Data Analysis

PLoS ONE | www.plosone.org 4 October 2011 | Volume 6 | Issue 10 | e26146



Results obtained from gene expression microarray
datasets

To evaluate the performance of gCDA with real data, we chose

three gene expression microarray datasets. The characteristics of

the three datasets are summarized in Table 2. These datasets are

available from the Gene Expression Omnibus (GEO) public

database [23] and pertain to colon [10], prostate [11] and lung

[12] cancers.

When dealing with gene expression microarray datasets

obtained from specific tissues and under particular experimental

conditions with the gCDA method, two major issues must be

pointed out: 1) the graph describing the various interactions

between genes is not known and has to be inferred, and 2)

differences between the covariance matrices of the two classes

should be evaluated. In the results reported for the real data, we

investigated pragmatic choices. We selected two recognized

approaches to infer the GRNs to be integrated in the classification

and we also built GRNs based on reported interactions gathered in

the Kyoto Encyclopedia of Genes and Genomes (KEGG) [24]

database. Namely, the three sources we used to get GRNs are

N ARACNE [25], a method based on the computation of

mutual information, implemented in the package minet [26],

N ridge.net [27], based on the estimation of the partial

correlation matrix, implemented in the package parcor [28],

N and the KEGG pathway hsa05200, that pertains to the

biological samples we considered. The network was extracted

thanks to the Bioconductor library KEGGgraph [29].

For the two first kinds of GRN mentioned above, we inferred

the graphs based on a dataset independent from the one used for

the classification process.

These methods impose limits on the set of variables to be

considered down to several hundreds. Therefore, we selected a

restricted set of genes corresponding to the KEGG pathway for

human cancer (hsa05200). To avoid any bias in the classification

process, we never used the same dataset to compute the GRNs and

to measure the classification performance. We considered a couple

of distinct datasets (see Table 2) corresponding to the same tissue

and pathology: one dataset was used to infer the graphs and the

other was used to build the classification models. To test the

hypothesis that several covariance matrices are different, we used a

statistical test adapted to high dimensional datasets presented in

[30]. We used simulated data to ensure that this test is, indeed,

able to distinguish between situations where the covariance

matrices are equal or different. The results are not shown, but

the reader is encouraged to run the example implemented in the

package gcda. This test was applied to the three datasets; the

obtained p-values are summarized in Table 3. It appears that the

quadratic version of gCDA has to be applied only to the dataset on

prostate cancer.

When necessary, we re-annotated the probe sets to associate

them with a corresponding specific gene (essentially for Affymetrix

chips). We used the UCSC database (http://genome.ucsc.edu/,

March, 2006 (NCBI36/hg18)). For each gene, we chose the probe

set whose position is the closest to the transcription initiation site.

When several probe sets were selected, the mean value of the

measurements was computed.

As shown in Table 4, gCDA’s performance - when coupled with

GRNs inferred with ARACNE - was always at least as good as the

performance of SVM with a linear kernel. More importantly,

gCDA always outperformed NB-SVM and RDA. The fact that

gCDA outperforms RDA is indeed very interesting: it shows that

the method we propose to regularize the estimation of the

covariance matrix is efficient even on real datasets, when the real

network is not known.

More importantly, we also assessed the way gCDA depends on

the information in the GRNs by integrating three different types of

GRNs: GRNs inferred with ridge.net or ARACNE and GRNs

extracted from the KEGG database. The comparison between the

obtained performance is presented on Table 5. This table shows

that the nature of the network integrated into the classification

thanks to gCDA has an interesting influence on the classification

performance. For the three real datasets we analyzed, the

Figure 3. Plot of the classification performance as a function of
the Hamming distance between the real graph and the graph
integrated in gCDA. For this part of the simulation study, the number
of variables is set to p~200 and the number of individuals to n~100.
doi:10.1371/journal.pone.0026146.g003

Table 2. Characteristics of the datasets.

outcome n1:n2 p Disease Reference Network inferred on

control/tumor 30:12 97 colon cancer [10] The rest of the original dataset

control/tumor 50:52 282 prostate cancer [11] Another dataset [31]

relapse/no relapse 69:69 325 lung cancer [12] Another dataset (GSE8332)

Summary of the characteristics of each of the datasets. nk ,k~1,2 represents the number of individuals in the class, k. The last column indicates whether the networks
are inferred on an independent part of the dataset or on another dataset. In both cases, the dataset used to compute the networks is never used in the classification
process.
doi:10.1371/journal.pone.0026146.t002
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performance yielded with the KEGG network matches the

performance obtained with one of the inferred networks for the

colon cancer dataset and the lung cancer dataset, but the top

performance is always achieved when using an inferred metwork.

It is not such an unexpected result, since KEGG reports multiple

types of gene interactions which are not necessarily relevant for

transcriptomic data. On the contrary, when inferring a graph with

ridge.net or ARACNE, the interactions are estimated directly on

gene expression datasets, hence resulting into graphs that are

much more in adequacy with the data.

Taken together, the results given in Table 4 and Table 5 show

that gCDA integrates successfully GRNs into the building of the

classification function. It appears to be robust enough to

compensate for errors in the graph. Those results also illustrate

the interest of choosing pertinent GRNs. Due to the integration of

the KEGG pathways, some variables had to be removed from the

analysis, which explains the differences between the two tables for

gCDA (ARACNE). In addition to these results, Table 6 presents

the edge differences between the three integrated GRNs for each

dataset.

To conclude this section, we report the results obtained by

applying gCDA to real microarray datasets while considering

more than 1000 genes. The R Bioconductor package KEGGgraph

was used to extract the extended version of the hsa05200 pathway

from KEGG. This pathway was integrated into the classification

process of lung and prostate cancer datasets. The colon cancer

dataset was not considered in this part of the analysis, since only

approximately 200 of its collection’s genes belonged to the

extended KEGG pathway. For the lung cancer dataset, there

were 1252 genes in common between the collection probe sets and

the extended KEGG pathway. For the prostate cancer dataset,

there were 1033 genes in common between the collection probe

sets and the extended KEGG pathway. We then applied linear

gCDA on these two real datasets. Table 7 shows the results of

these two experiments in terms of the mean of good classification

rate over 100 MCCV iterations. The results obtained in this high

dimensional setting raise two remarks. First, it is worth mentioning

that the comparison of the mean performance is always favorable

to gCDA. However, given the standard deviation, the difference

between gCDA and SVM performances may not be significant.

Second, the comparison between RDA and gCDA is remarkable.

Indeed, the sole difference between these two methods is that for

gCDA the within-class covariance estimation is shrunk by

integrating KEGG prior information. From Table 7, we can

observe a stable and significant improvement produced by the

incorporation of the KEGG pathway information.

Discussion

Performance of gCDA
In this work, we propose a binary supervised classification

algorithm of gene expression datasets that is able to integrate the

information contained in gene regulation networks. The perfor-

mance of gCDA is always equal to, or better than, classical SVM.

When compared to state-of-the-art methods that integrate a

graph, we show a significant improvement in classification

performance. This result holds true whether the underlying graph

is known, in the case of simulated data, or when the underlying

graph of regulation is inferred, in the case of real microarray data.

On real datasets, however, our method seems not to clearly

outperform SVM. However, the increase in performance from

RDA to gCDA, both methods based on discriminant analysis,

shows that the regularization of the covariance matrix we propose

is promising.

Choice of the graph integrated in gCDA
The pipeline proposed in this paper consists of two parts, the

graph inference, based on classical methods, and a second step

that relies on an original constrained classification algorithm.

These two parts raise two major issues. First, it must be noticed

Table 5. Performance of the considered classification
methods on three gene expression microarray datasets.

ridge.net ARACNE KEGG

Colon 67.857 (11.77) 70.357 (11.37) 66.143 (12.17)

Lung 59.413 (5.88) 56.457 (6.31) 56.37 (5.83)

Prostate 87.441 (6.09) 87.029 (5.40) 84.353 (6.78)

The graphs integrated in the classification methods NB-SVM and gCDA were
either inferred with two methods, ridge.net and ARACNE, or extracted from
KEGG. In this table are presented the mean (standard deviation) of the good
classification rate over 100 MCCV iterations.
doi:10.1371/journal.pone.0026146.t005

Table 3. Test on the covariance matrices.

Colon Lung Prostate

p-value 0.26 0.65 v 1e-3

We tested each dataset to determine whether the covariance matrices are
statistically similar. The test we chose is robust enough to handle instances in
which the number of variables is of the same order as the number of
individuals. The null hypothesis is ‘‘S1~S2 ’’. As a result, we rejected the null
hypothesis when the p-value was lower than the threshold of 0.05.
doi:10.1371/journal.pone.0026146.t003

Table 4. Comparison of gCDA’s performance with the
performance of three other classification methods.

gCDA RDA SVM NB-SVM

Colon 79.36 (9.63) 69.50 (13.62) 75.07 (9.87) 54.57 (22.83)

Lung 55.93 (6.00) 49.13 (6.68) 55.02 (6.12) 50.41 (6.09)

Prostate 87.10 (5.59) 64.88 (12.1) 88.62 (5.38) 56.12 (13.2)

Comparison of the performance of gCDA with the performance obtained with
RDA, SVM and NB-SVM. For NB-SVM and gCDA, we chose to integrate the GRNs
inferred with ARACNE. In this table are presented the mean (standard deviation)
of the good classification rate over 100 MCCV iterations.
doi:10.1371/journal.pone.0026146.t004

Table 6. Comparison of the integrated graphs.

# edges
in: G(R)\G(A) G(R)\G(K)

2 G(A)\G(K) G(R)|G(A) G(R)|G(K) G(A)|G(K)

Colon 35 2 6 315 158 344

Lung 263 62 18 3204 3311 1680

Prostate 69 4 19 1099 1300 1979

Comparison of the structure of the integrated graphs using ridge.net (G(R)),
ARACNE (G(A)) or KEGG (G(K)). The table contains the number of edges in the
intersection and the union. When two graphs were inferred, they were simply
merged into a unique graph.
doi:10.1371/journal.pone.0026146.t006
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that the graph describing the various interactions between genes is

not known. It has to be inferred from another dataset or from a

graph that has been extracted from referenced interactions

available on public databases. Second, it is usually not clear

whether the covariance matrices of the two classes are different or

the same.

These issues have not been addressed very often in the

literature. In the procedure proposed by Rapaport et al., Zhu

et al., Li et al. and Binder et al. [1–4] general GRNs are extracted

from public knowledge databases, such as KEGG and subse-

quently integrated into the classification process. This kind of

GRNs describes very general interactions between genes (like

promoter-regulee or protein-protein interactions) and their

adequacy to the biological process under study is difficult to assess

without a thorough study by a specialist. We showed on real

datasets that when a GRN extracted from a public database

(KEGG) is used within gCDA, the resulting classification is worse

than when inferred networks are used. We exemplified that one

has to be very cautious when choosing a GRN to integrate into the

classification process.

Linear vs Quadratic gCDA
To determine whether the covariance matrices of the two

classes are different, we propose to use a statistical test adapted to

high dimensional datasets presented in [30]. The result of this test

allows choosing between the linear or the quadratic version of

gCDA. The fact that it allows to integrate one GRN per class if

needed is a unique feature of our method compared to other

classifiers.

Impact of GRN integration
In our comparison, we restricted the reference methods to those

with a direct connection to the NB-SVM method (LP-SVM and

SVM) and to gCDA (RDA) to focus on how much the integrated

graph can improve the classification performance. Both the

interpretability and the performance of our classifier is clearly

not necessarily improved compared to the approach of Rapaport

et al., for example, probably because of the complexity of the

automatically inferred network. Apart from the fact that there may

be incorrect edges, another important feature of real networks is

that the weight associated to each edge is also unknown. gCDA

copes with this issue by assuming an arbitrary model between the

network structure and the weights. This characteristic may explain

why there is no definitely significant improvement over SVM in

our applications on real datasets. Future work will be dedicated to

the estimation of these weights. Nevertheless, our method still

shows promising classification performance on both simulated and

real datasets with various complexities.
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27. Krämer N, Schäfer J, Boulesteix AL (2009) Regularized estimation of large scale

gene association networks using gaussian graphical models. BMC Bioinformatics
10: 384.
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