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Abstract

Hepatitis C virus infection induces inflammation and while it is believed that HIV co-infection

enhances this response, HIV control may reduce inflammation and liver fibrosis in resolved

or viremic HCV infection. Measurement of systemic biomarkers in co-infection could help

define the mechanism of inflammation on fibrosis and determine if HIV control reduces liver

pathology. A nested case-control study was performed to explore the relationship of sys-

temic biomarkers of inflammation with liver fibrosis in HCV viremic and/or seropositive

women with and without HIV infection. Serum cytokines, chemokines, growth factors and

cell adhesion molecules were measured in HIV uninfected (HIV-, n = 18), ART-treated HIV-

controlled (ARTc, n = 20), uncontrolled on anti-retroviral therapy (ARTuc, n = 21) and elite

HIV controllers (Elite, n = 20). All were HCV seroreactive and had either resolved (HCV

RNA-; <50IU/mL) or had chronic HCV infection (HCV RNA+). In HCV and HIV groups,

aspartate aminotransferase to platelet ratio (APRI) was measured and compared to serum

cytokines, chemokines, growth factors and cell adhesion molecules. APRI correlated with

sVCAM, sICAM, IL-10, and IP-10 levels and inversely correlated with EGF, IL-17, TGF-α
and MMP-9 levels. Collectively, all HCV RNA+ subjects had higher sVCAM, sICAM and IP-

10 compared to HCV RNA-. In the ART-treated HCV RNA+ groups, TNF-α, GRO, IP-10,

MCP-1 and MDC were higher than HIV-, Elite or both. In ARTuc, FGF-2, MPO, soluble E-

selectin, MMP-9, IL-17, GM-CSF and TGF-α are lower than HIV-, Elite or both. Differential
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expression of soluble markers may reveal mechanisms of pathogenesis or possibly reduc-

tion of fibrosis in HCV/HIV co-infection.

Introduction

Hepatic disease is a leading cause of significant morbidity and death among HIV infected per-

sons in the US; 15–30% of HIV-infected individuals are coinfected with hepatitis C virus

(HCV)[1–4] and this is associated with metabolic and cardiovascular complications in addi-

tion to other inflammation induced comorbidities. Individually, HIV and HCV infections

increase expression of inflammatory cytokines and chemokines [5–7]. These factors have been

found to be associated with long-term morbidity in HIV infection or chronic hepatitis [7–11].

Additionally, HIV infection with HCV viral hepatitis more than triples the rate of liver disease,

liver failure, and liver-related death [1]. The mechanisms causing accelerated disease with co-

infection are not well understood but there is evidence that HIV infection increases morbidity

in HCV co-infected individuals [12]. HIV-induced immune perturbation, including CD4 cell

loss, generalized inflammation and trafficking of activated immune cells to the liver in HCV

infection likely also results in greater tissue damage and fibrosis [13,14].

Although an HIV-specific host immune response is required to control HIV viremia, it

may also result in broad and non-specific immune activation and an array of tissue injuries

including hepatic fibrosis. Alternatively, HIV suppression may reduce non-specific inflamma-

tion and reduce bystander inflammation-induced fibrosis. Individually, HIV and HCV

immune activation induces expression of inflammatory cytokines (e.g. TNF-α and IL-1β
[15,16]) and chemokines (IP-10, MCP-1, MIG and ITAC [13,17–20]) directing cellular

immune responses to sites of infection. Enhanced expression of chemokine receptors on lym-

phocytes (e.g. CXCR3 [21–24]) increases the transit of immune cells to sites of infection;

meanwhile, higher expression of cellular adhesion molecules increases cell trafficking through

the vascular endothelium to the site of infection [18,25–27].

In order to further investigate the effect of different states of HIV infection on hepatic

injury in chronic HCV, we measured soluble biomarkers in HIV- and HIV+ women with

HCV. We hypothesized that lower inflammatory responses and less liver fibrosis would be

found in HCV+ women with controlled HIV replication including elite controllers and ART-

treated with viral suppression (ARTc) than in ART-treated women with uncontrolled HIV

replication (ARTuc). This would describe a distinct biomarker profile in relation to stage of

liver diseases and elucidate the clinically relevant biomarkers, and mechanisms of hepatic

pathogenesis in HIV/HCV co-infection.

Materials and methods

HCV antibody positive women

This study was limited to HCV serologically reactive women enrolled in the Women’s Inter-

agency HIV Study (WIHS). The details of this prospective, multi-center, longitudinal cohort

NIH study have been published previously [28]. Briefly, the WIHS enrolled 3766 adult women

in two recruitment periods (1994–1995 and 2001–2002) at six clinical sites across the United

States. Women were either infected with HIV or at high risk for acquiring the infection. Over-

all, 32% of HIV-seropositive and HIV-seronegative women had HCV antibody at enrollment.

All participants gave written, informed consent for the WIHS as approved by all Institutional

Review Boards (IRB) of the participating institutions and this study was approved by UCSF
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IRB. Every 6 months, participants undergo a comprehensive physical examination, provide

biological specimens for CD4 cell count and HIV-RNA viral load determination, and complete

an interviewer-administered questionnaire that collects information on demographics, health

history, alcohol consumption and medication use. Heavy alcohol was defined as 14 or more

standard drinks per week.

Serologic reactivity to HCV was determined using a second-generation or third-generation

enzyme immunoassay (EIA, Ortho-Diagnostic Systems); women with positive EIA tests also

were assessed for HCV-RNA by RT-PCR (COBAS Amplicor HCV Detection Kit, Roche Diag-

nostic Systems). HIV-RNA was measured using the isothermal nucleic acid sequence-based

amplification (NASBA/Nuclisens) method (bioMerieux) with a detection limit of 80 copies/

mL. All women were hepatitis B surface Ag negative.

The study population was comprised of homogenous, well characterized HIV phenotypes

(stable for at least 1.5 years) stratified by serum HCV RNA positive (HCV RNA+) or negative

(HCV RNA-<50IU/mL). Women were matched by age, race/ethnicity, and HCV RNA status

within the following groups: Elite controllers (EC) were defined as ART-naïve, CD4 cell count

never below 500, HIV RNA < 80 copies /mL. Groups were limited to the number of EC

women within the WIHS where there were samples were available to study. These were very

carefully selected groups based on the number of Elite controllers. ART treated individuals

with controlled infection (ARTc) were HIV women currently on potent ART with viral con-

trol, with CD4 cell count > 350 cells/ml, HIV RNA< 80 copies/ml. ART treated with uncon-

trolled infection (ARTuc) were ART-treated women but without HIV uncontrolled having

HIV RNA�80 copies/ml. HIV uninfected were HIV negative by EIA. No participants in this

study were HBV positive.

Assessment of liver fibrosis

The serum marker of liver fibrosis were aspartate aminotransferase (AST) to peripheral blood

platelet count ratio (APRI) [29] and FIB-4, both of which have been validated in HIV-HCV

coinfected women [30]. Using a laboratory upper limit of normal AST of 40 U/l, severe fibrosis

is defined by APRI >1.5, FIB-4 >3.25 and mild/no fibrosis as APRI score <0.5 and FIB-4

<1.5 [31].

Measurement of soluble immunologic markers

Plasma samples were assayed using a high-sensitivity Milliplex kit (Millipore) with antibody-

coated beads for detection of GM-CSF, interferon (IFN)-γ, interleukin(IL)-10, IL-12(p70), IL-

13, IL-1, IL-2, IL-4, IL-5, IL-6, IL-7, IL-8, and tumor necrosis factor (TNF)- α;a standard-sensi-

tivity Milliplex Map kit (Millipore) for epidermal growth factor (EGF), eotaxin, fibroblast

growth factor (FGF)-2, fractalkine, Flt-3 ligand, GRO, G-CSF, IFN-α2, IL-1 α, IL-1Rα, IL-3,

IL-9, IL-12(p40), IL-15, IL-17, IFN-γ-induced protein (IP)-10, monocyte chemotactic protein

(MCP)-1, MCP-3, macrophage-derived chemokine (MDC), macrophage inflammatory pro-

tein (MIP)-1α, MIP-1 β, sIL-2 receptor α (Rα), transforming growth factor (TGF)- α, TNF- β,

vascular endothelial growth factor (VEGF) and soluble CD40 ligand (sCD40L) and a cardio-

vascular panel including soluble E-selectin, soluble vascular cell adhesion molecule (s-VCAM),

soluble intracellular adhesion molecule (s-ICAM), matrix metalloproteinase-9 (MMP-9), mye-

loperoxidase (MPO), total plasminogen activator inhibitor (tPAI). Testing was performed fol-

lowing the manufacturer’s protocols. Standard curves and samples were tested in duplicate.

The standard curve detection ranged from 2–25000 ng/mL for the cardiovascular panel, 1.3–

2000 pg/mL for the high sensitivity panel, and 3.2–10,000 pg/mL for the standard sensitivity

panel. The values that were out of range low were assigned a value half the lowest standard.

HIV/ HCV co-infection and liver fibrosis
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The values that were out of range high were assigned a value twice the highest value in the set.

Results were acquired on a Labscan 200 analyzer (Luminex) using Bio-Plex manager software

v6.1 (Bio-Rad), and study plates were compiled using Data Pro (Bio-Rad). Data were exported

to Prism (Graphpad) for graphing and SAS for analysis.

Statistical analysis

Demographic and clinical characteristics were described with means (standard deviations),

medians (interquartile ranges) and frequencies (percent) stratified by HIV clinical subgroups

and presence or absence of HCV viremia. APRI, chemokines, 45 cytokines and cell adhesion

molecules were measured. Twelve soluble markers received 50% or fewer detectable results for

a given cytokine were excluded from further analysis; these included IL-4, IL-12p70, IL-13,

IFNα2, IL-1α, IL-1ra, IL-3, IL-9, IL-12-p40, IL-15, IL-2R α and TNF- β. One marker, soluble

CD40L, was out of range high in more than 50% of the results and was excluded from further

analysis. Cytokines compared by HCV viremia status using the t test and by HIV clinical sub-

groups using the Tukey method to account for multiple pairwise comparisons. Variables were

transformed (log10 or square root) to achieve normality, as needed. Correlation of CD4 count,

chemokines, cytokines and cell adhesion molecules with APRI were measured with Spear-

man’s rank correlation coefficients for the total population and within HCV RNA+ HIV clini-

cal subgroups. Given the small sample size within subgroups, non-parametric correlations

were used to minimize the influence of potential outliers. To control for the expected propor-

tion of incorrectly rejected null hypotheses, p-values for comparisons among biological mark-

ers were adjusted into FDR (False Discovery Rates) by the Benjamini and Hochberg

controlling procedure [32], a commonly used method for analysis of large sets of biological

data. While statistical significance was defined as p<0.05 and reported for all comparisons,

due to the small sample size and discovery nature of this study, the FDR are also reported to

describe the strength of the findings. Data analysis and graphing were performed by SAS ver-

sion 9.3 (Cary, NC) and Prism (GraphPad), respectively.

Results

Patient population

Seventy-nine HCV antibody positive women were identified and grouped as follows (Table 1):

Elites (n = 20), controlled HIV on ART (ARTc; n = 20); uncontrolled on ART (ARTuc; n = 21)

and HIV uninfected (n = 18). Mean age (SD) was 49 (±7) years ranging from 35.6–62.9 years,

mean CD4 cell count among HIV infected women was 681 cells/μL (±399), and 54% of

women reported being African American (AA). There were no differences in age and race

between the subgroups. To control for variations in all biomarkers for effects of alcohol con-

sumption, we compared the high (n = 20) and low alcohol consumers and found that there

were no differences in the biomarkers by alcohol consumption (p>0.05 for all cytokines).

There were 9 individuals who had received HCV treatment in the past and all failed to clear

HCV. All individuals who cleared HCV did so spontaneously, without treatment, prior to

entering WIHS.

Correlation of chemokines, cytokines and cell adhesion molecules levels

with liver fibrosis as measured by APRI

In another study based on a similar sample set in WIHS [14], it has been previously published

that APRI was higher in HCV RNA+ women compared to HCV RNA-. Furthermore, this pat-

tern of lower APRI in HCV non-viremic and higher APRI in HCV viremic women was

HIV/ HCV co-infection and liver fibrosis
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observed within each HIV clinical group. In Elite, APRI was higher in HCV RNA+ compared

to RNA-. APRI was also higher in HCV RNA+ compared to HCV RNA- subjects within each

of the other clinical groups (ARTc, ARTuc and HIV-). To identify soluble biomarkers and

inflammatory responses involved in hepatic injury, we focused our investigations on 32 mark-

ers including cytokines, chemokines and cell adhesion molecules (45 markers were measured,

32 markers were detectable; Table 2). We found that sVCAM (r = 0.38; p<0.001;

FDR = 0.008), sICAM (r = 0.32; p = 0.004; FDR = 0.03). IL-10 (r = 0.29; p = 0.01, FDR = 0.07)

and IP-10 (r = 0.45; p<0.001; FDR = 0.002) were positively correlated with APRI while IL-17

(r = -0.3; p = 0.007; FDR = 0.05), EGF (r = -0.25; p = 0.02; FDR = 0.13), TGF- α (r = -0.37;

p<0.001; FDR = 0.009) and MMP-9 levels (r = -0.41; p<0.001; FDR = 0.002) were inversely

correlated with the APRI (Fig 1). We found similar results with FIB-4 (S1 Fig). When stratify-

ing the HCV RNA+ group by HIV clinical subgroups, sVCAM levels correlated with APRI in

ARTuc (r = 0.66, p = 0.03; FDR = 0.3), while correlation of sICAM with APRI was found only

in the ARTc group (r = 0.72, p = 0.02; FDR = 0.2). None of the soluble markers correlated with

APRI in the elite controller group.

Soluble cytokines, chemokines and cell adhesion molecules are

associated with HCV viremia

Previous studies demonstrated that inflammatory liver diseases increase cell adhesion mole-

cules, chemokine and cytokine expression [13,23]. In HCV mono-infection viremia increases

cell adhesion molecules and chemokines directing cellular immune responses to the liver [33].

We found that HCV RNA+ status alone was associated with higher sVCAM (p = 0.01;

FDR = 0.15), sICAM (p = 0.004; FDR = 0.1) and IP-10 levels (p = 0.001; FDR = 0.02) (Fig 2)

compared to HCV RNA- status. In the HIV positive and negative subgroups, HCV RNA+ IP-

10 levels were higher in ARTc, elite controller and HIV uninfected women compared to the

Table 1. Demographics.

HIVneg Elite ARTc ARTuc

HCV RNA Neg (n = 8) Pos (n = 10) Neg (n = 9) Pos (n = 11) Neg (n = 10) Pos (n = 10) Neg (n = 10) Pos (n = 11)

Age, years

(mean ±SD)

51.3 ±4.8 45.5 ±7.5 46.9 ±7.7 47.6 ±6.4 50.9 ±7.2 51.0 ±4.1 48.8 ±7.8 48.6 ±5.9

Race, AA

(% total)

50% 50% 33% 64% 60% 70% 50% 55%

HIV RNA; log10 copies/mL

(mean ±SD)

ND ND ND ND 3.61 ±1.01 2.98 ±0.78

CD4 count*; cells/μL

(mean ±SD)

1123 ±336 910 ±254 897 ±255 918 ±429 996 ±336 722 ±226 297 ±171 294 ±169

HCV RNA; log10 copies/mL

(mean ±SD)

ND 5.49 ±1.06 ND 5.79 ±0.44 ND 6.14 ±0.93 ND 6.24 ±0.31

APRI 0.17 ±0.05 0.48 ±0.38 0.38 ±0.56 0.46 ±0.25 0.37 ±0.17 0.78 ±0.50 0.17 ±0.07 1.36 ±1.62

Serum AST log10

(mean ±SD)

1.22 ±0.11 1.55 ±0.21 1.27 ±0.10 1.53 ±0.14 1.46 ±0.15 1.64 ±0.18 1.19 ±0.08 1.68 ±0.27

Serum ALT; log10

(mean ±SD)

1.09 ±0.16 1.49 ±0.18 1.13 ±0.17 1.52 ±0.17 1.35 ±0.25 1.52 ±0.18 1.11 ±0.16 1.66 ±0.26

Platelet count

(x 103/microliter)

(mean ±SD)

260.2 ±44.8 237.7 ±52.5 250.4 ±118.7 230.3 ±69.5 231.6 ±62.7 208.1 ±62.3 268.1 ±58.5 219.2 ±130.1

Abbreviations: SD = standard deviation; ND = not detectable (<80 RNA copies/mL for HIV and <80 RNA copies/mL for HCV); AA = African American.

*CD4 differed between HCV RNA negative versus positive (ARTc p = 0.04) and by HIV subgroup (ARTuc p<0.001).

https://doi.org/10.1371/journal.pone.0181004.t001
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Table 2. Biomarker measurements in all HCV and HIV groups.

HIV negative Elite RNA Neg ART Controlled ART Uncontrolled

HCV RNA Neg HCV RNA Pos HCV RNA Neg HCV RNA Pos HCV RNA Neg HCV RNA Pos HCV RNA Neg HCV RNA Pos

n = 8 n = 10 n = 9 n = 11 n = 10 n = 10 n = 10 n = 11

APRI^ 0.17 (0.14–

0.19)

0.755 (0.24–

2.18)

0.17 (0.13–

0.21)

0.32 (0.29–

0.43)

0.245 (0.13–

0.29)

0.37 (0.31–

0.54)

0.285 (0.27–

0.50)

0.74 (0.34–

0.95)

IL-1α 0.3 (0.1–0.6) 2.6 (0.2–4.4) 0.1 (0.1–0.5) 0.3 (0.1–3.7) 0.1 (0.1–0.6) 0.3 (0.1–2.9) 0.3 (0.1–1) 0.1 (0.1–1)

IL-2 0.3 (0.1–1.5) 2.1 (0.2–7.9) 0.1 (0.1–0.8) 2.1 (0.2–5.9) 0.2 (0.1–0.4) 0.3 (0.2–1.7) 0.4 (0.1–1.1) 0.2 (0.1–0.9)

IL-5 0.3 (0.1–0.5) 0.4 (0.1–0.7) 0.2 (0.1–0.4) 0.4 (0.2–0.8) 0.4 (0.1–0.9) 0.4 (0.1–0.6) 0.4 (0.2–0.6) 0.2 (0.2–0.5)

IL-6 12.2 (5.5–22.2) 11.5 (7.4–23.4) 6.5 (2.7–21.6) 4.1 (2.7–23) 6.5 (1.5–13) 7.7 (1–13.7) 4.8 (3.7–10.1) 4.9 (2.3–6)

IL-7 4.5 (2.2–7.3) 8.4 (3.5–11.8) 5.7 (3.1–8.6) 3.5 (1.7–9.1) 10.5 (4.2–15.7) 7.7 (6.2–8.9) 15.3 (6.6–26.6) 11.1 (5.4–19.8)

IL-8 21.2 (7.2–75.4) 23 (7.6–119.4) 43.6 (17.7–

177.1)

32.2 (9.3–

123.2)

18.7 (7.1–35.1) 22.1 (10.8–

55.6)

17.8 (6.9–42) 21.3 (14–67)

IL-10 6.5 (5.4–12.1) 27.2 (7.5–50.9) 8.9 (8–20.8) 14.1 (10.6–

34.9)

9.5 (7.4–24.5) 18.2 (13.3–

22.2)

21.5 (11.5–

34.9)

22.4 (12.7–

27.3)

IFN-γ 0.1 (0.1–1.1) 1.1 (0.1–8.2) 1.4 (0.1–2) 1.5 (0.8–7.1) 0.1 (0.1–1.6) 0.3 (0.1–6.4) 0.1 (0.1–1.5) 0.1 (0.1–1)

Gm-CSF 0.4 (0.1–1.6) 3.8 (1.5–6) 0.3 (0.2–1) 0.5 (0.1–13.7) 0.2 (0.1–0.7) 1.2 (0.1–4.2) 0.1 (0.1–1.1) 0.1 (0.1–2.8)

TNF-α 8.7 (5.5–12.8) 7.1 (4.5–9.7) 8.1 (5–13) 7.1 (5.4–11.6) 10.6 (6.7–17.4) 11.1 (8.8–15.6) 14.6 (10–18.8) 14.7 (9.8–19.4)

sE-Selectin 47.8 (36.7–

78.2)

57.6 (46.6–

94.6)

59.6 (39.3–

64.6)

76.7 (55.9–

104.2)

58.4 (36.2–

66.7)

52.8 (39.1–

64.8)

45.5 (26.1–

59.2)

36.2 (30.1–

61.6)

sVCAM-1 1697 (1313–

1984)

1582 (1263–

2328)

1449 (1281–

1793)

1857 (1545–

2144)

1628 (1281–

1865)

1984 (1697–

2576)

1728 (1488–

2355)

2561 (1953–

2712)

sICAM-1 386.5 (271.1–

492.8)

364.9 (303.1–

659.8)

267.4 (207.4–

448.8)

395.5 (259.9–

459.9)

292.3 (237.7–

407)

364.9 (327.9–

403.1)

320.5 (278.2–

354.6)

455.3 (388.2–

670.3)

MMP-9 300.1 (229.2–

388.9)

436.8 (263.5–

617.3)

613.8 (357.6–

905.3)

301 (132.4–

503.3)

376.7 (232.8–

530.5)

249.1 (173.1–

445.9)

194.6 (150.7–

290.1)

192 (137.7–

234)

MPO 140.7 (96.2–

746.9)

482.7 (285.5–

728.3)

868.2 (483.6–

2584)

293.9 (127.2–

776.2)

253 (140.8–

431.3)

174.3 (74.7–

274.6)

112.9 (74.6–

311.9)

99 (85.4–

227.9)

total PAI-1 122.7 (103.2–

156.5)

150.3 (117.1–

183.4)

114.6 (102.5–

161.5)

115.3 (91.9–

126.8)

163.8 (116.3–

217.5)

124.2 (105.7–

161.1)

129.6 (99.2–

198.9)

105.6 (93.1–

186.2)

EGF 189.9 (84.7–

293.3)

318.2 (88.3–

465.4)

311 (123.2–

443.2)

223 (71.8–

386.4)

127.4 (108.9–

292.6)

98.3 (55.1–

204.8)

297 (132.6–

416.6)

121.5 (27.5–

256.7)

Eotaxin 86.8 (64.9–

102.8)

107.8 (66.6–

157.6)

117.6 (43.8–

191.7)

91.5 (44–137) 193.6 (82.5–

254.5)

152.1 (106.9–

217.6)

165.7 (72.4–

256.4)

108.6 (90.2–

215)

FGF-2 41.5 (15.7–

63.6)

89.4 (41.4–

132.5)

18.2 (1.6–50.5) 44.9 (22.9–

70.3)

6.8 (1.6–31.7) 1.6 (1.6–79.1) 1.6 (1.6–63.6) 1.6 (1.6–111.9)

Fit-3

Ligand

24.1 (1.6–48.9) 4.2 (1.6–115.1) 7.2 (1.6–79.2) 1.7 (1.6–47.8) 1.6 (1.6–103.4) 3 (1.6–27) 19 (1.6–24.7) 1.6 (1.6–22.5)

Fractalkine 81.2 (30.2–

118)

52.6 (1.6–

105.2)

1.6 (1.6–215.1) 33.8 (1.6–113) 1.6 (1.6–12.9) 67.1 (14.2–

161.5)

4 (1.6–104.1) 1.6 (1.6–52.4)

G-CSF 43.4 (32.8–

60.6)

47.2 (38.1–

155.4)

45.8 (19.3–

118.3)

34.7 (9.7–46) 32.6 (27.2–

63.1)

37.7 (21.3–

64.9)

37 (21.9–75.6) 30.2 (19.8–

43.2)

GRO 2777 (1586–

3696)

1686 (1085–

2587)

2198 (1146–

2413)

1412 (675.7–

1995)

1874 (1494–

3835)

1945 (1521–

2809)

2587 (1769–

3233)

2721 (2030–

3026)

IL-17 14.9 (3.3–35.3) 7 (1.7–26.2) 2 (1–8.6) 2.7 (1.1–5.6) 1.6 (1.2–33.9) 1.6 (1.6–3) 1.6 (1.6–38.4) 1.6 (1–1.6)

IP-10 249.9 (135.7–

491.5)

490.5 (336.9–

850.2)

287.7 (210.4–

383.3)

655.7 (449.2–

1025)

304.1 (191.7–

789.5)

788.7 (442.1–

1316)

1066 (836.5–

2029)

1522 (867.9–

2197)

MCP-1 371.6 (264.6–

660.3)

431 (244.1–

675.9)

545.5 (369.4–

1050)

414.8 (274.1–

592.9)

776.8 (407.4–

1355)

825.8 (612.9–

1158)

692.4 (512.7–

1491)

658.7 (399.4–

832.4)

MCP-3 18.3 (10.4–

31.3)

43.6 (21.1–

75.1)

7 (1.6–30.5) 11.8 (3–25.2) 1.6 (1.6–15.6) 28.1 (1.6–53.9) 4.8 (1.6–23.7) 7 (1.6–18.3)

MDC 3790 (3344–

4557)

3770 (1972–

4768)

2469 (1292–

5558)

1560 (817.9–

3023)

3884 (2607–

4135)

3467 (2775–

4716)

3867 (2250–

4893)

2927 (2431–

3902)

(Continued )
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corresponding HCV RNA- groups (Fig 3). Among ARTuc women, no difference in IP-10 by

HCV RNA status was detected (p = 0.34; FDR = 0.7) and IP-10 levels were significantly ele-

vated compared to HCV viremic ARTc, elite controller and HIV uninfected women.

Cytokine concentrations were compared among the HCV+ HIV negative and positive

groups. In HIV+ ART-treated groups, inflammatory cytokines and chemokines (TNF-α,

GRO, IP-10 and MDC) were higher compared to the other groups. Even in treated and sup-

pressed infection, chemokines MCP-1 and MDC were significantly elevated compared to the

other groups. Compared to ART-treated individuals, higher concentrations in the HIV nega-

tive or Elite were found in some soluble biomarkers including FGF-2, MPO, soluble E-selectin,

MMP-9, IL-17, GM-CSF and TGF-α(all p-values p<0.05; results in Table 3 and Fig 4).

Discussion

Liver fibrosis, as measured by a high APRI or FIB-4 score, was associated with an increase in a

number of inflammatory mediators including sICAM, sVCAM and IP-10 in women with

chronic hepatitis C (HCV RNA+) compared to HCV RNA- women. One chemokine in partic-

ular, IP-10, an interferon-induced protein that has been implicated in liver fibrosis [34,35] and

lower ability to clear infection [36], was elevated in HCV RNA+ women even among those

women with suppressed HIV replication (elite controllers and ART responders). The very

high IP-10 levels seen in the women with uncontrolled HIV replication dominate the relatively

weaker IP-10 induction driven by HCV RNA. Other studies have shown increased hepatic dis-

ease and greater liver-related mortality in HIV-infected individuals with HCV co-infection

[37,38], and our study identifies several pro-inflammatory markers potentially mechanistic

associated with increased liver pathology. While ART control and/or elite control was associ-

ated with reduced IP-10, the inflammatory effects of HIV infection persisted when compared

to HIV uninfected women [7].

The mechanisms underlying increased hepatic injury during HIV/HCV co-infection are

not well understood. Strong anti-HCV cellular and antibody responses are induced during

acute infection, and while in some cases this may result in resolved infection, in other cases the

HCV infection persists [39,40]. There is evidence that cytokine and chemokine production,

increased cell adhesion molecule expression, and cellular infiltration to the sites of hepatic

infection contribute to tissue damage and fibrosis in HIV/HCV co-infected subjects [23]. A

decrease in IFN-γ producing T cells show a reduction in anti-viral immune responses in the

liver and reduced concentrations of regulatory T cells and elevated levels of chemokines and

monocytes trafficking to the liver may promote liver fibrosis [41–43]. Previous studies have

shown elevations in sVCAM-1 and sICAM-1 in advanced fibrosis and as predictors of liver-

related events [44,45]. Our current work would support this hypothesis, showing the markers

Table 2. (Continued)

HIV negative Elite RNA Neg ART Controlled ART Uncontrolled

HCV RNA Neg HCV RNA Pos HCV RNA Neg HCV RNA Pos HCV RNA Neg HCV RNA Pos HCV RNA Neg HCV RNA Pos

n = 8 n = 10 n = 9 n = 11 n = 10 n = 10 n = 10 n = 11

MIP-1α 64.8 (48.7–

147.7)

100.7 (46–

150.6)

71.9 (15.4–

734.9)

29.6 (13.8–

95.5)

41.9 (5.7–

117.8)

81 (31.1–

148.9)

108.1 (26.8–

861.9)

61.8 (30.3–

129)

MIP-1β 78.7 (38.8–

169.9)

105.6 (81–

309.5)

125.1 (31.6–

285.7)

50.3 (30.4–

149.4)

53.2 (44.4–

95.4)

91.5 (62.6–

125.5)

73.3 (49.3–

214.3)

61 (22.5–

104.3)

TGF-α 10.5 (7.4–14.1) 12.9 (8.8–29.4) 12.3 (7.1–42.4) 4 (1.3–10) 5.7 (1.6–10) 6.8 (3.4–9.8) 4.2 (2.2–10.4) 4.5 (2.6–5.9)

VEGF 394.7 (301.9–

546.8)

334.8 (188.5–

879.4)

244.2 (18.4–

628.3)

129.4 (50.7–

271.7)

652 (169.5–

957.4)

296.9 (218.8–

536.3)

439.9 (256.4–

1717)

332.4 (193.8–

613.3)

https://doi.org/10.1371/journal.pone.0181004.t002
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Fig 1. Cytokines and chemokines correlate with liver fibrosis. Cytokines, chemokines and cell adhesion

molecules were evaluated for correlation with APRI, a marker of liver fibrosis. The subgroups were broken down by

color: HIV Neg (blue), Elite (green), HIV uncontrolled (ARTuc; red) and HIV controlled (ARTc; orange), and by HCV

RNA status: positive (closed circles) and negative (open circles).

https://doi.org/10.1371/journal.pone.0181004.g001
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Fig 2. VCAM-1, ICAM-1 and IP-10 as soluble markers of HCV replication. Cytokines, chemokines and cell adhesion molecules were compared

across HCV RNA status. The bars represent the median and interquartile ranges.

https://doi.org/10.1371/journal.pone.0181004.g002

Fig 3. Elevations in IP-10 in HIV-HCV co-infection. Significant elevations of IP-10 were observed in all HCV RNA+ groups compared to HCVRNA-

except for ARTuc. The bars represent the median and interquartile ranges.

https://doi.org/10.1371/journal.pone.0181004.g003
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associated with fibrosis in this study were pro-inflammatory chemokines (IP-10), cytokines

(IL-10) or were soluble cell adhesion molecules (sVCAM-1, sICAM-1). In line with this ele-

vated inflammation with uncontrolled HIV replication we found significantly higher levels of

TNF- α, IP-10 and GRO.

Table 3. HCV RNA+ cytokine comparison in HIV negative and HIV positive groups.

p-values (FDR) HIVneg vs Elite HIVneg vs ARTc HIVneg vs ARTuc Elite VS ARTc Elite vs ARTuc ARTuc vs. ARTc

GM-CSF 0.04 (0.21)

TNF-α 0.03 (0.19)

sE-Selectin 0.03 (0.26)

MMP-9 0.02 (0.15)

MPO 0.04 (0.54) 0.006 (0.07) 0.03 (0.26)

FGF-2 0.015 (0.36) 0.013 (0.12)

GRO 0.03 (0.26)

IL-17 0.04 (0.21)

IP-10 0.0006 (0.1) 0.007 (0.26) 0.04 (1)

MCP-1 0.005 (0.27) 0.005 (0.23)

MDC 0.03 (0.77) 0.02 (0.42) 0.02 (0.26)

TGF-α 0.003 (0.16) 0.02 (0.13)

https://doi.org/10.1371/journal.pone.0181004.t003

Fig 4. Differential expression of soluble immune mediators in HCV RNA+ individuals. The HCV RNA+ HIV negative and HIV positive groups

were compared for all cytokines measured. Groups with significant cytokine differences are identified as p<0.05; a false discovery rate adjustment for

multiple comparisons was performed (Benjamini Hochberg) all values are presented.

https://doi.org/10.1371/journal.pone.0181004.g004
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A few factors were found to be negatively correlated with APRI including IL-17, EGF, TGF-

α and MMP-9 levels. Expression of these factors may result in a protective effect and reduced

hepatic injury. Although many reports on the mechanisms of fibrosis indicate a link between

pro-inflammatory mediators, such as IL-17, and hepatic injury and fibrosis, we found an

inverse correlation between IL-17 and APRI score (r = -0.25; p = 0.02) with no relationship

between IL-17 and CD4 count (r = 0.11, p = 0.3). Studies have shown that IL-17 exacerbates

hepatic fibrosis in mice; however, co-expression of IL-17 and IL-22 has also been shown to

ameliorate fibrosis [46]. This is further supported by the finding in another murine study that

IL-22 induces senescence in hepatic stellate cells, thereby reducing fibrosis [47], which remains

to be investigated since IL-22 was not assessed in our study. We found that EGF, MMP-9 and

TGF- α levels were inversely correlated with APRI; in the HIVuc group, we also found signifi-

cantly lower levels of FGF-2, MMP-9 and MPO compared to the other groups. EGF and TGF-

α have a role in the regenerative response in the liver and EGF family members have been

shown to inhibit TGF-β induced hepatic stellate cell activation and fibrosis induction [48–50].

Interestingly, TGF-α induces expression of MMPs which are involved in fibrinolysis [51]. In a

murine model, after Flt3L-expressing B16 melanoma cells were injected into mice, it induced

dendritic cell expression of MMP-9, which in turn reduced fibrosis [52]. Further studies inves-

tigating the expression of these markers on would be important in elucidating the mechanisms

of protection from fibrosis.

After comparing the cytokines by HIV positive and negative groups, two different profiles

of responses become evident. There is a subset of cytokines that shows higher concentrations

in the ART-treated HCV+ groups (TNF-α, GRO, IP-10 and MDC) and a subset that shows

lower concentrations in ART-treated groups (MCP-1, MDC, FGF-2, MPO, sE-Selectin, MMP-

9, IL-17, GM-CSF and TGFα); although some differences were seen in both ART-treated

groups, the differences were most evident in the group with uncontrolled HIV. As seen by ear-

lier analysis, IP-10 in the HCV+ ART-treated groups was also found to be significantly corre-

lated with increased fibrosis. Similarly, IL-17, TGF-α and MMP-9 were higher in the HIV

negative and Elite groups and correlated with lower fibrosis. A number of the p-values were

higher after correcting for false discovery rate and this may be due to the small sample size of

the study groups. Regardless, the discovery of these markers is important in understanding the

mechanism of pathogenesis in HIV and HCV co-infection and validation of these markers in

larger, more targeted studies of these biomarkers will be required.

There are certain limitations to our study. Given the stringent eligibility criteria for inclu-

sion in these analyses, sample size was limited by the number of available elite controllers;

other groups were selected to achieve similar age and race distributions. Although small, our

HIV groups were carefully selected and represented extremes of control or lack of control of

HIV infection. These extreme HIV groups have not been studied in HCV viremic and non

viremic women and show that both HIV and HCV status are important in immune responses.

Our marker of fibrosis, APRI, was calculated from available clinical information was used as a

surrogate for liver fibrosis and was highly correlated with the alternative marker for fibrosis,

FIB-4. Both of these markers have been validated in WIHS and other studies and shown to be

independently associated with all-cause mortality in HCV/HIV phenotypic groups (elite, ART

controlled, ART uncontrolled, and HIV negative). Spearman correlation coefficients were 0.83

(p = 0.002), 0.83 (p = 0.003), 0.99 (p<0.001), and 0.89 (p<0.001), respectively [30,53–55]. We

found similar results in the analysis of fibrosis and soluble markers (Fig 1 and S1 Fig). There-

fore, we proceeded with APRI throughout the analysis of coinfected women. In summary, we

have identified a panel of biomarkers that are associated with unresolved HCV infection with

and without HIV co-infection. In the HCV RNA+ group, APRI scores, sICAM, sVCAM, and

IP-10 all were elevated, pointing to a potential pathway whereby HCV replication drives
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inflammation and induces hepatic fibrosis. APRI in HCV RNA+ positively correlated with

markers of inflammation and higher concentrations of these markers were especially seen in

ART-treated subjects with uncontrolled HIV replication implying that co-infection can

amplify the pro-inflammatory effects of HCV replication. Finally, a subset of markers was

found associated with lower fibrosis and with HIV negative or viremic control and these mark-

ers may be important in identifying a better prognosis in Elite or treated individuals. Our find-

ings will inform future investigations into the underlying mechanisms of liver pathogenesis

and will reveal inflammatory mediators most relevant to these processes. The clinical implica-

tion of these findings is that new, potent anti-HCV therapy may be more effective in reducing

the pro-inflammatory environment in those HIV co-infected subjects who have controlled

HIV replication, and likely would not significantly reverse the inflammatory state in those

with uncontrolled HIV replication. However, anti-HCV therapy would be predicted to halt or

slow liver fibrosis, even among subjects with uncontrolled HIV replication.

Supporting information

S1 Fig. Cytokines and chemokines correlate with liver fibrosis. Cytokines, chemokines and

cell adhesion molecules were evaluated for correlation with FIB-4, a marker of liver fibrosis.

The subgroups were broken down by color: HIV Neg (blue), Elite (green), HIV uncontrolled

(ARTuc; red) and HIV controlled (ARTc; orange), and by HCV RNA status: positive (closed

circles) and negative (open circles).

(TIF)
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