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MRI-derived diffusion parameters in the human optic nerve
and its surrounding sheath during head-down tilt
Darius A. Gerlach 1, Karina Marshall-Goebel 1,2, Khader M. Hasan3, Larry A. Kramer3, Noam Alperin4 and Joern Rittweger1,5

More than half of astronauts present with significant neuro-ophthalmic findings during 6-month missions onboard the International
Space Station. Although the underlying cause of this Microgravity Ocular Syndrome is currently unknown, alterations in
cerebrospinal fluid dynamics within the optic nerve sheath may play a role. In the presented study, diffusion tensor imaging was
used to assess changes in diffusivity of the optic nerve and its surrounding sheath during head-down tilt, a ground-based model of
microgravity. Nine healthy male subjects (mean age ± SD: 25 ± 2.4 years; mean body mass index ± SD: 24.1 ± 2.4 kg/m2) underwent
5 head-down tilt conditions: −6°,−12°, −18°,−12° and 1% CO2, and −12° and lower body negative pressure. Mean diffusivity,
fractional anisotropy, axial diffusivity, radial diffusivity were quantified in the left and right optic nerves and surrounding sheaths at
supine baseline and after 4.5 h head-down tilt for each condition. In the optic nerve sheath, mean diffusivity was increased with all
head-down tilt conditions by (Best Linear Unbiased Predictors) 0.147 (SE: 0.04) × 10−3 mm2/s (P < 0.001), axial diffusivity by 0.188 (SE:
0.064) × 10−3 mm2/s (P < 0.001), and radial diffusivity by 0.126 (SE: 0.04) × 10−3 mm2/s (P = 0.0019). Within the optic nerve itself,
fractional anisotropy was increased by 0.133 (SE: 0.047) (P = 0.0051) and axial diffusivity increased by 0.135 (SE: 0.08) × 10−3 mm2/s
(P = 0.014) during head-down tilt, whilst mean diffusivity and radial diffusivity were unaffected (P > 0.3). These findings could be
due to increased perioptic cerebral spinal fluid hydrodynamics during head-down tilt, as well as increased cerebral spinal fluid
volume and movement within the optic nerve sheath.
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INTRODUCTION
Changes in visual acuity during spaceflight have been found to
affect ~ 29% astronauts during short-duration (~2 week) missions
and ~ 60% astronauts during 6-month missions on-board the
International Space Station (ISS). The hyperopic shift can be
transient or result in permanent degradation of visual acuity or
visual field loss.1 The underlying pathophysiological mechanism of
this Microgravity Ocular Syndrome (MOS) is currently unknown,2

however, altered cerebral spinal fluid (CSF) dynamics in the
subarachnoid space of the optic nerve (ON) sheath are
hypothesized to play a role.3 CSF surrounds the brain, spinal cord
and ON within the subarachnoid space and increased CSF
pressure or altered fluid dynamics can result in damage to the
ON and ON head, resulting in vision changes (Fig. 1).1, 2, 4

On a time-scale of minutes to hours, CSF pressure changes can
result from alterations in its formation or resorption, the latter of
which occurs primarily through the arachnoid granulations into
the dural venous sinuses in a pressure-dependent way.5, 6 In
addition, animal studies have found that a sizable amount of CSF
could also be extruded via cranial nerves into the lymphatic
system.5, 7–10 In mice, Furukawa et al. demonstrated lymphatic
pathways in the dura matter of the ON by immunohistochemistry
and electron microscopy.11 The link between intracranial, spinal,
and ON sheath CSF is likely not a simple circuit, but rather a
complex open system interacting with arterial and venous blood

as well as lymphatics. Accordingly, CSF fluid dynamics are largely
unknown, especially under microgravity conditions.3

Diffusion tensor imaging (DTI) is a valuable tool to assess the
ON and its surrounding sheath at early pathological stages of
various diseases before severe symptoms occur.12–14 By measur-
ing the signal loss due to proton spin random translational
motion, DTI can noninvasively examine microstructural changes
and the integrity of white matter. Molecular diffusion captured in
three dimensions provides information on both the orientation
and magnitude including the fractional anisotropy (FA, the shape
of diffusion), the mean diffusivity (MD, the magnitude of diffusion
averaged over all directions), the axial diffusivity (AD, the
magnitude of the main direction of diffusion) and the radial
diffusivity (RD, the magnitude of diffusion perpendicular to the
AD).
Several studies have found strong correlations between the

severity of glaucoma and a reduction in FA, as well as an increase
in MD in the ON.12, 13, 15 Additionally, AD and RD increased in the
patient group.12, 13 Patients with optic neuritis have been found to
have increased RD, MD, and decreased FA,16 with similar findings
reported in patients with multiple sclerosis.17 In retinitis pigmen-
tosa, higher MD, AD, and RD have been found compared to
healthy controls, as well as lower FA.14 Moreover, CSF dynamics
have been assessed with computer tomography cisternography in
patients with glaucoma,18 as well as papilledema,19 and CSF
compartmentation was reported as the cause for these alterations.
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Thus, whilst DTI has provided valuable insight into disease-
related alterations in the ON, it has not been used to study the
physiological effects of sustained variations in intracranial
pressure. Therefore, we aimed to determine the short-term effects
of increased intracranial pressure in healthy subjects on ON
diffusivity using the head-down tilt (HDT) model.20 Moreover, we
aimed to differentiate between the ON and the perioptic CSF-filled
ON sheath within the DTI acquisition. We hypothesized that HDT-
induced cephalad fluid shifting would increase MD in the ON
sheath due to altered CSF hydrodynamics, as potentially caused
by pulsatile or cohesive CSF movement and thus causing signal
loss from the phase shift.21 Finally, we were interested in whether
lower-body negative pressure (LBNP), a technique known to
reduce centrally available venous blood volume, and inspiratory
carbon dioxide, a potent arterial vasodilator, in combination with
HDT would have additional effects.

MATERIALS AND METHODS
Study design
This study was performed in compliance with the Declaration of Helsinki
and was approved by the local ethics commission (Ärztekammer
Nordrhein). Written and informed consent was obtained from all subjects
prior to study inclusion. The study design has been previously reported.22

Briefly, nine healthy male subjects (mean age ± SD: 25 ± 2.4 years; mean
height ± SD: 183 ± 6 cm; mean body mass index ± SD: 24.1 ± 2.4 kg/m2)
participated in five experimental HDT conditions: −6°, −12°, −18°, −12° plus
1% CO2 atmosphere, and −12° plus LBNP. These five conditions were done
in random order and on different experimental days. The LBNP was
maintained at −20mmHg during the entire 5 h HDT protocol. Magnetic
Resonance Imaging (MRI) scans were performed at supine baseline after
lying supine for at least 1 h and again after 4–5 h of intervention. Subjects
were not allowed to sleep and remained in the HDT position during all
experimental conditions. Custom-built MRI-compatible wedges in the
three HDT positions, breathing masks and an LBNP chamber were used for
the interventions. The HDT wedges ended at the neck of the subject, which
coincided with the beginning of the head coil.

Diffusion tensor imaging
The total duration of the MRI examination was ~1:05 h, with DTI performed
at about ~30min into the scan. MRI acquisitions were obtained on a 3 T

scanner with a maximum gradient amplitude of 45mT/m and maximum
slew rate of 200 T/m/s (mMR Biograph—Positron Emission Tomography-
Magnetic Resonance Imaging (PET-MRI) scanner based on the Verio system
—Siemens, Erlangen, Germany) with an appendant 16 channel head and
neck coil.
The orbital DTI parameters were: TR 5600ms, TE 100ms, FA 90°, Matrix

128 × 128, Filed of View 160mm, 25 slices, NEX 2. The nominal resolution
was 1.25mm× 1.25mm× 2.0mm and the interpolated resolution was
0.625mm× 0.625mm× 2.0mm, with an additional inter slice spacing of 2
mm. Thirty non-collinear diffusion directions with b value = 1000 s/mm−2

and one without diffusion weighted acquisition (b = 0 s/mm−2) were
acquired. Parallel imaging with an acceleration factor of two was enabled
(GRAPPA algorithm). A bandwidth of 1086 Hz/Px. with 1.03 ms echo
spacing was applied. The DTI scan time was 6:04min. A twice-focused
single-shot spin-echo EPI was utilized to reduce geometric distortions.23

The phase encoding direction was A to P. To avoid foldover artefacts, a
saturator of 55mm was used in the posterior brain region. Scanner stability
was assessed by spherical water phantom acquisition.24

High resolution anatomical T2 turbo spin echo (TSE) scans of left and
right ON were used for the positioning of the orbital DTI. Oblique
transversal sections through both ONs were planned in addition to a
coronal magnetization-prepared rapid acquisition gradient-echo recon-
struction. The positioning was further adjusted and controlled in the left
and right sagittal TSE ON central sections. This procedure allowed for an
exact adjustment of the DTI slices through both ONs (Fig. 2). In general,
positioning was focused on the part of the ON closest to the eye to allow
for optimal comparability in case of a curved shape or kinked ON. To avoid
eye movement during DTI acquisition, which would result in artefacts,
subjects were instructed to target their gaze on a defined spot throughout
the scan. The spot was viewable for the subject through a mirror that was
adjusted to allow for an anterior-posterior gaze alignment. The presented
data represents a subset of data from a larger study.22, 25

Image analysis
DTI data was post-processed with FSL software library (http://www.fmrib.
ox.ac.uk/fsl). Eddy current corrected diffusion weighted images were used
for voxel-by-voxel based tensor calculation. The following parameter maps
were calculated from the Tensor data: FA, MD (mean of eigenvalue L1, L2,
and L3 (L1 + L2 + L3)/3), AD (equal to eigenvalue L1) and RD (mean of
eigenvalue L2 and L3 (L2 + L3)/2)

26:
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The ON and its surrounding sheath were segmented manually with itk-
SNAP (http://www.itksnap.org). 2D image planes of the middle ON section
were utilized for segmentation. Depending on the shape of the ON, the
segmented length was ~0.8 to 1.5 cm starting from the eye globe. The B0
non-diffusion weighted images were used as a reference for segmentation.
FA, MD, AD, and RD values were calculated as mean values of the left and
right ON and ON sheath region of interests.

Statistical analysis
Statistical analysis was carried out with R statistical software version 3.2.0
(R Development Core Team, 2015) using ANOVA and linear mixed effects
models to analyze the ON and ON sheath MD, FA, AD, and RD. Linear
mixed effect models take care of inter-subject sources of variation and are
thus suitable for repeated measurements. Time (baseline vs. 4.5 h HDT),
side (left vs. right) and condition (−6°, −12°, −18°, −12°, and CO2, or −12°
and LBNP) were used as fixed effects and subject as a random effect.
Interactions of the main fixed effects were also included in the model,
however, the three-way interaction term was removed in all instances
during model simplification, as well as the term for side and interaction
terms with it. Notably, the main effect of time then reflects effect of HDT,
and the time × condition interaction reflects diversity of the different
conditions over time. Significant overall ANOVA effects were inspected
with a-priori defined treatment contrasts with −12° HDT as reference.
Significance was set to p < 0.05. Means of the diffusion parameters

Fig. 1 The current understanding of cerebrospinal fluid (CSF)
dynamics is that the fluid is produced in choroid plexuses and
moves from the third to the forth ventricle. The CSF then moves
into the subarachnoid space, continuous along the optic nerve
(ON) to the back of the eye. The Illustration is based on the original
from the Intracranial Hypertension Research Foundation (www.
IHRFoundation.org)
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(± standard deviation) for the ON sheath and ON MD, FA, AD, and RD are
given for all conditions in Table 1 and Table 2, respectively. Best Linear
Unbiased Predictors with standard error are shown in results text.

Data availability
The datasets (MRI original files in DICOM format and post-procession steps
in NIFTI format) generated during and analyzed during the current study
are not publicly available due to containing personal details of subjects,
but are available from the corresponding author on reasonable request.

RESULTS
With the exception of two scans (one −12° with LBNP, one baseline scan
before −6° HDT), all data were acquired and analyzed as foreseen by the
study protocol.

ON sheath
Results for the ON sheath are given in Table 1. MD in the ON sheath
revealed significant main effects of time (P < 0.001), suggesting that MD
increased by 0.147 (SE: 0.04 × 10−3 mm2/s). There was also a significant

effect of condition (P = 0.003), which however, did not reflect in any
significant a-priori contrasts (all P > 0.17). Notably, there was no significant
time × condition interaction (P = 0.37). Taken together, the results suggest
that MD in the ON sheath was increased after exposure to HDT, with all
HDT conditions having similar effects as the −12° condition. FA depicted a
significant main effect of time (P = 0.036) and a trend for the time ×
condition interaction (P = 0.054). AD and RD, respectively, in the ON sheath
revealed significant main effects of time (both P < 0.001), suggesting
increases by 0.188 (SE 0.042) × 10−3 mm²/s for AD and 0.126 (SE 0.04) ×
10−3 mm²/s for RD. Significant main effects of condition for AD and RD
(P = 0.0016 and P = 0.0062, respectively) were inconclusive during inspec-
tion with a-priori contrasts (all P > 0.13), and there were no time ×
condition interaction effects found for AD and RD (P = 0.10 and P = 0.57,
respectively. (Fig. 3).

Optic Nerve
Results for ON diffusivity are given in Table 2. Here, a significant main
effect of time was found for AD (P = 0.014), indicating that AD increased
after exposure to HDT by 0.135 (SE 0.08) × 10−3 mm²/s. However, no effect
of condition was found (P = 0.96), nor was there a time × condition
interaction (P = 0.96), suggesting that time-related changes in the various

Table 1. Mean diffusivity (MD), fractional anisotropy (FA), axial diffusivity (AD), and radial diffusivity (RD) of CSF (cerebrospinal fluid) in the optic
nerve (ON) sheath

Baseline (0°) −6° −12° −18° −12° and CO2 −12° and LBNP

MD 1.910± 0.246 2.035***± 0.161 2.075***± 0.151 2.056***± 0.167 2.039***± 0.133 1.919***± 0.256

FA 0.162± 0.039 0.152 ± 0.029 0.163± 0.027 0.152± 0.033 0.154± 0.026 0.153± 0.044

AD 2.195± 0.240 2.326***± 0.150 2.398***± 0.148 2.353***± 0.148 2.341***± 0.137 2.193***± 0.236

RD 1.762± 0.252 1.889**± 0.171 1.914**± 0.156 1.907**± 0.182 1.887**± 0.136 1.781**± 0.271

MD, AD, RD are given in 10−3 mm2/s. FA is given as a ratio. Significant a-priori time contrast is indicated by asterisks: *(P= 0.05), **(P< 0.01), ***(P< 0.001)

Table 2. Mean diffusivity (MD), fractional anisotropy (FA), axial diffusivity (AD), and radial diffusivity (RD) of the optic nerve

0° (Baseline) −6° −12° −18° −12° and CO2 −12° and LBNP

MD 0.775 ± 0.253 0.840± 0.346 0.757± 0.207 0.748± 0.254 0.797± 0.237 0.877± 0.343

FA 0.493 ± 0.146 0.511 * ± 0.153 0.592± 0.116 0.578± 0.143 0.533± 0.122 0.443 **± 0.174

AD 1.165 ± 0.256 1.276± 0.366 1.261± 0.222 1.244± 0.248 1.264± 0.284 1.232± 0.313

RD 0.580± 0.264 0.621± 0.342 0.505± 0.213 0.500± 0.271 0.563± 0.225 0.699± 0.365

MD, AD, RD units are given in 10−3 mm2/s. FA is given as a ratio. Asterisks indicate significant time × condition interaction: *(P = 0.05), **(P< 0.01)

Fig. 2 Sagittal oblique middle cut slice of orbital DTI of one subject. Left: non-diffusion weighted image with arbitrary grayscale,
middle: fractional anisotropy (FA) map (colorbar ranges from 0 to 1.2), right: mean diffusivity (MD) map; diffusion intensity values are given in
10−6 mm2/s
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HDT conditions were all comparable to the −12° condition. No significant
main or interaction effects were found for MD or RD in the ON (all P > 0.3).
For FA, there was no main effect of condition (P = 0.51), and a trend
for time (P = 0.055). Moreover, FA depicted a time × condition interaction
(P = 0.032, see Table 2). A-priori contrasts suggest that compared to −12°
HDT, FA decreased by 0.138 (SE 0.067, P = 0.042) after −6° HDT compared
to −12°HDT and by 0.207 (SE 0.068) after −12° plus LBNP. (Fig. 4).

DISCUSSION
In this study, we found DTI-derived ON sheath diffusivity to be enhanced
during exposure to HDT, alluding to increased periorbital CSF hydro-
dynamics and increased CSF volume and movement during HDT. The
greatest changes were observed in AD, and somewhat less in RD and MD.
In the ON, conversely, effects of HDT exposure were observed for FA and
AD, but not for RD or MD. Notably, the effects observed in this study were
generally comparable between the −12° condition and the other
conditions tested, except for FA in the ON sheath, which depicted some
significant time × condition interactions. Thus, the initial hypotheses are
generally confirmed by the results obtained.

ON sheath diffusivity
Overall, we found increased MD, AD, and RD in the ON sheath, suggesting
increased hydrodynamic CSF movement and CSF flow towards the
perioptic space during HDT. This may be related to both pulsatile and
cohesive CSF motion and resulting signal loss due to phase shift.21 The
former interpretation is supported by the observation of increased CSF
pulsatility measured by CINE phase-contrast MRI in the cerebral aqueduct
during HDT.27 CSF pulsatility at the cerebral aqueduct may be a marker
generalized increased intracranial CSF pulsatility, which may also be
transmitted to the perioptic CSF space. Although DTI-derived parameters
are not specific to micro-edema or increased pressure, HDT-induced
headward fluid shifting and the resulting increase in ON sheath CSF
volume and movement may contribute to ocular deformations, potentially
also in the microgravity environment.
The rate of CSF resorption into the dural venous sinuses depends on the

pressure difference between the CSF and the cerebral venous system.28

Previously reported phase-contrast MRI data of the present study
demonstrated decreased arterial inflow and internal jugular venous
outflow during HDT.22 Thus, a decrease in venous outflow and possible
increase in cerebral venous pressure could disrupt CSF dynamics,
increasing perioptic CSF volume and thereby indirectly affecting diffusion

Fig. 3 ON sheath diffusion parameters including FA a, MD b, axial diffusivity (AD) c and radial diffusivity (RD) d for all conditions (−6°, −12°,
−18°, −12°, and CO2, −12° and LBNP) compared with the corresponding baseline value. Asterisks indicate significance level from linear mixed
effects (LME) corresponding to time effect: *(P= 0.05), **(P< 0.01), ***(P< 0.001)
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parameters found in the CSF space surrounding the ON. This interpretation
is supported by the observation that MD, AD, and RD in the ON sheath are
all increased to a comparable extent during HDT exposure. As mentioned,
HDT-induced increases in ON sheath MD, AD, and RD were all comparable
to effects of the −12° condition. This can potentially be explained by
completed filling of the internal jugular veins, which is already reached
with low tilt angles (i.e., −6° HDT;.22 The increase in MD and AD in the ON
sheath may be indicative of CSF flow within the ON sheath due to HDT,
possibly facilitated with perioptic CSF expansion. However, the observed
increase in RD in the perioptic CSF space (Table 1) does not support the
idea of a directed flow, but rather of a more undirected flow, potentially
due to changes in CSF dynamics.
Furthermore, compartmentalization of CSF in the ON sheath space,

which can be found in pathologies like glaucoma18 and papilledema,19

may also be a contributing factor to vision changes in space.

ON diffusivity
Compared to baseline, MD and RD in the ON were unaffected by HDT,
however, AD was found to increase, and increases in FA were dependent
on the specific HDT conditions. Unlike in pathologies such as glaucoma,
optic neuritis, multiple sclerosis, and retinitis pigmentosa where a decrease
in FA is associated with integrity loss of white matter tracts due to cell
damage, increasing FA and AD indicate the possibility of directed diffusion
along the ON. Notably, results from this study are not indicative of a
pathological reaction to short-term HDT, but rather a physiological reaction
to HDT resulting in a higher fraction of water molecules moving along the
ON axis. The present data suggest that HDT does not hinder, but rather
fosters diffusivity in the perioptic space, and potentially also within the ON.
However, the possibility of hampered perioptic hydrodynamics in
microgravity is still unknown. HDT may not mimic all of the space-
related physiological effects of cranial fluid regulation and the presented
study investigated only short-term effects of HDT. Thus, to gain more
insight into potential pathological processes in the ON and ON sheath
secondary to microgravity exposure, DTI scans are needed pre-spaceflight
and post-spaceflight missions on the ISS.

Effects of LBNP/CO2

Although LBNP did not depict any substantial effects, apart from
decreased FA compared to −12° within the ON, it needs to be considered
that a relatively low LBNP (−20mmHg) was utilized in this study due to the
multiple hour exposure. LBNP has been shown to have sizable effects on
intraocular pressure at −40mmHg, whilst LBNP at −20mmHg does not.25

Thus, further studies are warranted to determine the potential use of LBNP
as a countermeasure to headward fluid shifting in relation to ocular
changes in astronauts.

On the contrary, as an arterial vasodilator, increased ambient CO2 was
hypothesized to further increase intracranial volume and thus pressure
during HDT and elevate diffusivity further. However, exposure to increased
ambient CO2 during HDT was not found to have any additional effects on
diffusivity parameters of the ON or ON sheath.

DTI values
The FA and MD baseline values of the ON found in this study are in line
with previously reported values in healthy subjects.15 However, all
diffusion values, especially AD, are slightly lower than previously reported
values,12, 14 although there is great variation in the reported literature.
Heterogeneity in reported diffusivity values in the literature may be the
result of different age groups of healthy control subjects. In the presented
study, young male subjects (25 ± 2.4 years) were enrolled and although not
reported for healthy subjects, ON FA is known to decrease with age in
patients with glaucoma.15 Furthermore, Wang et al. (2013) and Zhang et al.
(2016) report diffusivity values for controls across a wide age range and
mixed genders.12, 14 Interestingly, ocular changes in astronauts predomi-
nantly affects middle-aged men 1, 4 and thus, age could should be taken
into consideration as a potential factor in MOS.

Comparison with state of the art methods
Optical Coherence Tomography, cycloplegic refraction, fundus examina-
tions, visual acuity, visual field thresholds are standard measures for
astronauts ocular health pre and post flight according to the clinical
practice guidelines of long-duration missions.3, 29 Choroidal folds, cotton
wool spots, ON sheath distension, globe flattening, elevated CSF opening
pressure or papilledema have been identified in 42% of 36 astronauts post-
flight, with 19 examinations still pending.1, 3, 4

In the presented study, subjects did not suffer from significant visual
impairment during or after the HDT. The time frame used in the presented
study may be beneficial to understand perioperative visual loss due to
ischemic optic neuropathy, seen in patients undergoing prolonged surgery
requiring head-down positioning such as spinal,30 gynecological or robotic
prostate surgery.31 Intraocular pressure assessed in patients with head-
down (Trendelenburg) surgical positioning has been found to increase,
however, retinal nerve fiber layer thickness measured with optical
coherence tomography does not appear to be altered in patients with
vision impairments after surgery.32, 33 Similarly, no clinically relevant
findings were found during 14 day exposure to −6° HDT bed rest,34

whereas 70 day −6° HDT bed rest could provoke an increase in the
superior, nasal, and inferior peripapillary retinal thickness.35

Fig. 4 ON diffusion parameters including FA a and AD b for all conditions (−6°, −12°, −18°, −12° and CO2, −12° and LBNP) compared with the
corresponding baseline value. Asterisks indicate significance level from LME corresponding to time effect: *(P= 0.05)
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Limitations and future considerations
There are several limitations inherent to the presented study that need to
be taken into consideration when interpreting results. Notably, the study
included a small number of subjects, a detriment that may affect statistical
analysis, as well as interpretation. In addition, DTI of the ON has several
limitations.36, 37 First, successful acquisition depends greatly on subject
compliance as eye movement can result in blurred scans, resulting in an
indefinable strong partial volume effect in DTI parameters. Furthermore, a
long TA signal quality is limited by motion artifacts. This issue can be
overcome by an eye triggered DTI examination, however, the problem
persists with echo train lengths of 7–10 s. To prevent this, we chose to use
high in-plane resolution with a lower slice thickness resolution. Prior to the
DTI scans, we performed three high resolution anatomical scans of the
orbits (transversal, coronal, and sagittal). This allowed the operator to
adjust the DTI slices exactly through both ONs in the oblique transverse
direction. This procedure, however, has two disadvantages: First, it is
operator-dependent, and second, it is sensitive to subject movement
which can cause partial volume artifacts. Therefore, we conclude that a
scan with an isotropic resolution benefits from operator independence and
insensitivity from subject movement between scans and no high
resolution 3D cuts are needed for slice positioning. While a volumetric
scan would be sufficient for slice positioning, sophisticated segmentation
techniques would also be necessary. In addition, considering potential
tortuosity of the ON, a DTI acquisition perpendicular (coronal direction) to
the long axis is considered more robust to partial volume effects.38

Notably, the measurement technique may also be the cause of variation
in reported DTI values compared to previously reported values in the
literature. This may be due to motion artifacts, partial volume effects in the
ON sheath or different acquisition approaches with fat and water
suppression. The majority of related publications fail to describe how
eye movement was avoided. Some studies have also used water and fat
suppression techniques for ON scans to avoid signal acquisition from
surrounding CSF spaces.39, 40 Even though the signal from the ON and CSF
voxels is suppressed, partial volume effects cannot be avoided with a low
resolution.
Another obstacle was the strong susceptibility for artifacts in the orbital

region caused by tissue susceptibility differences between fatty tissue,
bony structure, and the nasal cavities. A promising approach to avoid
distortions by single shot echo planar imaging, especially at higher
magnetic fields (i.e., 7T), is by utilizing spin echo-based sequences. These
sequences are not affected by magnetic field inhomogeneities.41, 42

Advanced sequences such as diffusion-sensitized multishot rapid acquisi-
tion with relaxation enhancement could also be promising with higher
magnetic fields resolution.43 The examination of deeper sections of the
optic path (ON closer to the chiasm) would also benefit from such a non-
distorted technique.
Finally, we would like to remind the reader that the implemented

statistical approach tested for differences between any condition and the
−12° condition. It is therefore possible that differences e.g. between −6°
and −18° went unnoticed in the analyses, which would have provided
further evidence to our understanding of HDT effects on perioptical
hydrodynamics. In any case, tilt-angle dependent effects on ON DTI should
be explored in more detail in future studies.

CONCLUSIONS
Overall, the presented data constitute evidence to suggest facilitated
diffusivity along the ON with HDT. This may indicate increased perioptic
CSF hydrodynamics with increased CSF volume and/or movement within
the ON sheath during HDT exposure. The sensitivity of DTI to detect altered
physiology with HDT demonstrates its capability to be used to further
investigate ocular changes in astronauts. This work can also be extended
to the entire visual system including the optic chiasm, the optic tract, and
radiations.36
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