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Background: The Chinese chestnut (Castanea mollissima) is widely cultivated in China for nut production. This plant also
plays an important ecological role in afforestation and ecosystem services. To facilitate and expand the use of C. mollissima
for breeding and its genetic improvement, we report here the whole-genome sequence of C. mollissima. Findings: We
produced a high-quality assembly of the C. mollissima genome using Pacific Biosciences single-molecule sequencing. The
final draft genome is ~785.53 Mb long, with a contig N50 size of 944 kb, and we further annotated 36,479 protein-coding
genes in the genome. Phylogenetic analysis showed that C. mollissima diverged from Quercus robur, a member of the
Fagaceae family, ~13.62 million years ago. Conclusions: The high-quality whole-genome assembly of C. mollissima will be a
valuable resource for further genetic improvement and breeding for disease resistance and nut quality.
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rope, and Asia, where it is ecologically and economically
important. Castanea contains 7 species. Chinese chestnut
(Castanea mollissima), Chinese seguin (Castanea seguinii), Chi-
Castanea, a genus of the Fagaceae family, occurs natu- nese chinkapin (Castanea henryi), and Japanese chestnut (Cas-
rally throughout the forests of eastern North America, Eu- tanea crenata) occur in East Asia and show high genetic
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diversity [1]. The American chestnut (Castanea dentata) and
chinkapin (Castanea pumila) occur only in North America, while
the European chestnut (Castanea sativa) is distributed in Europe,
and they are the predominant tree species in the deciduous
forests of eastern North America and some parts of Northern
Italy and Southern France [2]. Chestnuts are important forest
resources that provide wood products and food, and they are
also keystone species due to their ecological roles in afforesta-
tion and ecosystem services [3].

The Chinese chestnut is geographically widespread and is
cultivated in 26 Chinese provinces for commercial nut produc-
tion [4], and the country is rich in diverse germplasm resources.
Cultivation of Chinese chestnut has a long history, which spans
>6,000 years, according to archeological discoveries in the Banpo
Ruins of Xi’an, China [5]. The annual nut yield of Chinese chest-
nut is high. In 2017, Chinese chestnut production was 1,939,719
tonnes, accounting for 83.34% of the world’s total chestnut pro-
duction that year [6]. Owing to its high nut quality, easily peeled
pellicle, excellent adaptability to infertile soil, and natural resis-
tance to diseases, Chinese chestnut has been broadly used in
breeding programs in the United States, especially to introduce
resistance to the fungal pathogen chestnut blight (Cryphonec-
tria parasitica) [7, 8]. An accidental introduction of the chestnut
blight fungus at the beginning of the 20™ century destroyed 4
billion American chestnuts, which were a predominant forest
tree species by 1950 [9-11]. Three quantitative trait loci (QTLS)
of resistance to blight disease were identified in the F, mapping
population of an interspecies cross of C. mollissima x C. dentata
and 2 of them shared synteny with 2 QTLs for powdery mildew
resistance in peach [12, 13]. Recently, 2 QTLs were also identified
for resistance to Phytophthora cinnamomi in the population of C.
sativa x C. crenata and the QTL located in linkage group E is in
line with a previous preliminary study on a segregating popula-
tion of a cross between C. mollissima and C. dentata [14]. Chinese
chestnut has substantial levels of resistance to chestnut blight,
and the first QTL analyses show that it is a good resource to in-
troduce resistance into American chestnut [7].

A chestnut genome sequence project was launched within
the Fagaceae Genomic Tools because of the economic and eco-
logical importance of this tree species. This has resulted in a
genome sequence using data obtained with a Roche 454 plat-
form and Sanger sequencing data (V1.1). This genome sequence
was released in 2014 at the Hardwood Genomics website [15].
Recently, an updated version of this Chinese chestnut genome
was made available online on bioRxiv [16]. The assembly qual-
ity of these 2 genome sequences is compared in Table S1. The
updated version showed improved assembly quality compared
with the previous versions in some parameters, such as contig
length range, counts of contig sequences, and maximum length
of contigs; however, a high-quality annotated whole-genome se-
quence for Chinese chestnut is still urgently needed. This is
essential for molecular studies on major traits involved in nut
quality and disease resistance [17-19]. In the present study, we
report a high-quality whole-genome sequence of C. mollissima.
This genome sequence will facilitate studies on the evolution of
Castanea including comparative genomics and processes under-
lying domestication. Furthermore, it will support breeding pro-
grams leading to genetic improvement of chestnuts.

A mature, healthy tree of wild C. mollissima was chosen from
the Zhangcunping national forest reserve (31.2803 N, 111.1403
E, 1,261 m altitude) of the city of Yichang in Hubei Province,

China. The individual measured ~12 m in height, and its trunk
was ~10 cm in diameter at breast height. Fresh leaves were col-
lected on 18 June 2017. The samples were immediately frozen in
liquid nitrogen and then stored at -80 °C. The genomic DNA of
C. mollissima was extracted using the DNeasy Plant Mini Kit (Qia-
gen, Hilden, Germany) and used for sequencing (Fig. 1). The DNA
was sheared by a Covaris S2 system (Covaris, USA) for short-
insert paired-end (PE) library construction. The shearing condi-
tions were as follows: the number of cycles was 2, and the shear-
ing time was 40 seconds per cycle. Short-insert libraries with
a size of 500 bp were constructed according to the instructions
in the Illumina Library Preparation Kit (Illumina, San DiegoCA,
USA). All libraries were sequenced on an [llumina HiSeq 2500 se-
quencer with the PE 2 x 150 bp protocol. The raw data were fil-
tered and trimmed. [llumina data quality control settings were
as follows: SLIDINGWINDOW: 4: 15 MINLEN: 50 using Trimmo-
matic software. In total, ~34 Gb of clean data were generated,
yielding a sequencing depth of ~42.7x. For PacBio library con-
struction, the genomic DNA of C. mollissima was sheared to 20 kb,
and fragments shorter than 7 kb were filtered using BluePippin
(Sage Science, Beverly, MA, USA). The filtered DNA was then used
to prepare a proprietary SMRTbell library using the PacBio DNA
Template Preparation Kit (Pacific Biosciences, Menlo Park, CA,
USA). The PacBio data quality control standard of RQ > 0.75 was
used, and the minimum subread length was 500 bp using SMRT
Link 6.0 software. In total, ~69 Gb of quality-filtered data were
obtained from PacBio sequencing, with a average read length of
7,170 bp and a sequencing depth of ~87x (Table S2).

The distribution of short subsequence (k-mer) frequency, also
known as the k-mer spectrum, is widely used to estimate
genome size [20, 21]. A k-mer depth distribution was obtained
from a Jellyfish [22] analysis, and the peak depth was clearly
observed from the distribution data. The genome size was cal-
culated with the following formula: genome size = total k-
mer_num/k-mer_depth (total_k-mer_num is the total number of
k-mers from all reads, and k-mer_depth is the peak depth). Based
on this method, the size of the C. mollissima genome was esti-
mated to be ~772 Mb, and the heterozygosity level of C. mollis-
sima was ~0.87% (Fig. S1). Comparing this estimate with those
for beech and oak, we found that our result sample was more
similar to European beech (Table S3) [23, 24].

All of the subreads from PacBio sequencing were assembled us-
ing SMARTdenovo software with default values for all parame-
ters except for -J, which was set to a value of 4,000 (-] 4000 fil-
ters all reads with lengths <4,000 bp) [25]. The assembled se-
quence was then polished using Quiver (SMRT Analysis version
2.3.0) with the default parameters. To achieve a high-accuracy
genome assembly, 6 rounds of iterative error correction were
performed using the clean Illumina data. In total, 785.53 Mb
of final assembly was obtained after correction using PacBio
and [llumina PE read sequences, and the assembly comprised
2,707 contigs (N50 = 944 kb, N90 = 133 kb) (Table 1). Both Re-
peatModeler and RepeatMasker (RepeatMasker, RRID:SCR.01295
4) [26] were used for the de novo identification and masking of re-
peats. To ensure the integrity of genes in the subsequent analy-
ses, low-complexity regions or simple repeats were not masked
because some of these sequences could be within genes. Fi-
nally, 49.69% of the assembled bases were masked (Table S4).
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Figure 1: Example of Chinese chestnut tree (C. mollissima). Natural habitat of C. mollissima (image from the Water Great Wall, Beijing, China) and the nut of C. mollissima

(image from Ling Qin) are shown.

Table 1: Summary of C. mollissima genome assembly and gene model

Genome assembly statistics Value

Total length 785,529,252 bp
No. of contigs 2,707
Largest contig length 6,584,328 bp
N50 length (contigs) 944,461 bp
N90 length (contigs) 133,678 bp
Counts of N50 (contigs) 235
Counts of N90 (contigs) 1,024
Gene model statistics

Gene number 36,479
Gene density (per 100 kb) 4.64
Gene mean length 1,139.63 bp
Exon number per gene 4.41
Exon mean length 258.15bp
Intron mean length 1,156.91 bp
Genome GC content 36.07%
Exon GC content 43.36%

GC: guanine-cytosine.

Protein-coding region identification and gene prediction were
performed through a combination of ab initio, homology-based,
and transcriptome-based prediction methods. The ab initio gene
prediction was conducted with Augustus (Augustus, RRID:SCR_0
08417; version 3.2.2), GeneMark-ET (version 4.29), and SNAP15
to predict coding genes. For the homology-based prediction, ho-
mologous proteins from several species (Vitis vinifera, Prunus per-
sica, Populus trichocarpa, Oryza sativa, Medicago truncatula, Glycine
max, Citrus clementina, Theobroma cacao, Pyrus bretschneideri) were
downloaded from NCBI and aligned to the assembled genome.
Then, Exonerate (Exonerate, RRID:SCR_016088; version 2.47.3)

[27] was used to generate gene structures based on the homology
alignments. For the transcriptome-based prediction, transcrip-
tome data were generated from mixed samples of flowers, buds,
leaves, nuts, and roots on the Illumina HiSeq 2500 platform (a
total of 20.84 Gb raw data) and mapped to the genome assembly
using TopHat (TopHat, RRID:SCR_013035; version 2.1.1). Cufflinks
(Cufflinks, RRID:SCR_014597; version 2.1.1) [28] was then used to
identify spliced transcripts in the gene models. All the gene ev-
idence predicted by the aforementioned 3 approaches was inte-
grated by EVidenceModeler (EVM version 1.1.1). Finally, a total of
36,479 protein-coding gene models were constructed (Table 1).

The obtained gene set was functionally analyzed using
BLASTP (BLASTP, RRID:SCR.001010) with an E-value of le®
against the NCBI-NR, Swiss-Prot, and euKaryotic Orthologous
Groups (KOG) databases. Protein domains were annotated by
mapping genes to the InterPro and Pfam databases using Inter-
ProScan (InterProScan, RRID:SCR-005829) [29] and HMMER (Hm-
mer, RRID:SCR_005305) [30]. Potential gene pathways were de-
rived via gene mapping against the KEGG databases, and Gene
Ontology (GO) terms were extracted from the corresponding In-
terProScan or Pfam results (Fig. S2).

Quality assessment

To evaluate the completeness and coverage of the assembly, we
aligned Illumina DNA and RNA reads to the C. mollissima as-
sembly using BWA (BWA, RRID:SCR_010910) [31] and HISAT [32],
respectively. The percentages of aligned DNA and RNA reads
were 95.46% and 97.41%, respectively. In the core gene estima-
tion using BUSCO (BUSCO, RRID:SCR.015008) [33], 1,392 of the
1,440 core genes (96.7%) were found to be complete in the assem-
bled genome, and 1,412 (complete BUSCOs and fragmented BUS-
COs) (98.1%) of the 1,440 core genes had at least partial matches
(Table S5). This result indicates that the assembly contains al-
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Figure 2: Phylogenetic relationships between Chinese chestnut and other species. A maximum-likelihood tree was obtained with 540 single-copy orthologous genes.
(a) The shared and unique gene families in 4 closely related species are shown in the Venn diagram. Each number represents a number of gene families, and the
number in parentheses is a number of genes. (b) The estimated divergence times are displayed on the phylogenetic tree.

most all genic regions, which further confirms the high quality
of the C. mollissima genome assembly.

A total of 19,064 bacterial artificial chromosome (BAC) double-
ended sequences from the previously published physical map
[34] were aligned with the genome sequenced in the present
study. Of these, 17,999 of the sequences were mapped onto
our genome, accounting for 94.41% of all BAC double-ended se-
quences. The reason that 1,065 (5.59%) of the sequences did not
map to the genome is most likely due to individual differences.
The results also showed that 1,184 of 1,300 contigs from the
physical map could be mapped onto our genome (Table S6).

To understand the relationships of the C. mollissima gene fami-
lies with those of other plants, we performed a systematic com-
parison of genes among different species. The protein-coding
genes of 9 genomes, namely, O. sativa [35], Malus domestica [36],
P. trichocarpa [37], P. persica [38], C. mollissima, Quercus robur [39],
Fagus sylvatica [24], Juglans regia [40], and V. vinifera [41], were used
for the comparison. Gene loss and gain are among the primary
reasons for functional changes. To gain greater insights into the
evolutionary dynamics of the genes, we determined the expan-
sion and contraction of the orthologous gene clusters in these 8
species with CAFE software (CAFE, RRID:SCR_005983) [42]. In the
Chinese chestnut genome, a total of 17,422 gene families were
identified, while 27,502 families of homologous genes were de-
tected across the 9 species. Of all the gene families (17,422), 209
were significantly expanded and 89 were contracted (P < 0.05)
in C. mollissima (Fig. S3). The Venn diagram in Fig. 2a shows that
9,336 gene families were shared by the 4 species C. mollissima, Q.
robur, J. regia, and F. sylvatica. In addition, both specific and com-
mon gene families were detected in these 4 species. A total of
11,952 genes and 8,884 gene families were found to be specific
to Chinese chestnut (Table S7).

To examine the evolutionary relationships of Chinese chest-
nut with other plants, we applied RAXML software (RAXML, RR
ID:SCR_006086; version 8.0.0; substitution model PROTGAMMA-

JTT, bootstrap value 100) [43] to perform a maximume-likelihood
genome-wide phylogenetic analysis of 540 single-copy genes
from the 9 plant genomes (Fig. 2b). The results support the hy-
pothesis that Chinese chestnut and oak are sister groups. On the
basis of the phylogeny and fossil record [5], we estimated the di-
vergence time. The phylogenetic tree indicates that the orders
Fagales and Rosales have a close genetic relationship, with a di-
vergence time of 90.75 million years ago (Mya). The estimated
divergence time of C. mollissima and Q. robur in the Fagales clade
is ~13.62 Mya, while that of Chinese chestnut and J. regia is
62.7 Mya.

In the final assembly, ~390 Mb of repetitive sequence was found,
accounting for 49.69% of the genome. Long terminal repeat (LTR)
elements, accounting for 19.92% of the genome of C. mollissima,
are the most abundant transposable elements (Table S4). To esti-
mate the insertion times of the LTR elements, we identified com-
plete LTRs using a combination of de novo searches and manual
inspection with LTR Finder (LTR_Finder, RRID:SCR_015247) [44].
Finally, 5,470 complete LTRs were identified. We calculated the
nucleotide distance for each of the 5,470 complete LTR elements
using the molecular paleontology approach described by San-
Miguel et al. [45] (Fig. 3 and Table S8). The mean nucleotide dis-
tance of the LTR sequence pairs was 0.007681. When a substitu-
tion rate of 2.20 x 10~° mutations per synonymous site per year
was used, the insertion time distribution of the detected LTR el-
ements indicated that the largest number of insertions occurred
between 0 and 1.74 Mya [46].

Tandemly arrayed genes (TAGs) are gene clusters created by
tandem duplication, and TAGs represent a large proportion of
the genes in a genome [47]. To identify TAGs, we applied Or-
thoMCL with the default parameters to cluster genes into pu-
tative gene families. Subsequently, 1,122 TAGs were found by
an in-house script; the duplicated genes were separated by <10
spacers (Fig. S4). These gene clusters contain 4,198 tandemly
duplicated genes, accounting for 11.5% of the total number of
genes in C. mollissima, suggesting that a relatively high abun-
dance of TAGs is a major feature of this genome. The TAGs
of C. mollissima were compared with those of related species:


https://scicrunch.org/resolver/RRID:SCR_005983
https://scicrunch.org/resolver/RRID:SCR_006086
https://scicrunch.org/resolver/RRID:SCR_015247

400

Frequency

0.00 0.01 0.02
LTR nucleotide distance

Figure 3: Nucleotide distance distribution of annotated LTR elements in C. mollissima.

F. sylvatica and Q. robur in the Fagaceae and J. regia, M. domestica,
P. persica, and P. trichocarpa. The percentage of TAGs in the com-
plete genome of C. mollissima was markedly higher than those of
P. trichocarpa (4.9%) and M. domestica (4.2%). The TAG percentage
was also high in other Fagaceae species, such as Q. robur (19.7%)
and F. sylvatica (8.0%). However, this trait was not shared with J.
regia, another species closely related to C. mollissima, which has
only 5.6% TAGs. Furthermore, TAGs can also be highly abundant
in non-Fagales species, such as P. persica (13.3%) (Table S9). GO
enrichment analysis of genes from the TAGs was performed us-
ing OmicShare Tools [48]. The results showed that these genes
are enriched in the cell binding and catalytic activity pathways
in the cellular component category (Fig. S5 and Table S10).

In this study, a high-quality annotated genome sequence of
C. mollissima was obtained, similar to those of other Fagaceae
species, and it was found to contain a relatively high propor-
tion of tandemly repeated genes. The Chinese chestnut genome
will serve as a reference genome and pave the way for future re-
search involving comparative genomics, and studies of domes-
tication, genetic improvement, and breeding for disease resis-
tance and nut quality in chestnuts.

Sequencing data are available via the NCBI bioproject PR-
JNA527178. All other supporting data and materials are available
in the GigaScience GigaDB database [49].

Table S1: Comparison of assembly quality in 2 genomes of C.
mollissima

Table S2: Statistics of clean data of C. mollissima for lllumina and
PacBio sequencing

Table S3: Comparison of genome size and heterozygosity in 3
species of C. mollissima, Q. robur, and F. sylvatica

Table S4: Statistics of repeat elements for C. mollissima assembly
using both RepeatModeler and RepeatMasker software
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Table S5: Core gene estimation for C. mollissima assembly using
BUSCO

Table S6: The alignment between the assembled genome and
the physical map of C. mollissima

Table S7: Unique gene families of C. mollissima in 4 species
Table S8: Complete LTR elements in C. mollissima

Table S9: Numbers and proportions of TAGs in C. mollissima and
other species

Table S10: Tandemly arrayed genes (TAGs) in C. mollissima
Figure S1: k-mer distribution of C. mollissima

Figure S2: GO term analysis for genes in C. mollissima

Figure S3: Analysis of the expanded and contracted gene fami-
lies in C. mollissima

Figure S4: Tandemly arrayed gene (TAG) numbers in 1 cluster in
C. mollissima

Figure S5: GO enrichment of genes from the TAGs in C. mollissima

BAC: bacterial artificial chromosome; BLAST: Basic Local Align-
ment Search Tool; bp: base pairs; BUSCO: Benchmarking Uni-
versal Single-Copy Orthologs; BWA: Burrows-Wheeler Aligner;
Gb: gigabase pairs; GO: Gene Ontology; kb: kilobase pairs; KEGG:
Kyoto Encyclopedia of Genes and Genomes; KOG: euKaryotic
Orthologous Groups; LTR: long terminal repeat; Mb: megabase
pairs; Mya: million years ago; NCBI: National Center for Biotech-
nology Information; PacBio: Pacific Biosciences; PE: paired-end,
QTL: quantitative trait locus; RAXML: Randomized Axelerated
Maximum Likelihood; TAG: tandemly arrayed genes.
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