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Abstract: With the increased use of extended-criteria donors, machine perfusion became a beneficial
alternative to cold storage in preservation strategy for donor livers with the intent to expand donor
pool. Both normothermic and hypothermic approach achieved good results in terms of mid- and
long-term outcome in liver transplantation. Many markers and molecules have been proposed for the
assessment of liver, but no definitive criteria for graft viability have been validated in large clinical
trials and key parameters during perfusion still require optimization.In this review, we address the
current literature of viability criteria during normothermic and hypothermic machine perfusion and
discuss about future steps and evolution of these technologies.
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1. Introduction

The ongoing discrepancy between organ demand and supply has moved the spotlight
toward implementing rescue strategies for extending the pool to deceased donors that
were previously considered marginal or even unsuitable for transplantation [1–3]. In
the last years, ex-situ machine perfusion (MP) emerged as an alternative to static cold
storage (SCS) preservation, especially in extended criteria donors (ECD), which have a
higher susceptibility to ischemia reperfusion injury (IRI) compared to standard donors [4].
Both normothermic (NMP) and hypothermic machine perfusion (HMP) showed good
results in terms of mid- and long-term outcome in liver transplantation (LT), but their
role in organ preservation has not been fully elucidated. The decision on which kind of
technology, temperature and for how long to preserve liver grafts in MP is still under
debate and each transplant center developed its own operative protocols. If the potentiality
of MP to minimize post-LT complication is emerging in clinical practice, their capacity
to allow a proper organ selection is questionable but represents a fundamental step to
increase the pool of available grafts. Many markers and molecules have been proposed
for the assessment of the livers (Table 1), but no definitive criteria for graft viability have
been validated in large clinical trials and key parameters during perfusion still require
optimization. Even if the capacity of NMP to predict organ viability seems more promising,
HMP showed great potentialities as well.

In this review, we evaluate the current literature on MP with the aim to provide a
concise overview on the adopted viability criteria during NMP and HMP and discuss about
the future steps and the evolution of these technologies.
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Table 1. Overview of viability assessment in ex-situ machine perfusion.

Normothermic Machine Perfusion

Blood

Hemogasanalysis

Lactates

pH

Glucose Metabolism

Bicarbonates

Biochemical analysis
Transaminases

Platelet and coagulation factors

Macroscopic appearance

Arterial and portal flow

Bile
Biochemical analysis

Biliary pH

Biliary bicarbonate

Biliary glucose

Biliary production

Hypothermic machine perfusion

Perfusate Hemogasanalysis Glucose, lactate

Biochemical analysis AST, ALT, LDH

Fluorescence spectroscopy Flavin mononucleotide

2. Paper Selection

A systematic of the published literature, with the goal to investigate viability criteria
in machine perfusion for LT was carried out on the 1 August 2022. Inclusion criteria for this
review were as follows: A search of the MEDLINE, Scopus and Cochrane Database was
conducted using the following terms: for NMP section: (“normothermic” AND/OR “ma-
chine perfusion”) AND liver transplantation” AND ((“2005/01/01”[Date—Publication]:
“2022/08/01”[Date—Publication])), for HMP section: ((hypothermic) AND (machine perfu-
sion)) AND ((“2005/01/01”[Date—Publication]: “2022/08/01”[Date—Publication])). The
references of each of the selected articles were also evaluated in order to locate additional
studies that were not included in the initial search. Only clinical studies on human graft
were considered.

The search streategy was performed by the Preferred Reporting Items for Systemic
Reviews and Meta-Analysis (PRISMA) guidelines [5] (Figure 1).
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Relevant articles were extracted independently by four authors (F.M., R.D.C, A.L., F.T.)
who evaluated and excluded duplicates. No specific search dates were used. Consensus
for the relevance of an included study were carried out by four senior authors (R.D.C. and
A.L: for HMP chapter; F.M. and D.G. for NMP chapter). Given the heterogeneity of the
selected studies and paucity of patients identified within the selection criteria, the results
are reported as a narrative review.

3. The Evolution of Normothermic Machine Perfusion

NMP provides a near-physiological environment to the liver, has the potential to
evaluate high-risk grafts viability, allow organ therapeutics and improve transplant logistic
by prolonging the preservation time up to 24 h [6].

The first phase-1 non-randomized prospective clinical trial evaluating NMP in LT was
performed in 2016 by Ravikumar et al. [7] in which 20 liver grafts were preserved with
the OrganOx Metra® device for a median of 9.3 h (3.5–18.5h). The study demonstrated
that NMP was safe and feasible reporting 100% graft survival at 1 and 6 months in the
NMP groups versus 97.5% at the same time points in the static cold storage (SCS) group,
respectively. Selzner et al. [8] retrospectively compared SCS to NMP using the albumin-
based Steen SolutionTM as an alternative to a red blood cell-based perfusate. They reported
a 100% 3-months graft survival in the study group and demonstrated the safety of the
Steen SolutionTM for ex-situ NMP. Bral et al. [9] reported the first NMP experience in
Canada in ECD and donation after cardio-circulatory death (DCD) donors. The authors
reported comparable results to SCS preserved donors despite more prolonged intensive
care and hospital stays in the NMP group. The OrganOx Metra® device was initiated at
the donor center. Nasralla et al. [10] published the first prospective randomized controlled
trial (RCT) comparing NMP with SCS and showed a 50% lower rate of graft discard,
but no significant advantages in terms of graft and patient survival. In the same year,
Watson et al. [11] analysed the perfusion characteristics of 47 livers, 22 of which were
eventually transplanted, and argued that liver viability during NMP can be assessed
using a combination of transaminase release, glucose metabolism, lactate clearance, and
maintenance of acid-base balance. Bile pH measurement had a relevant role in prediction
of post-transplant ischemic cholangiopathy (IC). The publication of Ghinolfi et al. [12]
investigated the efficacy of NMP in very old grafts in a prospective RCT, evaluating
graft and patient survival at 6 months post-LT as the primary outcome. No cases of
primary non function (PNF) was reported in the NMP group, but the use of NMP did
not show any advantages in terms of post-operative transaminases peak, vascular or
biliary complications, and length of hospital stays compared to SCS. In order to evaluate
the potentiality of NMP to increase the number of available organs, Mergental et al. [13]
performed NMP in discarded livers in the so-called VITTAL study. They evaluated 31
grafts and eventually transplanted 22 (71%) of them with a 100% 3-months graft and patient
survival. Despite these relevant results, NMP was not able to prevent biliary complications.
More recently, a RCT by Markman et al. [14] showed better results in liver perfused by
NMP if compared to SCS in terms of early allograft disfunction (EAD) (18% vs. 31%,
p = 0.01), evidence of IRI at histology (6% vs. 13%, p = 0.004), incidence of IC at 6 (1.3%
vs. 8.5%, p = 0.02) and 12 months after LT (2.6% vs. 9.9%, p = 0.02), larger use of DCD
livers (51% vs. 26%, p = 0.007). Reiling et al. [15] described the first Australian experience
with a “back-to-base” NMP approach in rejected livers due to poor graft quality. All
10 cases experienced good outcomes, with no biliary complications, despite 50% of EAD.
Similar results are showed in an American experience with discarded grafts reported by
Quintini et al. [16] on 21 livers assessed with NMP. In this series one patient developed
an IC amenable to endoscopic treatment 4 months after LT. Most important, the authors
proposed the normalization of viability criteria per liver weight and perfusate volume.
Cardini et al. [17] presented data of prolonged NMP (up to 28 h) routinely used in marginal
organs, logistic challenges, and complex recipients. No significant complications were
reported, and night-time or parallel procedures were avoided. Eshmuminov et al. [18]
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developed an own made machine perfusion device with the aim to evaluate very prolonged
perfusions of the liver. Ten discarded human grafts underwent NMP for 7 days and 6
out of 10 showed preserved bile production, synthesized coagulation factors and restored
cellular energy levels. These results demonstrated that long-term NMP is feasible with
the appropriate technology. Finally, the group in Groeningen [19] tested the viability of
high-risk livers sequential HMP and NMP. In this prospective clinical trial, the 11 livers
that met hepatocellular and cholangiocellular viability criteria were transplanted showing
100% patient and graft survival at 3 and 6 months.

Many metabolic and dynamic parameters are used during ex-situ NMP to evaluate
graft quality and viability, but the predictive value of perfusate biomarkers on post-LT out-
comes remains to be established. The studies that focused on the liver viability parameters
during NMP are summarized in Table 2.

4. The Evolution of Hypothermic Machine Perfusion

HMP is gaining increasing widespread acceptance in the preservation of marginal
liver grafts [20–24]. Dual hypothermic oxygenated perfusion (D-HOPE) and HOPE have
been proven effective in improving the post-transplant outcome of DCD and brain death
(DBD) livers in two recent randomized controlled trials [25,26]. The first international
study analyzed the role of HMP in DCD liver donors [27] compared to matched SCS DCD
livers. HOPE significantly decreased alanine-aminotransferase (ALT) peak (1239 vs. 2065
U/L, p = 0.02), IC (0% vs. 22%, p = 0.015), biliary complications (20% vs 46%, p = 0.042),
and 1-year graft survival (90% vs. 69%, p = 0.035). Re-transplantation rate was higher
in SCS group (18% vs. 0%). Similarly, Guarrera et al. [28] perfused with HMP 31 ECD
“orphan livers” which were compared with 30 SCS grafts. Biliary complications (13% vs.
43%) and hospital stay were reduced in HMP group compared with SCS group. In 2018,
Schlegel et al. [29] compared 50 DCD livers perfused by HMP with 50 DCD and 50 DBD
preserved by SCS. Results showed less IC (8 vs. 22%), acute rejection (4 vs. 28%) and better
5-year patient survival (94% vs. 78%) in HMP group. The RCT led by the Groningen group
demonstrated a significant reduction of the incidence and severity of IC in DCD livers
preserved with end-ischemic D-HOPE compared to the SCS controls [25]. In another RCT
on HOPE in DBD published by the group of Berlin, the HOPE group reported significantly
lower transaminase peaks and 90-day complications [26]. Moreover, a recent European
series of DBD and DCD liver grafts have shown that (D-)HOPE may be used to safely
extend the preservation time and ease transplant logistic [30].

5. Viability Parameters during NMP

NMP is an ex-situ technology that maintains the liver at 37 ◦C in a physiological state
through the delivery of oxygen and nutrition. Throughout perfusion, hepatic artery (HA)
pressure is set to 70 mm Hg and portal pressure to 6–8 mm Hg. The flow rates targets
are >150 mL/minute in the HA and 600–1200 mL/minute in the portal vein (PV). During
perfusion, serial arterial perfusate and bile samples are collected and biopsies for serial
histological analysis can be obtained. Many metabolic and dynamic parameters are used
during ex-situ NMP to evaluate graft quality and viability, but the predictive value of
perfusate biomarkers on post-LT outcomes remains to be established.

Lactates
Lactate clearance is the most used viability criteria during NMP evaluation. Lactate

is a product of anaerobic glycolysis. The anoxia in the donor is the common cause of
lactate elevation. The liver is the major organ responsible for lactate clearance, thus lactate
represents a dynamic biomarker to monitor the function of the liver grafts [31]. In the
setting of NMP a certain amount of lactates originates from erythrocytes in the perfusate.

In the first experience of Mergental et al. [32] lactate clearance ≤ 2.5 mmol/L achieved
within the first 3 h of NMP in combination with evidence of bile production, good liver appear-
ance, glucose metabolism, stable artery flow > 150 mL/minute, portal flow > 500 mL/min,
and perfusate pH > 7.3 were used as liver acceptance criteria. The same parameters were
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considered in the VITTAL trial [13] as well, but the assessment period was prolonged
up to 4 h. Lactate clearance was not predictive of IC. Despite lactate is the main pa-
rameter in liver acceptance decision, the predictive value during NMP is not defined.
Nasralla et al. [10] reported one case of PNF with acceptable lactate clearance during NMP,
and Watson et al. [11] reported that the only liver that experienced PNF showed a perfusate
lactate level of 2.5 mmol/L after 90 min of perfusion.

Ghinolfi et al. [12,33] proposed a lactate downtrend irrespective to the baseline and
final values as marker of liver viability both in old DBD and DCD donors with pro-
longed warm ischemia time, while Reiling et al. [15] applied a threshold of ≤2.0 mmol/L
within the first 2 h of NMP and Van Leeuwen et al. [27] a cut-off ≤1.7 mmol/L. In 2019,
Ceresa et al. [34] discarded two livers with lactate ≥ 4 mmol/L after 4 h of perfusion. The
next year, Cardini et al. [17] presented 25 successfully LT perfused with NMP running up
to 38 h in which a physiological lactate level and a physiological pH value 2 h after com-
mencing perfusion were considered parameters of liver viability. As shown, the timepoint
when to decide if accepting a liver based on lactate value is still under debate. Recently
Hann et al. [35] showed good outcomes with liver that slowly cleared lactates reaching the
level of 2.5 mmol/L only after 6 h.

Quintini et al. [16] argued that perfusate composition and volume, and the graft size
are pivotal parameters to be considered in evaluating lactate clearance. Therefore, they
proposed the standardized lactic acid clearance (SLAC), which is adjusted by graft size and
the amount of circulating perfusate.

To date, not only lactate clearance but a combination with other parameters and the
normalization of the lactate values per liver size and amount of perfusate are key factors
for the decision to transplant a graft.

Transaminases
Although transaminases value is one of the most used markers of injury during

perfusion, its correlation with post-operative outcome is poor and the level during perfusion
could be influenced by the “wash-out” phenomenon and the size of the liver [36]. Wash-out
depends on amount of preservation fluid resulting in altered lower levels. For these reasons,
Quintini et al. [16] recently proposed to normalize transaminases per liver weight and
preservation solution volume. Moreover, aspartate aminotransferase (AST) level could be
impaired by hemolysis in perfusate, whereas ALT is a more specific liver enzyme.

In the clinical setting, no defined cut-off values were adopted. Only grafts with very
high levels of perfusate transaminases are discarded (ranging from >5000 up to 9000 IU/L
based on center experience and preferences). Watson et al. [11] reported a case of PNF in a
patient transplanted with a liver with a perfusate ALT level exceeding 9000 IU/L. Similarly,
in the Bral et al. [9] series, a liver with perfusate ALT levels > 9000 IU/L require re-LT after
3 months.

Nasralla et al. [10] showed that a higher baseline perfusate ALT level was associated
to worst outcome, while Ghinolfi et al. [12] couldn’t find any association between perfusate
peak AST level (219 to 3125 IU/L) and post-LT transaminases (p = 0.092; r = 0.560).

Glucose Metabolism
Glucose is also an easy and rapid marker of viability. Initially, glucose in the perfusate

is high due to the glycogenolysis activated during SCS. One hour after commencing NMP,
functioning livers determine the glucose concentration fall due a block of glycogenolysis
and trigger of glycogenesis. Low levels of glucose at NMP start are related to PNF. The
stimulation test with exogenous glucose was suggested by Watson [11]. In case of viable
liver, the glucose in perfusate rose after administration and subsequently decrease.

Several authors considered glucose metabolism as an important viability marker
in multiparametric assessment [11,19,34]. Notably, Mergental criteria [13] include the
evaluation of glucose metabolism after 4 h of perfusion together with other viability
parameters.

Ph
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Perfusate pH is usually low at the beginning of NMP due to hypoxia and anaerobic
metabolism. During perfusion, pH must maintain within a physiological range. Bicarbonate
may be administered at the beginning to correct pH, but several authors [11] reported
unfavourable outcome in liver requiring more than 30 mmol/L of bicarbonate during NMP.
Many factors, as perfusate composition, additives, or partial pressures of carbon dioxide,
could influence pH. For this reason, pH could be considered as a viability marker only in
multiparametric assessment.

Platelet and Coagulation Factors
Production of coagulation factors could show the efficient synthetic function of the

liver. Eshmuminov et al. [18] in their study on prolonged NMP, presented data on per-
fusate factor V concentration which was significantly higher in viable livers after 2 days
of perfusion.

More recently, Weissenbacher et al. [37] tested the capacity of liver synthesis by mea-
suring platelet counts, fibrinogen antigen, von Willebrand factor (vWF) antigen, and
coagulation factor XIII-A subunit (FXIII-A) antigen. The authors found that the increased
platelets and vWF antigen in the perfusate were predictive of EAD.

Bile Evaluation
Bile storage and analysis are routinely performed during NMP with the aim to find

markers predictive of IC or biliary complications, which remain the Achille’s heel of
LT [38–43]. Both cholangiocellular and hepatocellular criteria are relevant in the prediction
of post-LT biliary complications. Several studies focused on the evaluation of biliary
biomarkers during NMP, mainly pH, glucose, bicarbonate, and electrolytes concentration.

Table 2. Proposed viability criteria during Normothermic Machine Perfusion in clinical studies.

Author, Year, Ref Country n Viability Parameter End-Point Threshold

Ravikumar et al.,
2016 [7] UK 20 Perfusate pH,

bile production 30-day graft survival
Stable arterial and portal flow; pH beetwen

7.2 and 7.4 without correction;
bile production

Mergental et al.,
2016 [32] UK 6

Perfusate lactate, pH,
glucose metabolism,

bile production
ITU stay, in-hospital stay

Within 3 h of NMP: Lactate clearance to
<2.5 mmol/L or evidence of bile

production combined with at least two of
the following criteria:
1. Perfusate pH > 7.30

2. Hepatic artery flow >150 mL/min and
portal vein flow > 500 mL/min

3. Homogenous perfusion with soft
parenchyma consistency

Bral et al., 2017 [9] Canada 9
Perfusate lactate, pH,

transaminases, bilirubin
Bile production

Primary: 30-day graft survival Secondary:
Patient survival at day 30, peak serum
transaminase AST in first 7 days, EAD

incidence in first 7 days, liver biochemistry
in serum on days 1–7, 10, and 30, major

complications defined by Clavien-Dindo
score ≥3, patient and graft survival at 6

months, biliary complications at 6 months

pH, Lactate, ALT, AST, bilirubin, perfusion
vascular stability, hourly bile production

Watson et al.,
2018 [11] UK 47

Perfusate lactate, pH,
transaminases, glucose

metabolism Bile
production, bile pH,

bile glucose

PNF, EAD, biliary complications

1. Peak lactate fall ≥
4.4 mmol/L/kg/h

2. ALT<6000iU/Lat2h
3. Maximum bile pH > 7.5

4. Bile glucose ≤ 3 mmol/L or 10 mmol
less than perfusate glucose

5. Maintain perfusate pH > 7.2 with
≤30 mmol

bicarbonate supplementation
6. Falling glucose beyond 2 h OR perfusate
glucose < 10 mmol/L with subsequent fall

during challenge with 2.5 g glucose

Ghinolfi et al.,
2018 [12] Italy 10 Perfusate lactate Graft and patient survival at 6 months

1. Lactate downtrend
2.S table flow

3. Acceptable gross appearance with
uniform vascularization.
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Table 2. Cont.

Author, Year, Ref Country n Viability Parameter End-Point Threshold

Van Leeuwen et al.,
2019 [19] Netherland 16 Perfusate lactate, pH,

Bile production, bile pH

Primary: 3-month graft survival
Secondary: graft and patient survival at 6

months, PNF, biliary complications,
biochemical serum markers of graft

function and ischemia–reperfusion injury
at postoperative days 1 to 7, and after 1

and 3 months; graft utilization rate.

After 2.5 h of NMP:
1. Lactate clearance to ≤1.7 mmol/L.

2. Perfusate pH 7.35–7.45.
3. Bile production > 10 mL.

4. Biliary pH > 7.45

Matton et al.,
2019 [44] Netherland 23 Perfusate lactate, pH,

Bile production, bile pH Biliary complications

After 2.5 h of NMP:
1. Lactate clearance to ≤1.7 mmol/L;

2. Perfusate pH 7.35–7.45; 3. Bile
production > 10 mL; 4. Biliary pH > 7.48

Mergental et al.,
2020 [13] UK 31

Perfusate lactate, pH,
glucose metabolism,

bile production
90-day patient and graft survival

Within 4 h of NMP: lactate < 2.5 mmol/L
and ≥2 of the

following criteria:
1. Evidence of bile production;

2. pH > 7.30;
3. Metabolism of glucose;

4. HA flow > 150 mL/min and PV flow >
500 mL/min;

5. Homogenous perfusion

Cardini et al.,
2020 [17] Austria 34

Perfusate lactate, pH,
transaminases; Bile
production, bile pH

Graft and patient survival,
Biliary complications

1. Rapid decrease and maintenance of
lactate levels (first 2 h of NMP)
2. Bile output and biliary pH.

3. Maintenance of physiological
perfusate pH without sodium bicarbonate.

4. Exceptionally high or sharp incline of
AST, ALT, LDH.

Reiling et al.,
2020 [15] Australia 10

Perfusate lactate, pH,
glucose metabolism

Bile production
EAD, graft and patient survival

Within 2 h (to 4 h) of NMP:
1. Lactate clearance to

<2 mmol/L
2. Decreasing trend in perfusate glucose

concentration by 4 h.
3. Physiological pH without the need for

sodium bicarbonate.
4. Stable HA and PV flows.

5. Homogeneous graft perfusion with soft
parenchyma consistency

6. Evidence of bile production

Markmann et al.,
2020 [14] USA 153 Perfusate lactate incidence of EAD Perfusate lactate

Quintini et al.,
2022 [16] USA 21

Perfusate lactate
(standardized lactic acid

clearance [SLAC])
measurements by

converting the lactate
concentration to the
percentage of lactate

clearance per liver
weight at each time

point during perfusion),
bile production

EAD, PNF, biliary complications

Within 6 h of NMP, at least 2 of the
following criteria:

1 lowest perfusate lactate level
<4.5 mmol/L or a decrease of 60% from

peak in the first 4 h.2. bile production rate
higher than 2 mL/h;

3. stable HA flow of >0.05 mL/ min/g of
liver weight and PV flow >0.4 mL/min/g

of liver weight.
4. macroscopic homogenous perfusion and

soft consistency.

ALT, alanine aminotransferase; AST, aspartate aminotransferase; ITU: intensive therapy unit; NMP: normothermic
machine perfusion; UK, United Kingdom; EAD, early allograft dysfunction; PNF: primary non function; LDH:
lactate dehydrogenase; PRS: post reperfusion syndrome; RRT: renal replacement therapy; HA: hepatic artery; US,
United States.

Watson et al. [11] were the first to postulate that a bile pH > 7.4 was associated to a
high risk of developing IC. The Groningen group considered biliary pH as viability criteria
for LT, setting a bile pH threshold of >7.48 [42] or >7.45 at 2.5 h of perfusion [23].

Several groups proposed to evaluate the bile in relation to other perfusate parameters.
Matton et al. [44] showed that a biliary/perfusate glucose ratio < 0.67, biliary lactate
dehydrogenase (LDH) <3689 U/L and biliary bicarbonate < 18 mmol/L are related to
high biliary injuries rate. Van Leeuwen et al. [19] proposed the use of the difference
between perfusate and bile pH, glucose, and bicarbonate as markers of biliary viability,
while Watson et al. [10] showed that a difference between perfusate and bile glucose
concentration < 10 mmol/L was associated to a significant injury. Melandro et al. [45]
showed biliary good outcome in DBD and DCD exceeding Matton criteria (one case of
biliary complications out of 19).
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Novel biliary biomarkers have been recently reported in literature. Matton et al. [46]
investigated miRNA levels in perfusate and bile during NMP of 12 declined human liver
grafts and discovered that cholangiocyte-derived microRNAs (CDmiRNA-222) correlate
with biliary injury and function as reflected by LDH, bilirubin and bicarbonate levels.
Liu et al. [47] investigated biliary regeneration during 24 h of NMP in 10 discarded livers.
The authors showed regeneration of cholangiocytes and peri-biliary glands (PBG) during
NMP of steatotic livers as indicated by increased Ki-67 staining in bile duct biopsies.

6. Viability Parameters during HMP

Cold preservation relies on the suppression of the metabolic rate, as most enzymatic
reactions slow down with temperature reduction. Therefore, hypothermic technologies
are traditionally considered less useful in assessing graft viability. Moreover, in the cold,
there is a lack of active secretion of bile, which is used as viability parameter during
NMP. Even when the perfusion is through the portal vein only, a certain fluid secretion
through the biliary tree has been observed during HOPE, corresponding to perfusate
mixed with molecules released from the hepatocytes [20]. However, this biliary fluid
appears rather unphysiological due to the reduced secretory processes and has not been
systematically assessed yet [19–28]. Therefore, some groups have explored the possibility
of combining (D-)HOPE with subsequent controlled oxygenated rewarming and NMP for
viability testing [15,48]

According to recent research, the key mechanism of (D-)HOPE seems to be the mod-
ification of the mitochondrial metabolism, as reported in mammalian hibernation and
suspended animation [21]. The delivery of oxygen under hypothermic conditions induces
a slow electron flow through the respiratory chain complexes, thus allowing the recovery of
adenosine triphosphate and the metabolism of succinate, ultimately preventing the release
of reactive oxygen species (ROS) after warm reperfusion [49]. Therefore, during (D-)HOPE
the liver is far from being metabolically inactive, and numerous molecules measured during
NMP can be also identified through mass spectrometry from perfusates obtained during
(D-)HOPE [20]. The main proposed criteria for liver selection during HMP have been
summarized in Table 3.

Table 3. Proposed viability criteria during hypotermic machine perfusion in clinical studies.

Author, Year Country n Type of HMP Viability Parameter End-Point Threshold

Guarrera et al.,
2010 [50] US 20 HMP (w/o

oxygen)
Perfusate AST, ALT, and

LDH
Correlation with peak serum
AST and ALT posttransplant N/A

Muller et al.,
2019 [53] Switzerland 54 HOPE Perfusate FMN (30 min) Correlation with 90-day

graft loss 10,000 AU

Patrono et al.,
2020 [51]

Italy 50 DHOPE

Perfusate ALT (90 min) Correlation with EAD 537 IU/L

Perfusate LDH (90 min) Correlation with
L-GrAFT score N/A

Schlegel et al.,
2020 [21] Switzerland 50 HOPE Perfusate FMN (30 min) Correlation with graft loss 8000 AU

Patrono et al.,
2022 [52] Italy 10 DHOPE Microdialysis glucose

and lactate (2 h)
Correlation with EAD and

L-GrAFT score N/A

ALT, alanine aminotransferase; AST, aspartate aminotransferase; AU, arbitrary units; (D)HOPE, (dual) hypother-
mic oxygenated perfusion; EAD, early allograft dysfunction; FMN, flavin mononucleotide; HMP, hypothermic
machine perfusion; L-GrAFT, liver graft assessment following transplantation; LDH, Lactate dehydrogenase; US,
United States.

Pressure, Flow, and Resistance
Vascular resistance during HMP is an independent predictor of functional recovery

and graft survival in the context of kidney transplantation, nevertheless, the predictive
accuracy is modest and vascular resistance is discouraged to be used as the sole basis
for organ acceptance [50,51]. A similar correlation in the liver has not been observed,
probably due to the different microcirculation of the two organs. Only Liu et al. reported
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a possible correlation between arterial resistance and the previous warm ischemia in a
porcine model, but this finding has never been confirmed by other authors in similar
studies [52,53]. Therefore, perfusion pressures, flow and resistance are routinely measured
during HMP but they are not currently considered for viability testing [21].

Transaminase, Lactate Dehydrogenase, Glucose, and Lactate
In the first clinical series published by Guarrera et al. [23] transaminase peak after

liver transplant positively correlated with transaminase and LDH levels in perfusate, with
however limited impact on the clinical outcome and complications. Among different
perfusion parameters, Patrono et al. [54] found that ALT level at 90 min was the best
predictor of EAD with a cutoff of 537 IU/L, although this result was not confirmed at
multivariate analysis. Moreover, 90 min LDH had the highest correlation with the liver
graft assessment following transplantation (L-GrAFT) risk score [55]. Using microdialysate
analysis, the same group found that lactate and glucose release in the interstitial fluid (as
an effect of anaerobic glycogenolysis) also correlated with EAD [56]. Nevertheless, as the
authors had only a very few cases of graft failure, any correlation with graft survival was
not possible [57]. A similar correlation with EAD or post-transplant transaminases peaks
was also noted in the study of Muller et al., but perfusate transaminase, glucose, and lactate
failed to predict graft failure and complications, thus showing a limited clinical predictive
value [58].

Flavin Mononucleotide
Among the many functions of the liver and the consequent many confounders, Pan-

conesi et al. [20] have pointed out the necessity to focus on the instigators of IRI, rather
than the consequences. The key mechanism of IRI is the production of ROS at mitochon-
drial complex I, with consequent inflammation. Complex I catalyzed the first step of the
mitochondrial electron transfer in the respiratory chain. Metabolomic perfusate analysis
has identified a specific fragment of complex I, namely flavin mononucleotide (FMN), as a
potential marker of mitochondrial function and injury. Under physiologic conditions, FMN
is tightly bound to a specific pocket in complex I but can dissociate from it when complex I
is completely reduced, as happens during ischemia [29]. Release of FMN has been reported
in cerebral and cardiac mitochondria after transient ischemia [29,59].

The Zurich group has recently found that FMN, determined by fluorescence spec-
troscopy in HOPE perfusate, correlated with early graft loss, cumulative complications,
and hospital stay after liver transplant [29,60]. Based on these observations, if the FMN con-
centration climbs above 8800 AU at 30 min of HOPE or a sharp incline is seen, the authors
recommend not to transplant the liver; while for an intermediate release (8800–5000 AU),
they suggest allocating the liver to a low-risk recipient [20–29]. Some other groups have con-
firmed the correlation of FMN with posttransplant liver function, and external validation
of this method is currently ongoing [20,60]. Nevertheless, its use is still little widespread so
far, even among centers that routinely use (D-)HOPE [24].

7. Future Perspectives and Conclusions

Despite the validation in several cohorts, the establishment of reliable markers during
NMP and HMP requires higher caseloads and RCT. Nevertheless, these trials can be hardly
planned for many reasons: (1) no clear endpoints and graft risk scores are defined in the field
of LT and machine perfusion, (2) the presence of several perfusion devices and protocols
make multicentric study difficult to be planned, (3) the prohibitive costs discourage the
broad utilization of machines [36].

In this scenario, it is very difficult to validate viability parameters during NMP, and
lactates and transaminases, the most used markers, have been recently downgraded in
several experiences on liver perfusion due to the poor predictive value.

Graft viability testing and selection can also be performed during (D-)HOPE. Different
parameters have been explored, but only FMN correlated with graft failure. Besides
graft selection, the addition of specific molecules to limit IRI may be considered in future
research [21].
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The challenge for the future is to find dynamic, very specific, rapidly measurable
markers able to predict postoperative complications and long-term outcome. Technical
advance in laboratory technique [61], genomics markers [62,63], new technologies such as
hyperspectral real time imaging [64] and artificial intelligence might improve pre-transplant
viability assessment and expand the donor pool.
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