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The results of visual prediction reflect the tendency and speed of visual development
during a future period, based on which ophthalmologists and guardians can know the
potential visual prognosis in advance, decide on an intervention plan, and contribute
to visual development. In our study, we developed an intelligent system based on
the features of optical coherence tomography images for long-term prediction of
best corrected visual acuity (BCVA) 3 and 5 years in advance. Two hundred eyes
of 132 patients were included. Six machine learning algorithms were applied. In the
BCVA predictions, small errors within two lines of the visual chart were achieved. The
mean absolute errors (MAEs) between the prediction results and ground truth were
0.1482–0.2117 logMAR for 3-year predictions and 0.1198–0.1845 logMAR for 5-year
predictions; the root mean square errors (RMSEs) were 0.1916–0.2942 logMAR for 3-
year predictions and 0.1692–0.2537 logMAR for 5-year predictions. This is the first
study to predict post-therapeutic BCVAs in young children. This work establishes a
reliable method to predict prognosis 5 years in advance. The application of our research
contributes to the design of visual intervention plans and visual prognosis.

Keywords: machine learning, optical coherence tomography, childhood cataract, visual prediction, intelligent
system

INTRODUCTION

Normal visual development and visual acuity (VA) are important for young children and are the
basis of infantile brain development (Stjerna et al., 2015; Danka Mohammed and Khalil, 2020) and
ability development (Wu et al., 2019; Havstam Johansson et al., 2020). Consequently, the results
of visual prediction are meaningful by reflecting the tendency and speed of visual development
during a future period. Exact VA prediction is beneficial for young children, especially children
with ophthalmopathy, based on which ophthalmologists and guardians can determine the potential
visual prognosis in advance, decide on an intervention plan, and contribute to visual development.
However, the nature of ocular growth and myopia drift in young children may disrupt exact visual
prediction and affect result accuracy. To date, no children-applicable technology for VA prediction
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has been reported. Existing research (Rohm et al., 2018)
has focused on short-term visual prediction for adults within
a year.

Fundus imaging, especially optical coherence tomography
(OCT), is recognized as a key factor for visual prediction (Guo
et al., 2017; Esaka et al., 2019; Park et al., 2020). OCT images
have been applied to predict prognostic visual function in age-
related macular degeneration (AMD) (Rohm et al., 2018) and
have achieved excellent performance in visual prediction. In our
study, based on clinical data, features of OCT images, and follow-
up results of children with childhood cataract (CC), we developed
a machine learning system for long-term visual prediction of
best corrected visual acuity (BCVA) 3 and 5 years in advance.
This system can help ophthalmologists and guardians monitor
patients’ visual development (Long et al., 2017) and adopt
necessary visual intervention (Sniatecki et al., 2015; Wang and
Xiao, 2015) in time, thereby contributing to the visual prognosis
of young children.

MATERIALS AND METHODS

A prospective study was conducted at the Zhongshan
Ophthalmic Center (ZOC), Guangdong, China, from June
2011 to February 2019. The data were collected from a national
project for CC treatment and research: the CC Program of the
Chinese Ministry of Health (CCPMOH). This study followed
the tenets of the Declaration of Helsinki and was approved
by the Institutional Review Board of the ZOC at Sun Yat-sen
University (IRB-ZOC-SYSU).

Clinical and Imaging Data
Two hundred eyes of 132 patients from the ZOC were included
in the study. The inclusion criteria were as follows: (1) diagnosed
with CC at the ZOC, (2) had surgical treatment, (3) had a
horizontal OCT B scan with a scan quality index of good, (4) had
a clear axis after treatment, and (5) had follow-up BCVA exams
at 3 or 5 years after the OCT B scan. The exclusion criteria were
as follows: (1) diagnosed with another ophthalmic disease or (2)
diagnosed with a neurological or mental disease. The collected
clinical data included sex, laterality, surgical age, surgical type, age
at OCT B scan, follow-up BCVA results, and other examination
and prognostic information.

Measured features of OCT images were extracted from the
Optovue software. The retinal thickness of nine parts, namely the
macular area and its eight surrounding regions (inner and outer
sides of nasal, temporal, superior, and inferior regions to macula,
see Figure 1C), was recorded. Furthermore, the thickness of the
retinal nerve fiber layer (RNFL) was labeled manually based on
the OCT images. The thickness of the RNFL was divided into four
grades. A label of 1 indicated the complete existence of RNFL, 2
indicated the existence of most of RNFL with a thickness more
than half of the normal one, 3 indicated the intermittent existence
of RNFL with a thickness less than half of the normal one, and
4 indicated the complete absence of RNFL. The label work was
finished by three retinal ophthalmologists and confirmed by a
retinal professor.

Model Training and Evaluation
The research procedure is shown in Figure 1. To predict the
BCVA of CC patients 3 and 5 years in advance, we tried six
machine learning models, namely random forest, ExtraTrees,
gradient boosting decision tree (GBDT), ridge regression, lasso
regression, and ElasticNet. The age at OCT B scan, the label of
RNFL thickness, and the retinal thickness of nine parts obtained
from OCT were applied as training features.

For the prediction tasks, we used five-fold cross-validation.
The proportion of the training set and the test set were 80
and 20%, respectively. To quantitatively evaluate the prediction
performance, we applied two evaluation metrics, mean absolute
error (MAE) and root mean square error (RMSE). The MAE
is calculated as the average value of the absolute error of the
prediction results, which directly reflects the deviation of the
predicted values from the actual values. The formula for MAE
is as follows:

MAE =
1
N

N∑
i =1

∣∣ỹi − yi
∣∣

The RMSE is the square root of mean square error (MSE). The
MSE is calculated as the average value of the square of the
error of the prediction results. The RMSE is more interpretable
considering its unit consistency with the original variables. The
formula for RMSE is as follows:

RMSE =

√√√√ 1
N

N∑
i =1

(
ỹi − yi

)2

In the above two formulas, N is the number of predictions per
fold, yi is the ground truth, and ỹi is the predicted value.

RESULTS

The training data included 200 eyes of 132 patients (46 females
and 86 males), containing 197 eyes of 131 patients for 3-year
prediction training and 172 eyes of 114 patients for 5-year
prediction training (Table 1). The average surgical age was nearly
47 months, and the average age at OCT B scan was close to
55 months. The average endpoint BCVAs were 0.45 and 0.33
logMAR, respectively, in the two prediction groups.

For the prediction evaluation, most of the models achieved
excellent performance of errors within two lines (0.2 logMAR)
of the VA chart in both 3- and 5-year predictions (Table 2).
The random forest and GBDT models achieved the best 3-year
prediction, and the ExtraTrees and GBDT models achieved the
best 5-year prediction. In the 3-year prediction test, the MAEs
ranged from 0.1482 to 0.2117, and the RMSEs ranged from 0.1916
to 0.2942. In the 5-year prediction test, the MAEs ranged from
0.1198 to 0.1845, and the RMSEs ranged from 0.1692 to 0.2537.
For the same model, the prediction errors of 5-year tasks were
always lower than those of 3-year tasks.

Figure 2 shows the weights of features for 3- and 5-year BCVA
predictions in the random forest model. The thickness of RNFL
plays a key role in BCVA prediction with a weight of nearly 0.8.
The age at OCT B scan is the second most important factor with
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FIGURE 1 | Overall study pipeline. The work flow of developing machine learning models for predicting 3- and 5-year BCVA based on medical records and fundus
images. (A) The participant numbers; (B) the collected medical records; (C) the collected fundus images; (D) the applied models; and (E) the evaluation method.
BCVA, best corrected visual acuity; GBDT, gradient boosting decision tree.

a weight of very nearly 0.1. The retinal thickness of the macula is
the most important of the retinal thickness of the nine regions at
and near the macula. In the 5-year prediction, the weight of the
thickness of RNFL is higher than that of the 3-year prediction.
The results of other models are similar to those of the random

forest model. The thickness of RNFL remains most important
in all the models.

Figure 3 shows both the ground-truth and prediction values
of each test example in 3- and 5-year predictions, respectively,
based on the random forest model. The examples were ordered
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TABLE 1 | Characteristics of patients regarding the 3- and 5-year predictions.

Characteristic 3-Year prediction 5-Year prediction

Eyes 197 172

Patients 131 114

Male 85 (64.8%) 76 (66.6%)

Surgical age (months) 46.74 ± 34.17 46.70 ± 34.75

Photo age (months) 55.40 ± 34.12 54.63 ± 34.83

Endpoint BCVA (logMAR) 0.45 ± 0.49 0.33 ± 0.42

BCVA, best corrected visual acuity.

based on the ground-truth BCVA in Figures 3A,B. When the true
BCVAs were lower than 0.2 logMAR, the prediction values were
always higher than the true results. As the true BCVAs increased,
the prediction values fluctuated around the true results. In
Figures 3C,D, the examples were ordered based on the age at
OCT B scan, and the prediction values mainly fluctuated around
the true results.

DISCUSSION

This is the first study to predict the post-therapeutic long-
term BCVA of CC children based on OCT images through
artificial intelligence (AI), and it demonstrated that the long-term
visual function of children can be accurately predicted based on
imageology using machine learning.

The post-therapeutic visual function of children with ocular
diseases is one of the most important factors (Mndeme et al.,
2020) focused on by doctors and guardians, as visual prognosis
plays a key role in intelligence development (Li et al., 2017),
school attendance (Negretti et al., 2015), and quality of life.
However, there has been limited research contributing to the
visual prediction of children with ophthalmopathy, with most
published studies paying attention to the short-term visual
prediction of adults within a year (Rohm et al., 2018). Our study

addresses both limitations by demonstrating children-applicable
prediction and long-term prediction of VA based on imageology.
The machine learning models can predict 3- and 5-year BCVAs
in advance with a small error within two lines of the visual chart.
Based on the results predicted by our model, ophthalmologists
and guardians can provide necessary assistance and individually
targeted intervention (Sniatecki et al., 2015) to help children
obtain better visual outcomes (Pinto et al., 2015) and quality
of life, which may be of significant importance to childhood
brain development.

Our research achieves precise prediction of long-term BCVA
based only on features of OCT images and age, which makes
it more accessible and stable than other methods. Most CC
patients will take a fundus photo or undergo an OCT B scan
to check fundus function after cataract surgery, and our model
can be conveniently applied. The reported research (Rohm et al.,
2018) applied 165 features to achieve a 6-month prediction,
including 41 features from clinical records and 124 features from
OCT images. Compared with previous research, our models are
simpler and more convenient for general application.

The feature weights shown in Figure 2 specify that the
thickness of the RNFL is closely related to long-term visual
development after therapy. In the longer prediction, its
importance increases. The RNFL lacks the ability to regenerate
(Cen et al., 2018; Wu et al., 2020). If the OCT image indicates
that the RNFL has atrophied (balducci et al., 2017) at the baseline
examination, the visual function would not improve much in the
post-therapeutic follow-up. On the other hand, if the OCT image
indicates that the RNFL is complete at baseline, CC patients may
achieve remarkable visual improvement after surgery with proper
intervention. Above all, the thickness of RNFL is a dominant and
stable indicator in post-therapeutic BCVA prediction.

Random forest (Breiman, 2001), ExtraTrees (Geurts et al.,
2006), and GBDT (Schwenk and Bengio, 1998) all belong
to ensemble learning (Kadiyala and Kumar, 2018), in which
random forest and ExtraTrees apply the bagging method

TABLE 2 | Prediction errors in 3- and 5-year BCVA predictions.

Model 3-Year prediction 5-Year prediction

Validation set MAE RMSE MAE RMSE

Random forest 0.2121 ± 0.0153 0.2841 ± 0.0230 0.1685 ± 0.0011 0.2414 ± 0.0019

ExtraTrees 0.2252 ± 0.0009 0.3044 ± 0.0012 0.1558 ± 0.0012 0.2250 ± 0.0015

GBDT 0.2234 ± 0.0024 0.3172 ± 0.0034 0.1807 ± 0.0023 0.2564 ± 0.0026

Ridge regression 0.2253 ± 0.0203 0.2994 ± 0.0322 0.1709 ± 0.0207 0.2566 ± 0.0430

Lasso regression 0.2362 ± 0.0179 0.3073 ± 0.0249 0.1743 ± 0.0139 0.2425 ± 0.0261

ElasticNet 0.2154 ± 0.0176 0.2973 ± 0.0191 0.1719 ± 0.0172 0.2478 ± 0.0308

Test set MAE RMSE MAE RMSE

Random forest 0.1515 ± 0.0025 0.1916 ± 0.0040 0.1315 ± 0.0031 0.1752 ± 0.0045

ExtraTrees 0.1676 ± 0.0024 0.2108 ± 0.0022 0.1334 ± 0.0019 0.1692 ± 0.0022

GBDT 0.1482 ± 0.0065 0.2024 ± 0.0048 0.1198 ± 0.0040 0.1734 ± 0.0034

Ridge regression 0.2117 ± 0.0401 0.2942 ± 0.0716 0.1475 ± 0.0430 0.2135 ± 0.0664

Lasso regression 0.2046 ± 0.0374 0.2909 ± 0.0768 0.1845 ± 0.0669 0.2537 ± 0.1172

ElasticNet 0.2089 ± 0.0517 0.2937 ± 0.0971 0.1778 ± 0.0345 0.2487 ± 0.0604

BCVA, best corrected visual acuity; GBDT, gradient boosting decision tree; MAE, mean absolute error; RMSE, root mean square error.
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FIGURE 2 | Feature weights of random forest for 3- and 5-year BCVA predictions. The thickness of RNFL has a weight of nearly 0.7–0.8. The age at OCT B scan
has a weight of nearly 0.1. The retinal thickness of the macula is the most important of the retinal thickness of the nine regions at and near the macula. BCVA, best
corrected visual acuity; RNFL, retinal nerve fiber layer.

FIGURE 3 | The ground-truth and prediction values of each test example in 3- and 5-year BCVA predictions based on random forest. The examples were ordered
based on the ground-truth BCVA in (A,B) and ordered based on the age undergoing OCT B scan in (C,D). BCVA, best corrected visual acuity.
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(Kristína et al., 2006) and GBDT uses the boosting method.
Each predicted function was parallel in the bagging model and
serial in the boosting model. Bagging always behaves better in
preventing overfitting in small sample learning. The models of
ridge regression, lasso regression, and ElasticNet (Ogutu et al.,
2012) tend to apply the least squares method to predict values,
which behaves better in data with multicollinearity and does not
exactly fit the weights of each dimension of our data without
multicollinearity.

LIMITATION

The limitations of our research should be considered. Larger
samples of CC patients are necessary to increase the dataset
and to improve the prediction stability. Additionally, a longer
follow-up period contributes to extending the predicted time
span. Besides, data for external validation are warranted to test
the prediction model in real-world settings.
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