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Humoral immunity is a critical effector arm for protection against malaria but develops

only slowly after repeated infections. T cell-mediated regulatory dynamics affect the

development of antibody responses to Plasmodium parasites. Here, we hypothesize

that T follicular helper cell (TFH) polarization generated by repeated Plasmodium

asexual blood-stage infections delays the onset of protective humoral responses. IFN-γ

production promotes polarization toward TFH1 and increased generation of regulatory

follicular helper cells (TFR). Delineating the mechanisms that drive TH1 polarization will

provide clues for appropriate induction of lasting, protective immunity against malaria.
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NATURALLY-ACQUIRED IMMUNITY IN MALARIA

Only after years of continued exposure to Plasmodium parasites do individuals from malaria
endemic regions develop clinical immunity (CI), that protects against clinical disease but not from
parasitaemia (1). This protection is mediated through both cellular and humoral immune effector
mechanisms. In particular, humoral immunity (HI) apparently plays a pivotal role against blood-
stages, which are responsible for pathology and disease. Seminal findings demonstrate that IgG
transfer from malaria-immune adults to children with acute malaria can indeed reduce symptoms
and parasite load (2).

Effective HI induction requires B cells to be activated by antigen-presenting cells (APCs),
predominantly dendritic cells (DCs). Sustained “help” from cognate CD4+ T cells is subsequently
required for B cell proliferation, affinity maturation, and Ig class-switching. T follicular helper cells
(TFH), which co-localize with B cells in the germinal centers (GCs), are crucial for both naïve B
cell activation during primary infections and reactivation of memory B cells (MBC) in secondary
infections. TFH and other CD4+ helper T cells (TH) can drive naive B cells to differentiate into
high-antibody-producing plasma cells (PC) or MBC, which rapidly reactivate and produce specific
Abs during secondary infections.

While typically taking a number of years to develop fully, clinical malaria immunity is of
relatively short duration and rapidly wanes in the absence of re-infection (3, 4). Antibody efficacy
and specificMBC counts increase gradually with age and cumulative exposure, resulting in a strong
TH1 (IFN-γ-producing) immune response (5–9). The origins of the relatively slow acquisition of
clinical immunity, however, remain elusive.

Here we hypothesize that T cell responses generated by repeated blood-stage malaria infection
may in fact delay the onset of potent humoral responses. We contextualize the role of TH and TFH

polarization surrounding the B cell response in malaria, and suggest that excessive polarization
toward the IFN-γ producing TH1 phenotype reduces the longevity of antibody responses.
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B-CELLS AND PLASMA CELLS ARE
DEREGULATED IN MALARIA

Potent humoral responses are characterized by the generation
of specific and high-affinity long-lived PCs (LLPCs) and MBCs
in the GCs. Yet both adults and children in malaria endemic
areas show a delay in the development of MBC and short-
lived antibodies targeting P. falciparum blood-stage antigens
(10). Accordingly, antibodies generated during one acute malaria
season are undetectable by the next (10). Similar delays in CI
onset are found in malaria-naïve immigrants to Papua New
Guinea (11).

Sustained parasitaemia may be a key factor affecting B cell
differentiation. Recent studies have provided valuable insights
into B cell subset dynamics and antibody kinetics in the context
of Plasmodium infection. While it is clear that IgG+ MBCs are
key effectors in long-termmemory, high levels of non-IgG+ anti-
P. falciparum MBCs may have a role in early protection (12).
Frequent exposure to asexual parasites, as experienced in highly
malaria-endemic regions, is associated with the development
of MBCs with reduced memory function, known as atypical
memory B-cells (AMBC). While the presence of AMBCs may
contribute to the delayed and short-lived nature of HI to malaria
(13), their presence may also be symptomatic of a more broadly
deregulated humoral response.

Frequent parasite exposure seems to be a driving factor in
AMBC development. AMBC frequency increases proportionate
to transmission intensity, age, and cumulative malaria exposure
(13–19), and AMBC proportions increase after each acute
malaria episode (20). Conversely, the percentage of AMBCs
declines in the absence of parasite exposure, inducing stable
populations of malaria-specific classical MBCs (17, 19, 21,
22). This may be the result of direct B cell interactions with
Plasmodium parasites, or indirectly generated by the pro-
inflammatory environment (23, 24), or by a combination of the
two, i.e., AMBCs as a product of persistent antigen engagement
by B cells within a highly inflammatory environment of chronic
malaria exposure, driven by TH1 cells (25).

Hence, inappropriate IFN-γ production may be a reflection of
inadequate T cell help caused by frequent exposure to blood-stage
P. falciparum.

BLOOD-STAGE INFECTION INDUCES
CHANGES IN T CELL PHENOTYPES AND
POPULATIONS

Malaria parasites typically induce humanT cells with high surface
expression of PD-1 and LAG3 and high production of both
IFN-γ and IL-10 (26–28). Hence, CD4+ T cells in the malarial
environment frequently display a phenotype associated with
immunosuppression. Furthermore, the malarial environment
polarizes CD4+ T cells toward the IFN-γ-producing TH1-
like phenotype, consequently reducing B-cell responses by
suppressing antibody-inducing TH2 and TFH lineages. While this
may be beneficial for containing parasite-mediated pathology, it
may contribute to immunopathology and limit reactivation of

long-lived MBC. Modeling analyses by Lonnberg et al indicate
that monocytes in particular have a role in regulating the T cell
response, producing cytokines which skew naïve cells away from
the TFH lineage and toward a TH1 phenotype (26).

THE IMPACT OF TFH CELLS ON HUMORAL
IMMUNITY

The TFH subset is particularly crucial for B cell development in
the GC and the subsequent generation of a functional memory B
cell compartment. TFH responses are widely hypothesized to be
disrupted in malaria, as reflected by the relatively high frequency
of autoreactive AMBCs and classical MBCs (29).

Due to the challenges of obtaining secondary lymphoid tissue,
human research on TFH cells has primarily concentrated on
circulatory CD4+CXCR5+ TFH (30). These circulatory TFH cells
share functional characteristics with GC TFH cells including IL-
21 production and the ability to induce B cell differentiation in
vitro (31). They also have properties of a central memory-like TFH

population (26, 31–34). In contrast to GC-resident TFH, however,
circulatory TFH cells lack BCL6 expression, which is required for
survival and induction of secondary antibody responses (31, 35–
38). BCL6 re-expression can be induced by re-challenge with
cognate MBC (39), indicating that sustained antigen presence is
required for TFH function.

In the last decade, circulatory TFH subsets equivalent to
TH1, TH2, TH17, and TREG have been characterized in mice
and humans (40, 41). TH1-like TFH cells (TFH1) show reduced
potential to provide adequate help during antibody maturation
ex vivo compared to TH2-like TFH cells (TFH2) (33, 35, 42).
The concept that TFH subset imbalance may affect development
of antimalarial immunity has gained more traction due to TFH

subsets’ potential roles in other chronic diseases, such as HIV
(43). In parallel, polarization toward TH1-like responses has been
well-documented in malaria and causes fundamental changes in
multiple cell subtypes, such as induction of Th1-like regulatory
cells (TREG1) (6, 28, 44).

Thus, dysfunctional GC processes and inappropriate TFH

reactions are a likely consequence of malaria infection. Indeed,
polarization of TFH is observed in Malian children, with
more activated TFH1, more TH1-like cytokine responses, and
less prominent TH2 polarization (26, 34, 45–47). This TH1-
like cytokine response may lead to decreased GC reactions
and therefore reduced generation and reactivation of T cell-
dependent antibody responses (Figure 1).

Murine data suggest that circulatory TFH may represent
pre-TFH generated from partly committed TFH lineage cells
rather than mature memory GC-derived TFH cells (45). In
murine malaria models, frequency of pre-TFH expressing the
TH1-associated transcription factor Tbet increases after a single
P. bergei ANKA infection (46). It will be important to clarify
whether malaria-induced circulating TFH1 are simply pre-TFH

generated in the periphery after a single exposure without
entering the GC, and if circulating TFH2 therefore represent
the mature TFH memory pool. This may explain the differential
functionality of these two TFH subtypes in malaria. A proper
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FIGURE 1 | TH1-like T cell responses in malaria. Follicular T helper cells are required for B cell activation and the generation of humoral immunity, but malaria

profoundly affects T cell polarization and leads to short-lived antibody responses. The presence of asexual parasitaemia promotes activation of TH1 and NK cells,

which produce high levels of IFN-γ. This microenvironment promotes cellular upregulation of exhaustion markers like LAG3 and PD-1 and TFH differentiation into TFH1

cells, which are less effective at activating B cells. Quality of the T cell help in malaria-driven inflammation is therefore reduced, leading to B cell apoptosis or

differentiation into short-lived plasma cells and atypical memory B cells, which are poor contributors to the long-term maintenance of humoral immunity.

understanding of the relationship between circulating- and GC
TFH will be essential to delineate their particular role in the
development of HI.

HOW IS THE TH1-LIKE SIGNATURE AND
TFH1-LIKE POLARIZATION REALIZED?

Studies with transgenic murine P. yoelii parasites suggest a
positive feedback loop induced by Type I interferon and IL-2;
TH1 cytokines secreted during Plasmodium infection increase
CD4+ T cell responsiveness by up-regulating Tbet and BLIMP-
1 (44, 47). Consequently, CD4+ T cells gain an increased
predisposition to become TH1 cells.

Deregulation of humoral malaria immunity may be the
result of an increased TFH1:TFH2 ratio in combination with
the efficacy of the individual responses. Sustained polarization
toward a TFH1 response after a single infection may affect an
individual’s ability to respond to subsequent malaria episodes.
Frequencies of CXCR3+CCR6− TFH1s increase transiently but
significantly during acute malaria, while CXCR3−CCR6− TFH2
frequencies decrease long-term in response to multiple malaria
parasite exposures (48). In addition, T cell co-receptors may
play a role in regulating TFH activation, as shown in P. yoelli-
infected mice, where activation of OX40 leads to up-regulation
of IFN-γ (49), resulting in activation of the inhibitory PD-
1 pathway. Consequently, TFH help will shut down, resulting
in dysfunctional B cell responses including the generation of
AMBCs (25) and decreased parasite clearance due to lower
specific IgM and IgG titres (49, 50). Therefore, CXCR3+ over-
activation may be an important albeit not exclusive factor that
limits T cell-dependent antibody responses to Plasmodium.

Co-infection with other pathogens can also impact humoral
immunity to malaria. Multiple murine studies demonstrated
that co-infection with murine Epstein-Barr virus analog MHV68
during P. yoelii XNL infection led to very high mortality from
symptoms of malaria (51, 52). The latter study indicated that
mortality was due to loss of humoral immunity by the MHV68

virus via induction of host IL-10 (52). Host factors involved in
parasite sensing can also have a role: humanized mice engineered
to express a single MHCII haplotype, HLA-DR4 (0401), had
higher rates of parasitaemia and morbidity to P. yoelii 17XNL
infection than mice engineered to express alternate haplotypes.
The loss of parasite control was due to downregulation of
humoral immunity by overproliferating TREGs (53).

OTHER CHECKPOINT FACTORS
INFLUENCING T CELL DIFFERENTIATION
IN MALARIA

Regulatory T cell subtypes are likely key modulators of HI. The
recently characterized regulatory follicular helper T cell (TFR)
subset is especially relevant for HI regulation. Contrary to TR1,
which arise from TH1, TFR are a FOXP3+ subclass derived
directly from TREG which express both BCL-6 and BLIMP-1 (54).
Crucially, TFR can directly suppress both TFH and B cells in GC
reactions and therefore directly affect GC formation (55–59).

TFR have not yet been studied in the context of malaria,
even though their importance is indicated by their key role
in controlling antibody production in HIV (60). TFR cell
functionality is assumed to be determined by their ratio with
TFH. As the proportion of TFR increases with age, similarly to
TREGs (57), we hypothesize that TFR have the potential to play
a role in the delayed onset of NAI. Murine studies show that the
TFR fraction increases with age while the TFH proportion remains
constant (60). TFR may therefore progressively regulate the TH1
driven over-activation of DCs, T cells and B-cells.

Conversely, a higher TFR:TFH ratio may inhibit TFH activation
and proliferation, as suggested by TFR-induced downregulation
of the proliferation marker Ki67 in TFH cells in vitro, dampening
TFH1 activation (61, 62). However, TFR also downregulate
the TH2-associated cytokines IL-21 and IL-4 in in vitro
murine studies, potentially leading to marked defects in GC
formation, and B cell affinity maturation (61, 63–65). Changes
in the TFR:TFH ratio may therefore redirect GC B cells
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toward becoming extra-follicular MBCs and short-lived PCs,
therefore further decreasing generation of long-lived high-
affinity antibodies (58, 62).

SUMMARY, CONCLUSIONS, AND
OUTLOOK

Malaria infection induces TH1 polarization characterized by
the production of IFN-γ. Overproduction of IFN-γ may be
central to poor acquisition of HI by polarizing TFH toward TFH1
and causing a positive feedback loop of TH1 polarization. It
will be crucial to understand the specific parasite components
responsible for TH1 polarization so that we can better target
parasite antigens which catalyze TH1 polarization.

Malaria-naïve adults and children from low-transmission
regions tend to generate strong pro-inflammatory responses:
TH1 cytokines IFN-γ and TNFα, and other pro-inflammatory
cytokines such as IL-1β and IL-6, are produced, which
may favor generation of TH1-like responses. However,
children with sustained parasitaemia develop a cytokine
signature consisting of IFN-γ, Type I IFN, and regulatory
cytokines IL-10 and TGF-β (9, 66, 67). It is unclear
whether this is related to parasite density, incidence of
infections, or both. Parasite burden and transmission
intensity could affect TFH polarization through systemic
cytokine-mediated effects.

Dendritic cells and NK cells may be responsible for
maintaining TH1 polarization. Malaria could affect early T cell
polarization by disrupting dendritic cell function (68, 69), and
DCs co-incubated with blood-stage parasites in vitro are shown
to polarize naïve T cells toward a TH1-like phenotype that
produces IFN-γ and TNFα (70, 71). Furthermore, DCs are
required for NK cell activation to blood-stage parasites (72).
NK cells are major producers of IFN-γ, and rapid reactivation
of NK cells in response to blood-stage infection could lead to
the formation of a TH1 cytokine signature, thereby inhibiting
development of positive HI-forming responses. The presence
of memory-like responses (trained immunity) from NK cells
upon re-encountering pRBCs in vitro (73) suggests that NK
cell activation in response to malaria may occur rapidly after
the first infection, increasing early tendencies toward Th1-like
responses. Moreover, NK cell cross-talk with dendritic cells is

important for CD4T cell priming in murine malaria models
(74, 75), suggesting that NK cells may bias TH1 polarization
through multiple pathways.

However, it is unclear whether the blood-derived TFH differ
functionally from their GC counterparts. Better models of
TFH will be required to study these differences and assess the
functional relationship between TFH subsets and the generation
of humoral immunity more thoroughly: what phenotypes are
generated by B-cells co-stimulated by TFH1, the quality of the
antibody response, and whether their ability to differentiate
into LLPCs or classical MBCs is impacted by malaria-generated
TFH1s. A culture system to induce TFH or novel systems such as
humanized mice which could generate larger quantities of TFH

and even allow for isolation of tissue-resident TFH would permit
further, in-depth study of these cells. This would also permit
mechanistic studies into how TFH1 polarization occurs.

In summary, malaria infection, especially repeated infection
with high parasitaemia, may generate “inappropriate” TH1-like
T cell responses that fail to provide the adequate environment
for long-lasting HI. This may be due to (i) compromised TFH

help, reducing the generation of functional GC and development
of typical memory B-cells, leading to a loss of HI longevity;
(ii) increased proliferation of regulatory subsets such as TFR

which may further inhibit HI by decreasing TFH activation
and proliferation; (iii) a strong TH1-like immune signature
characterized by high production of IFN-γ, illustrated by the
increased fraction of TH1 and other TH1-like cells, including the
TFH1 subset. To break the cycle, we need improved methods to
study TFH and understand the underlying mechanisms of TH1
polarization in malaria.
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