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Objective. +e aim of this study is to design a weighted co-expression network and build gene expression signature-based
nomogram (GESBN) models for predicting the likelihood of bone metastasis in breast cancer (BC) patients. Methods. Dataset
GSE124647 was used as a training set, while GSE16446, GSE45255, and GSE14020 were taken as validation sets. In the training
cohort, the limma package in R was adopted to obtain differentially expressed genes (DEGs) between BC nonbone metastasis and
bone metastasis patients, which were used for functional enrichment analysis. After weighted co-expression network analysis
(WGCNA), univariate Cox regression and Kaplan–Meier plotter analyses were performed to screen potential prognosis-related
genes. +en, GESBN models were constructed and evaluated. +e prognostic value of the GESBN models was investigated in the
GSE124647 dataset, which was validated in GSE16446 and GSE45255 datasets. Further, the expression levels of genes in the
models were explored in the training set, which was validated in GSE14020. Finally, the expression and prognostic value of hub
genes in BC were explored. Results. A total of 1858 DEGs were obtained. +e WGCNA result showed that the blue module was
most significantly related to bone metastasis and prognosis. After survival analyses, GAJ1, SLC24A3, ITGBL1, and SLC44A1 were
subjected to construct a GESBN model for overall survival (OS). While GJA1, IGFBP6, MDFI, TGFBI, ANXA2, and SLC24A3
were subjected to build a GESBN model for progression-free survival (PFS). Kaplan–Meier plotter and receiver operating
characteristic analyses presented the reliable prediction ability of the models. Cox regression analysis further revealed that GESBN
models were independent prognostic predictors for OS and PFS in BC patients. Besides, GJA1, IGFBP6, ITGBL1, SLC44A1, and
TGFBI expressions were significantly different between the two groups in GSE124647 and GSE14020. +e hub genes had a
significant impact on patient prognosis. Conclusion. Both the four-gene signature and six-gene signature could accurately predict
patient prognosis, which may provide novel treatment insights for BC bone metastasis.

1. Introduction

Breast cancer (BC) is one of the most prevalent malignancies
and the major cause of cancer-associated deaths of women
worldwide [1]. BC is considered to have the highest diag-
nostic rate in cancer, with more than 1.6 million new cases
detected a year, accounting for approximately one-third of
all new cancers in women [2]. Substantial improvements in
prognosis have been achieved due to better therapeutic
approaches over the past 20 years, the overall survival (OS)
of BC has increased whereby metastases have become the
major cause of death [3]. According to statistics, 627,000
individuals died from BC in 2018, while 684,996 deaths
occurred with BC in 2020 [4, 5]. +e median OS of patients

with metastatic BC ranges from 2 to 3 years, with a 5-year OS
rate of 27% [6].

Bone is the common site of metastases, and nearly, 70%
of BC patients developed bone metastasis, leading to
osteolytic and osteoblastic cancers [7]. Tumor cells secreted
factors including the parathyroid hormone in the bone to
create an environment conducive to osteolysis instead of the
direct destruction of bone [8]. In addition, bone metastasis
often contributes to adverse skeletal-related events (SLEs)
such as hypercalcemia, nerve root or spinal cord com-
pression, fractures, and pain, which severely affect the
quality of life in BC patients [9]. +e biggest obstacle to good
outcomes in bone metastases is the lack of appropriate
therapeutic strategies in the management of tumor-induced
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SREs [10]. Bone metastases are often challenging because
therapies effectively developed against the primary tumor
are not satisfactory when used in patients with bone me-
tastases [3]. Currently, magnetic resonance imaging, com-
puted tomography, and X-ray are conventional imaging
methods to detect bone metastasis but fail to sense tiny
tumor masses and negligible tumor-induced osteolysis [11].
Besides, various metastatic bone lesions which resulted from
BC are hard to eradicate by adjuvant localized radiotherapy
or surgical intervention [12]. +erefore, it is imperative to
identify risk factors and develop predictive models of bone
metastases and patient survival to improve the diagnosis and
prognosis of bone metastatic BC patients.

High-throughput microarrays have emerged as a
promising and efficient tool for studying the complex
pathogenesis of human diseases, including cancer [3]. +e
gene expression also represents an essential role in the
prognosis of patients, thus providing clinically relevant
information and targeted therapies [13, 14]. Meng et al.
constructed a four-long noncoding RNA signature in pre-
dicting BC survival based on microarray datasets [15]. Zhao
et al. built a gene-expression signature-based nomogram
model for the prediction of BC bone metastases, but they did
not evaluate the prognostic value of the model [16]. Ad-
ditionally, a clinical nomogram was constructed to predict
bone-only metastasis in patients with early BC [17]. How-
ever, the predictive value and independent prognostic sig-
nificance of the gene expression signature-based nomogram
(GESBN) model in bone metastatic BC patients have not
been fully elucidated.

On this basis, we constructed a weighted co-expression
network using the whole gene expression profile and per-
formed survival analysis to construct predictive nomogram
models for bone metastasis that can be used to predict
patient OS and progression-free survival (PFS). Besides, the
hub genes combined with clinicopathological characteristics
were integrated into the nomogram for predicting the oc-
currence of bone metastases. In addition, we assessed the
clinical benefits of the GESBN models and explored their
prognostic value in training and validation cohorts. Finally,
the expression of the genes in GESBN models and the ex-
pression and prognostic value of hub genes were initially
explored and validated.

2. Materials and Methods

2.1. Data Mining from the Gene Expression Omnibus (GEO)
Database. +e GEO database (https://www.ncbi.nlm.nih.
gov/geo/) was used to obtain the BC microarray dataset
by setting the following filters: (1) more than 50 samples with
BC or bone metastasis information; (2) with survival data;
and (3) with expression profiling data. Finally, the
GSE124647 dataset was chosen as a training set to identify
the DEGs between non-bone metastasis and bone metastasis
samples. +e platform was Affymetrix Human Genome
U133A Array (GPL96). In total, there were 140 samples
containing clinical and RNA-seq expression data in the
GSE124647 was selected as training cohort. Besides, 107
samples containing OS and RNA-seq expression data in

GSE16446, 94 samples containing PFS and RNA-seq ex-
pression data in GSE45255 were taken as validation cohorts
to verify the prognostic value of GESBN models. Sixty-five
samples containing expression data in the GSE14020 dataset
were used as validation cohorts to verify the expression levels
of key genes. Normalized gene expression was measured as
log2-based transformation.

2.2. Identification and Functional Enrichment Analysis of
DEGs. +e R package limma was used to screen the DEGs
between BC non-bone metastasis and BC bone metastasis
groups in the training cohort. |log2 FC| > 1 and P-val-
ue < 0.05 were set as the filtering parameters. +en, Gene
Ontology (GO) including biological process (BP), cellular
component (CC), and molecular function (MF), and
Kyoto Encyclopedia of Genes and Genome (KEGG) were
carried out to determine the major biological functions of
these DEGs in the database for annotation, visualization,
and integrated discovery (DAVID) (https://david.ncifcrf.
gov/summary.jsp). P< 0.05 was considered statistically
significant.

2.3.WGCNA. WGCNA is a systemic method that uses gene
expression data to build a scale-free network [18]. A
weighted co-expression network with the expression profile
data of the DEGs was built using the WGCNA package of R.
Following this, we screened the key module related to BC
bone metastasis and prognosis, and then extracted the genes
for further analysis.

2.4. Nomogram Model Construction and Model Effectiveness
Evaluation. In the training cohort, using the “survival”
package in R, univariate Cox regression analysis was per-
formed to obtain the potential prognostic genes related to
OS or PFS. Only genes that had a significant impact on OS or
PFS were considered to pass univariate Cox regression
analysis screening. In addition, the prognostic value of the
significant genes obtained in the univariate Cox regression
analysis was evaluated by the Kaplan–Meier plotter analysis.
Only genes with statistical significance in OS or PFS analyses
were considered to pass the screening. +e intersected genes
generated in univariate Cox regression and Kaplan–Meier
plotter analyses were then entered into the construction of
GESBN models in terms of OS and PFS using the “rms”
package in R. +e calibration curves were drawn to measure
the performance of the models. +e genes which had the
greatest contribution were selected as hub genes. Besides, a
decision curve analysis (DCA) was performed to assess the
clinical net benefit of different models. Further, the hub
genes combined with clinicopathological factors were in-
cluded in the construction of a nomogram for predicting the
occurrence of bone metastasis in BC.

After that, the patients were divided into high-risk or
low-risk groups using the optimal cut-off value of risk
score, which was calculated by the “MaxStat” package in R.
+e Kaplan–Meier plotter analyses were adopted to assess
the survival difference between the two groups using
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“survfit” function of “survival” package in R. Moreover, the
Cox and ROC analyses were conducted to further evaluate
the prognostic value of the GESBN models in training
cohort. Subsequently, we verified the prognostic signifi-
cance of the GESBN models in the validation cohorts. +e
same method was conducted to compute risk scores like
that in the training cohort. +e Kaplan–Meier, Cox and
ROC analyses were implemented as described earlier.
P< 0.05 was considered as significantly different. +e area
under curve (AUC) was used as an indicator of prognostic
accuracy.

2.5. 2e Expression Levels of Prognostic Genes in Nomogram
Models. +e expression levels of key genes between BC
nonbone metastasis and BC bone metastasis groups in
GSE124647 were first explored using t test. +en, GSE14020
as a validation dataset was used to assess the differential
expression of the key genes in two groups.

2.6. Validation of the Expression and Prognostic Value of the
Hub Genes. +e protein levels of the hub genes in BC and
normal tissues were evaluated using the immunohisto-
chemistry according to the manufacturer’s instructions. +e
Kaplan–Meier plotter (http://kmplot.com/analysis/index.
php?p�background) is capable to assess the effect of
54,000 genes on survival in 21 cancer types. We used this
database to verify the prognostic significance of the hub
genes in BC. Survival curves were generated by the
Kaplan–Meier method using the log-rank test. A log-rank P

value less than 0.05 was statistically significant.

3. Results

Figure 1 shows the flowchart of this study.

3.1. Identification and Functional Enrichment of DEGs.
Taking BC nonbone metastasis samples as a control
group, 1858 DEGs in the training set including 992
upregulated and 866 downregulated genes were generated
according to the selection criteria. +e volcano plot and
heat map of the DEGs are presented in Figures 2(a), and
2(b), respectively.

To have a biological understanding of these DEGs, they
were subjected to the DAVID database for GO annotation
and KEGG pathway enrichment analysis. +e top enriched
GO terms in BPs were signal transduction, positive regu-
lation of transcription from RNA polymerase II promoter,
and immune response, and those in CCs were cytoplasm,
cytosol, and extracellular exosome (Figures 3(a) and 3(b)).
+e major MFs were protein binding, Poly (A) RNA
binding, and identical protein binding (Figure 3(c)). In the
KEGG pathway enrichment analysis, these genes were
mainly involved in the MAPK signaling pathway, proteo-
glycans in cancer, and focal adhesion (Figure 3(d)). +e
detailed information for enrichment of GO and KEGG is
shown in Table 1.

3.2. WGCNA. We incorporated the expression profile of
integrated DEGs with clinical traits of the BC samples to
construct a gene co-expression network. Clinical charac-
teristics including sample group, PFS time, OS time, OS
status, and PFS status were clustered with an expression
matrix (Figure 4(a)). +en, we chose the optimal β� 6 to
ensure that network was scale-free (βwas a soft-thresholding
parameter that could emphasize strong correlations between
genes and penalize weak correlations). After choosing the
power of 2, the adjacency was transformed into a topological
overlap matrix (TOM), which could measure the network
connectivity of a gene defined as the sum of its adjacency
with all other genes for the network gene ration, and the
corresponding dissimilarity (1-TOM) was calculated
(Figure 4(b)). Based on TOM, the average linkage hierar-
chical clustering was conducted to cluster genes by setting
the minimum number of genes for each gene network
module to 30. To further analyze the module, we calculated
the eigen genes of each module and merged the modules by
setting a height of 0.25. Finally, 4 modules were acquired
(Figures 4(c) and 4(d)). +e genes in the grey module could
not be incorporated into any other module. Next, Pearson’s
correlation coefficients of the module eigen gene of each
module and the sample characteristics were calculated. +e
blue module with 76 genes was closely related to bone
metastasis and survival status (Figure 4(e)). +us, the genes
in the blue module were chosen for further analysis.

3.3. Construction of the GESBN Model. Univariate Cox re-
gression and Kaplan–Meier plotter analyses were carried out
on 140 patients in the GSE124647 to evaluate the association
of 76 gene expression profiles in the blue module with
patient OS and PFS. In univariate Cox regression analysis,
significant genes related to OS were SLC44A1, SLC24A3,
PDGFC, ITGBL1, and GJA1 (Figure S1A) (all P< 0.05). Ten
genes including MDFI, IGFBP6, GJA1, ANXA2, SLC24A3,
TGFBI, CELA2A, CLEC11A, PPEF2, and SLC44A1 were
notably linked to PFS (Figure S1B) (all P< 0.05). However,
only four genes related to OS, and six genes related to PFS
with statistical differences were extracted in the
Kaplan–Meier plotter analysis (Figures S2 and S3) (all
P< 0.05). Taken together, GAJ1, SLC24A3, ITGBL1, and
SLC44A1 were defined as potential prognostic genes for OS.
GJA1, IGFBP6, MDFI, TGFBI, ANXA2, and SLC24A3 were
potential genes correlated with PFS. +ese prognostic genes
were then subjected to the construction of nomogram
models based onOS and PFS (Figures 5(a) and 5(b)). For OS,
SLC44A1 had the greatest contribution, which could reach
100 points, while MDFI contributed most to PFS. +erefore,
SLC44A1 and MDFI were considered as hub genes. To
ensure the accuracy of the GESBN models, the calibration
curves for OS and PFS are shown in Figure S4. +e DCA
results showed that using the nomogram models to predict
OS and PFS of patients could increase net benefit compared
with other models (Figures 5(c) and 5(d)). For further ex-
ploration, we integrate the hub genes and clinicopatho-
logical characteristics into the nomogram for predicting the
occurrence of bone metastases in BC. As shown in

Journal of Healthcare Engineering 3

http://kmplot.com/analysis/index.php?p=background
http://kmplot.com/analysis/index.php?p=background


Figure 5(e), progesterone receptor positive (PR+) and early
stage increased the bone metastasis risk in BC, indicating
that bone metastases more frequently occurred in less ag-
gressive and earlier stage BC patients.

3.4. Evaluationof theGESBNModels. +e GESBN score was
calculated for each patient in the training set. Patients
were ranked based on their risk scores and assigned into
two groups as high-risk and low-risk of bone metastases.
Kaplan–Meier survival analysis in the training cohort
showed that the OS rate of patients in the high-risk group
was low, and the difference between the two groups was

statistically significant (Figure 6(a)) (P< 0.001). Similarly,
an unfavorable PFS was observed in the high-risk group
patients (Figure 6(b)) (P< 0.001), suggesting that two
GESBN models could predict survival well. Further, the
time-dependent ROC curves were drawn using the pROC
package in R. In terms of OS, the AUCs of the 3- and 5-
year survival rates were 0.62, and 0.72, respectively
(Figure 6(c)). For PFS, the AUCs of the 3- and 5-year
survival rates were 0.88, and 0.94, respectively
(Figure 6(d)), indicating that GESBN models had a good
predictive ability. We further evaluate the efficacy of the
GESBNmodels in predicting OS and PFS in the validation
cohorts. Consistent with the previous results, patients in
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50 significant differentially expressed genes.
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Figure 1: Flowchart showing the analysis process.
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the high-risk group had significantly shorter OS and PFS
time than that in the low-risk group (Figures 7(a) and
7(b)). +e time-dependent ROC analyses also showed that
the GESBN models had favorable performance in pre-
dicting OS and PFS (Figures 7(c) and 7(d)).

Moreover, to investigatealyses were carried out in the
training and validation cohorts. In the training cohort, uni-
variate analysis exhibited that progesterone receptor (PR)
status and four-gene risk score were significantly related to OS,

while PR status, prior endocrine sensitivity, and six-gene risk
score had close relationship with PFS (all P< 0.05). In the
multivariate analysis, GESBN models were independent pre-
dictors for OS (HR� 2.289, 95% CI: 1.253–4.180, P< 0.01) and
PFS (HR� 2.624, 95% CI: 1.757–3.919, P< 0.001) (Table 2).
Consistently, the GESBN models displayed pronounced ca-
pability in predicting OS and PFS in the validation cohorts (all
P< 0.05) (Table 3). +ese results suggested that the GESBN
models were independent variables.

Table 1: GO annotation and KEGG pathway analyses of differentially expressed genes.

Category Term Count P-value

GO annotation KEGG pathway

Signal transduction 170 9.70E− 07
Positive regulation of transcription from RNA polymerase II promoter 147 1.59E− 06

Immune response 84 2.93E− 09
Inflammatory response 81 2.00E− 10

Response to lipopolysaccharide 44 4.43E− 09
Extracellular exosome 421 5.95E− 22

Cytosol 442 1.98E− 13
Extracellular space 209 6.48E− 12

Cytoplasm 626 3.36E− 10
Membrane 294 6.25E− 09

Protein binding 1047 2.72E− 14
Poly(A) RNA binding 166 1.02E− 06

IgG binding 8 2.63E− 05
Double-stranded RNA binding 18 9.01E− 05

Identical protein binding 109 1.37E− 04

KEGG pathway

Platelet activation 35 1.01E− 05
Phagosome 33 1.06E− 03

Proteoglycans in cancer 39 3.52E− 03
Lysosome 26 5.54E− 03

MAPK signaling pathway 46 5.81E− 03
Focal adhesion 39 5.88E− 03

Drug metabolism - other enzymes 13 7.84E− 03
Regulation of actin cytoskeleton 39 8.11E− 03

Leukocyte transendothelial migration 24 0.011
Chemical carcinogenesis 18 0.015

Abbreviations. GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes.
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Figure 3: Functional enrichment analysis of differentially expressed genes. (a) Biological process. (b) Cellular component. (c) Molecular
function. (d) KEGG pathway.
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Following this, ROC analyses were conducted to
evaluate how the GESBN models behaved in predicting
prognosis. +e results showed that the AUC of the four-
gene risk score model performed on OS in the training
cohort was 0.691, which was better than that of PR status,
prior endocrine sensitivity, and stage (0.524, 0.540, and
0.503, respectively) (Figure 8(a)). In the prediction model
of PFS predicted in the training cohort, the six-gene risk
score also exhibited a powerful ability with AUC � 0.758,
which was superior to other variables (Figure 8(b)). +e

same results were observed in the validation cohorts
(Figures 8(c) and 8(d)).

3.5. 2e Expression Levels of Genes in GESBN Models.
Due to the predictive ability of GESBN models for both
OS and PFS, we explored the expression levels of these
key genes. In the training dataset of GSE124647, the
expression levels of all the prognosis-related genes were
significantly different between control and bone-

0.9

H
ei

gh
t 0.8

0.7

0.6

Dynamic Tree Cut

Merge Dynamic

H
ei

gh
t

D
ist

an
ce

0.3
0.2
0.1
0.0

1.0

Brown

Grey

Blue

Turquoise

Brown Grey Blue Turquoise

0.5

60
40
20

0

H
ei

gh
t

Group

(a)

(c)

(d)

(e)

(b)

PFS time

OS time

OS status

PFS status Sc
al

e f
re

e t
op

ol
og

y 
m

od
el

 fi
lt,

 si
gn

ed
 R

^2

0.3

2 6 10
So� threshold (power)

14 18 22 26 30

0.4

0.5

0.6

0.7

0.8

0.9

1.0

β=2,0.89

140

120

100

80

60

40

20

0

M
ea

n 
co

nn
ec

tiv
ity

2 6 10
So� threshold (power)

14 18 22 26 30

β=2,41.19

C
or

re
lat

io
n

co
effi

ci
en

t
P-

va
lu

e

0.5

0.0

0.8
0.6
0.4
0.2
0.0

Control
metastasis

G
re

y
Tu

rq
uo

ise
Bl

ue
Br

ow
n

Bone_ PFS time OS time OS status PFS status

-0.5

0.21

0.01 0.01 0.05 0.19 0.03 0.37

7.5e-6 7.5e-6 0.51 0.71 0.04 3.16-3

3.8e-8

1.2e-3 1.2e-3 0.09 0.20 0.42 0.42

3.8e-8 0.05 0.48 0.01 0.54

-0.21 -0.16 -0.11 0.19 0.08

-0.37 0.37 0.06 -0.03 -0.18 -0.25

-0.44 0.44 0.17 0.06 -0.21 -0.05

-0.27 0.27 0.15 0.11 -0.07 0.07

Figure 4: Weighted co-expression network analysis. (a) Dendrogram of sample clustering and heatmap of clinical traits of all breast cancer
samples in a dataset of GSE124647. (b)+e optimal β value result graph. (c)Module eigen gene dendrogram.+e horizontal axis represents a
color block, and each of the different color blocks represents a different module, and the vertical axis represents the height of the dendrogram
based on the expression value. (d) Clustering of module eigen genes. (e) +e correlation between gene modules and sample characteristics.

Journal of Healthcare Engineering 7



Points
0 100908070605040302010

GAJ1 15 14 13 12 11 10 9 8 7 6 5

ITGBL1 12 11 10 9 8 7 6 5 4

SLC24A3 0.5 9.59 8.58 7.57 6.56 5.55 4.54 3.5

SLC24A1
678 5 4 3 2 1

Probability of 36 0.75 0.65 0.55 0.45 0.35 0.25 0.150.7 0.6 0.5 0.4 0.3 0.2 0.1

Probability of 60 0.65 0.55 0.45 0.35 0.25 0.150.6 0.5 0.4 0.3 0.2 0.1 0.05

Total points
40200 60 80 100 120 140 160 180 200 220

Probability of 12 0.9 0.85 0.8 0.75 0.7 0.65 0.6

(a)

Points
0 100908070605040302010

GAJ1 15 13 11 9 8 7 6 5

SLC24A3 10.5 9.5 8.5 7.5 6.5 5.5 4.5 3.510 9 8 7 6 5 4

MDFI 4 5 6 7 8 9 104.5 5.5 6.5 7.5 8.5 9.5

ANXA2 15.5 14.5 13.5 12.5 11.5 10.5

IGFBP6 10.5 9.5 8.5 7.5 6.5 5.5 4.510 9 8 7 6 5

TGFBI 13.5 12.5 11.5 10.5 9.5 8.5 7.5 6.59 8 7

Total points
40200 60 80 100 120 140 160 180 200 220

Probability of 12 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.05

Probability of 36 0.3 0.2 0.1 0.05

Probability of 60 0.25 0.15 0.05

(b)

N
et

 b
en

efi
t

0.0

0.2

0.4

0.6

0.8

High risk threshold
0.0 0.2 0.4 0.6 0.8 1.0

model 1
model 2
model 3

All
None

(c)

model 1
model 2
model 3

All
None

N
et

 b
en

efi
t

0.0

0.2

0.4

0.6

0.8

1.0

High risk threshold
0.0 0.2 0.4 0.6 0.8 1.0

(d)

Points
0 100908070605040302010

MDFI 4 5 6 7 8 9 104.5 5.5 6.5 7.5 8.5 9.5

SLC44A1 1 2 3 4 5 6 71.5 2.5 3.5 4.5 5.5 6.5 7.5 8.58

Total points
40200 60 80 100 120 140 160 180 200 220 240

PR status
0

1

Stage
4

1

PES
0

1

Metastasis risk
0 1

(e)

Figure 5: Gene expression signature-based nomogram models and decision curve analysis (DCA). (a) +e four-gene-based nomogram
model based on overall survival (OS). (b) +e six-gene-based nomogram model based on progression-free survival (PFS). (c) DCA for the
nomogram model based on OS. Model 1: GJA1; model 2: GJA1+ SLC24A3; model 3: nomogram. (d) DCA for the nomogram model based
on PFS. Model 1: IGFBP6 +GJA1; model 2: IGFBP6+GJA1+TGFBI +MDFI; model 3: nomogram. (e) Construction of nomogram model
for predicting bone metastasis. PR status, progesterone receptor status, 0: negative, 1: positive; PES, prior endocrine sensitivity.
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metastasis groups (Figure 9(a)) (all P< 0.05). In the
validation dataset of GSE14020, GJA1, IGFBP6, ITGBL1,
SLC44A1, and TGFBI expressions in the bone-metastasis
group were different from those in the control group. +e
differences were statistically significant (Figure 9(b))
(P< 0.05).

3.6. Validation of the Expression and Prognostic Value of Hub
Genes. Based on the GESBN result, SLC44A1 and MDFI
were the hub genes. +e immunohistochemistry images
showed that the protein levels of SLC44A1 were higher in BC
tissue than that in normal breast tissue (Figures 10(a) and
10(b)). Similarly, an elevatedMDFI expression was observed
in the BC tissue compared with the normal breast tissue
(Figures 10(c) and 10(d)). +e Kaplan–Meier plotter was
performed to verify the effect of SLC44A1 and MDFI on OS,
PFS, and DMFS in BC. Patients in the high SLC44A1 ex-
pression group tended to have favorable OS, PFS, and DMFS
(Figures 11(a)–11(c)) (P< 0.05). Although the MDFI ex-
pression was not significantly linked to OS and DMFS of the
BC patients (Figures 11(d) and 11(f)) (P> 0.05), its high
expression predicted worse PFS (Figure 11(e)) (P< 0.01).

+ese results indicated that SLC44A1 and MDFI might be
potential biomarkers for BC.

4. Discussion

BC is a heterogenous tumor driven by various molecular
progression pathways [19]. Analyses of BC progression
showed that bone is the first metastatic site of this disease
possibly due to the favorable chemokine milieu or micro-
environment in the bone, as well as the intrinsic molecular
characteristics of cancer cells [17, 20]. Although these hy-
potheses are promising, biological information and ana-
tomical characteristics are still the basis for clinicians to
determine prognosis; however, the predictors of bone me-
tastasis remain uncertain clinically [17, 21]. Some gene
signature-based prognostic prediction models for BC pa-
tients have been reported via repurposing and analysis of
microarray data [22, 23]. +ese models were built for pre-
dicting OS for BC patients but lack the prediction of bone
metastasis. By using GEO accession number GSE124647, we
obtained 1858 DEGs between BC nonbone metastasis and
bone metastasis groups. After screening the prognosis-re-
lated genes, we constructed a four-gene expression
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Figure 6: Prognostic evaluation of gene expression signature-based nomogram models in GSE124647. Kaplan–Meier plotter. (a) Overall
survival curve and (b) progression-free survival curve between high-risk and low-risk bone metastatic patients. (c) Receiver operating
characteristic (ROC) analysis of the four-gene signature. (d) ROC analysis of the six-gene signature. Abbreviations: L, low; H, high; HR,
hazard ratio.
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signature-based nomogrammodel and a six-gene expression
signature-based nomogram model.

We first conducted a differential analysis of the
GSE124647 dataset in relation to BC bone metastasis and
employed functional enrichment analysis to these DEGs,
which were found to be mainly related to signal transduc-
tion, and positive regulation of transcription in terms of BP.

CCs were mainly enriched in cytoplasm and cytosol. MFs
were mainly protein binding, and Poly (A) RNA binding.
+e potential pathways that they were involved in were
MAPK signaling pathway and proteoglycans in cancer.
Based on WGCNA, 76 genes in the blue module were
initially selected for the following prognostic analysis. After
univariate Cox regression and Kaplan–Meier plotter
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Figure 7: Prognostic evaluation of gene expression signature-based nomogram models in validation cohorts. (a) Kaplan–Meier plotter
overall survival curve in GSE16446. (b) Kaplan–Meier plotter progression-free survival curve in GSE45255. (c) Receiver operating
characteristic (ROC) analysis of the four-gene signature in GSE16446. (d) ROC analysis of the six-gene signature in GSE45255. Ab-
breviations: L, low; H, high; HR, hazard ratio.

Table 2: Cox regression analysis of the GESBN models and clinical variables in the training cohort.

Overall survival

Variables
Univariate analysis Multivariate analysis

HR (95% CI) P value HR (95% CI) P value
PR status 0.552 (0.363–0.838) 0.005 0.660 (0.398–1.094) 0.107
PES 0.644 (0.403–1.029) 0.066 0.649 (0.405–1.040) 0.073
Stage 1.006 (0.656–1.543) 0.979 1.214 (0.673–2.192) 0.519
Risk score 2.719 (1.663–4.447) <0.001 2.289 (1.253–4.180) 0.007
Progression-free survival
PR status 0.598 (0.420–0.853) 0.004 0.807 (0.531–1.228) 0.317
PES 0.600 (0.395–0.912) 0.017 0.657 (0.424–1.016) 0.059
Stage 0.750 (0.517–1.088) 0.129 1.006 (0.604–1.674) 0.983
Risk score 2.710 (1.920–3.824) <0.001 2.624 (1.757–3.919) <0.001
abrAbbreviations: GESBN, gene expression signature-based nomogram; HR, hazard ratio; 95% CI, 95% confidence interval; PR status, progesterone receptor
status; PES, prior endocrine sensitivity.
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analyses, OS nomogram including GJA1, SLC24A3,
ITGBL1, and SLC44A1, and PFS nomogram including
GJA1, IGFBP6, MDFI, TGFBI, ANXA2, and SLC24A3 were
constructed. Among them, SLC44A1 and MDFI were
considered as hub genes. Since BC is a molecularly heter-
ogenous disease which similar tumors form various clinical
outcomes and metastases patterns [24]. It has been

demonstrated that BC luminal subtype and patients at low-
grade are more prone to develop metastases [16]. Consid-
ering the organ-specific tendency of metastasis regarding
molecular subtypes, we constructed a model containing hub
genes and clinicopathological characteristics for predicting
the occurrence of BC bone metastases. Consistently, we
found that PR+ and early stage increased the bone metastatic

Table 3: Cox regression analysis of the GESBN models and clinical variables in the validation cohorts.

Overall survival

Variables
Univariate analysis Multivariate analysis

HR (95% CI) P value HR (95% CI) P value
N stage 0.856 (0.388–1.887) 0.700 0.761 (0.343–1.687) 0.501
Grade 1.210 (0.364–4.019) 0.756 1.198 (0.337–4.265) 0.780
T stage 1.696 (0.980–2.930) 0.059 1.407 (0.827–2.393) 0.208
Risk score 2.719 (1.300–5.686) 0.008 2.442 (1.130–5.227) 0.023
Progression-free survival
Grade 1.635 (0.792–3.374) 0.184 1.323 (0.535–3.272) 0.545
Age 1.022 (0.987–1.058) 0.227 1.037 (0.996–1.080) 0.074
PR status 0.333 (0.133–0.835) 0.019 0.572 (0.194–1.686) 0.311
Risk score 2.714 (1.582–4.655) <0.001 2.773 (1.469–5.235) 0.002
abrAbbreviations. GESBN, gene expression signature-based nomogram; HR, hazard ratio; 95% CI, 95% confidence interval; PR status, progesterone receptor
status.
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Figure 8: Receiver operating characteristic (ROC) analysis of the gene expression signature-based nomogram models in the training and
validation cohorts. (a) ROC analysis of the predictive value of PR status, PES, stage, and four-gene risk score in the training cohort based on
OS. (b) ROC analysis of the predictive value of PR status, PES, stage, and six-gene risk score in the training cohort based on PFS. (c) ROC
analysis of the predictive value of PR status, PES, stage, and four-gene risk score in the GSE16446 as validation cohort based on OS. (d) ROC
analysis of the predictive value of PR status, PES, stage, and six-gene risk score in the GSE16446 as validation cohort based on PFS. PR status,
progesterone receptor status; PES, prior endocrine sensitivity; OS, overall survival; PFS, progression-free survival.
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Figure 9: Expression levels of genes in gene expression signature-based nomograms. (a) GSE124647. (b) GSE14020.
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Figure 10: Continued.
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risk of BC patients. +us, the authors speculated that despite
the development of bone metastases, the patient’s tumor is
still of low malignancy and the clinical outcome might be
improved if the bone lesions are well controlled. +en,
Kaplan–Meier plotter, Cox and ROC analyses confirmed the
reliable and superior prognostic ability of GESBN models.
AUC can be used to assess the accuracy and predictive
capacity of biomarkers in diagnostic tests [25].

After confirming the predictive value of nomograms, we
validated the expression and prognostic significance of hub
genes in the models. Expectedly, SLC44A1 and MDFI
protein levels were higher in BC tissues than those in normal
breast tissues. We found that the high SLC44A1 expression
was significantly related to favorable OS, PFS, and DMFS.
However, patients in the high MDFI group predicted worse
PFS. +e solute carrier (SLC) superfamily contains various

(d)

Figure 10: +e protein expression levels of SLCC4A1 and MDFI. +e protein expression levels of SLC44A1 in (a) breast cancer tissue and
(b) normal breast tissue. +e protein expression levels of MDFI in (c) breast cancer tissue and (d) normal breast tissue.
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Figure 11: Prognostic value of the hub genes in breast cancer. +e effect of SLC44A1 on (a) overall survival, (b) progression-free survival,
and (c) distant metastasis-free survival in breast cancer patients.+e effect of MDFI on (d) overall survival, (e) progression-free survival, and
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Journal of Healthcare Engineering 13



membrane-bound transporters which are required to
transport a wide variety of substrates over biological
membranes, and the dysregulated expression of these
transporters may be related to cancer metastasis. SLCO1B1
was found to be highly expressed in colon cancer, and its
expression level was significantly associated with the degree
of differentiation in this type of cancer [26]. SLCO1B3
overexpression may be linked to hormone-dependent
growth mechanisms, and the expression of this transporter
could serve as a valid prognostic factor for BC [27]. As a
member of the SLC superfamily, SLC44A1 is a mitochon-
drial protein mediating choline transport and is preferen-
tially expressed in neurons and oligodendrocytes [28].
Besides, high activity of the SLC44A1 promoter has been
proved to participate in the occurrence of papillary glio-
neuronal tumors [29]. Our study revealed an important
finding that high SLCO4A1 expression contributed to the
favorable clinical outcome for BC metastasis patients. MDFI
is a transcription factor that negatively regulates myogenic
family proteins [30]. A previous study has demonstrated that
the loss of MDFI was related to human BC and myeloid
neoplasm via negative regulation of the Wnt pathway [31].
In this study, high MDFI expression led to poor PFS for
patients with metastatic BC.

5. Conclusions

Based on the construction of a weighted co-expression
network for DEGs between BC nonbone metastasis and
bone metastasis, we screened the key module and related
genes to investigate a prognostic nomogram model for bone
metastatic BC. +e study provided some potent biomarkers
of BC bone metastasis and enabled the prediction of patient
survival. We also found that SLC44A1 and MDFI were the
hub genes in BC bone metastasis, which might be the
therapeutic targets for this disease.
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