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Vascular smooth muscle cell (VSMC) apoptosis is a major defining feature of abdominal aortic aneurysm (AAA) and mainly
caused by inflammatory cell infiltration. Smooth muscle (SM) 22α prevents AAA formation through suppressing NF-κB
activation. However, the role of SM22α in VSMC apoptosis is controversial. Here, we identified that SM22α loss contributed to
apoptosis of VSMCs via activation of macrophages. Firstly, deficiency of SM22α enhanced the interaction of VSMCs with
macrophages. Macrophages were retained and activated by Sm22α-/- VSMCs via upregulating VCAM-1 expression. The ratio of
apoptosis was increased by 1.62-fold in VSMCs treated with the conditional media (CM) from activated RAW264.7 cells,
compared to that of the control CM (P < 0:01), and apoptosis of Sm22α-/- VSMCs was higher than that of WT VSMCs
(P < 0:001). Next, circRasGEF1B from activated macrophages was delivered into VSMCs promoting ZFP36 expression via
stabilization of ZFP36 mRNA. Importantly, circRasGEF1B, as a scaffold, guided ZFP36 to preferentially bind to and decay Bcl-2
mRNA in a sequence-specific manner and triggered apoptosis of VSMCs, especially in Sm22α-/- VSMCs. These findings reveal a
novel mechanism by which the circRasGEF1B-ZFP36 axis mediates macrophage-induced VSMC apoptosis via decay of Bcl-2
mRNA, whereas Sm22α-/- VSMCs have a higher sensitivity to apoptosis.

1. Introduction

Vascular smooth muscle cells (VSMCs) are the main struc-
tural cells of blood vessels, and damage or death of VSMCs
contributes to multiple vascular pathologies. VSMC pheno-
typic switching after injury is extensive and has been ascribed
to the injury stimulus; in many cases, VSMC phenotypic
switching is accompanied by changes in cell proliferation, cell
migration, inflammation, and apoptosis. In atherosclerosis,
apoptosis of VSMCs has been associated with plaque rupture
and aneurysm formation, which are thought to be a result of
chronic inflammation [1]. Furthermore, VSMC apoptosis is
implicated in medial degeneration seen in a variety of human
genetic diseases includingMarfan’s syndrome. Both inflamma-

tory cell infiltration and proinflammatory cytokine stimulation
induce VSMC apoptosis [2, 3], suggesting that VSMCs are
more prone to apoptosis in inflammatory microenvironment.

A decrease in VSMC marker genes, including smooth
muscle (SM) 22α and SM α-actin, that is a prominent feature
of VSMC phenotypic switching, has been demonstrated in an
advanced human abdominal aortic aneurysm (AAA) and
mouse model [4, 5]. Our previous studies show that the
arteries of Sm22α-/- mice develop enhanced inflammatory
response and ROS production, which was involved in neoin-
timal hyperplasia through different signaling mechanisms
[6–9], suggesting that Sm22α-/- VSMCs have transited to an
inflammatory phenotype; however, it is not clear if the
modulated VSMCs signal to induce apoptosis. A more recent
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study using AAV carrying SM22α siRNA or SM22α overex-
pression plasmid in Ang II-perfused ApoE−/−mice confirmed
that the causative role of SM22α deficiency in AAA forma-
tion occurs partly through enhancing vascular inflammation
rather than increasing cell apoptosis [10]. However, these
findings based on ApoE−/− mice with AAV-mediated knock-
down or overexpression of SM22α in vivo are not enough to
exclude a potential causative link between disturbed SM22α
expression and VSMC apoptosis.

In the present study, we demonstrate that VSMCs of
Sm22α-/- mice signaled to macrophages and displayed
higher sensitivity to apoptosis induced by macrophages.
Macrophage-derived circRasGEF1B reprograms VSMCs
to apoptosis via directing ZFP36 to selectively bind to and
decay Bcl-2 mRNA in vitro and in vivo. Our findings suggest
that inflammatory VSMCs favor interacting with macro-
phages and the resulting activation of the circRasGEF1B-
ZFP36 axis is a novel mechanism underlying macrophages
inducing VSMC apoptosis.

2. Materials and Methods

2.1. Experimental Animals. The Sm22α-/- mouse line
(B6.129S6-Taglntm2(cre)Yec/J) carrying a Cre-recombinase gene
inserted into the endogenous SM22α locus was purchased
from the Jackson Laboratory. All animal procedures con-
formed to the Guide for the Care and Use of Laboratory Ani-
mals published by the US National Institutes of Health and
were approved by the Institutional Animal Care and Use
Committee of Hebei Medical University.

2.2. Complete Secretome Analysis. Total serum-free media
obtained from WT and Sm22α-/- VSMCs were collected at
4°C, and protease inhibitor cocktail tablet (Roche Inc.) was
added to total conditioned media to prevent protein degrada-
tion. The protein concentration of each sample was
determined using the Bradford assay (Bio-Rad). 200μg of pro-
tein sample was used for mass spectrometry analysis. A filter-
aided sample preparation (FASP) protein digestion protocol
was used for sample preparation [11], and reactions were car-
ried out on a 10kDa MWCO filter (UFC500396, Amicon
Ultra). Protein alkylation, digestion, iTRAQ labeling, offline
2D LC-MS/MS analysis, proteomic data, and bioinformatics
analysis were performed as described previously [12]. To
screen adhesion-related differential proteins in VSMC media
between WT and Sm22α-/-, significantly enriched proteins
were identified by Gene Ontology (GO) analysis.

2.3. RNA-seq Data Analysis. Raw sequencing reads are
available from the Gene Expression Omnibus under GEO
accession number GSE99811, and data analysis was performed
as described previously [13]. To screen apoptosis-related dif-
ferential genes, we identified significantly enriched GO func-
tional categories in the sets of genes up- and downregulated
relative to control in circRasGEF1B-knockdown cells.

2.4. Ang II-Induced Abdominal Aortic Aneurysm (AAA)
Model. Ten- to 12-week-old male Sm22α-/- and WT mice
were used for the experiments. Osmotic minipumps
(ALZET, model 2004) were filled with saline or angioten-

sin (Ang) II (A9525, Sigma-Aldrich) at a dosage of
1000 ng/kg/min dissolved in saline. The pumps were placed
into the subcutaneous space for 4 weeks. After the mice were
sacrificed, the aorta was dissected free from the surrounding
connective tissue. Pictures were taken with a digital camera
and used to measure the outer diameter of the suprarenal
aorta as described previously [14]. Suprarenal regions of the
abdominal aorta were identified between the last pair of
intercostal arteries and the right renal branch. The maximum
width of the abdominal aorta was analyzed using Image-Pro
Plus software after adjusting the scale according to the ruler
in aorta pictures. A mean of three measurements was used.
AAA in mice was defined as a 50% or greater increase in
the external width of the suprarenal aorta compared with
aortas from the controls [15].

2.5. Histological Analyses. For immunohistochemical stain-
ing, frozen sections were incubated with 3% hydrogen perox-
ide, followed by blocking with 3% normal blocking serum.
The sections were incubated with primary antibodies against
CD14 (1 : 500 dilution, ab182032, Abcam) or SM α-actin
(1 : 500 dilution, ab124964, Abcam) at 4°C overnight,
followed by a secondary antibody before staining with the
DAB Kit (ZSGB-BIO, Beijing, China). Nuclei were counter-
stained with hematoxylin. Sections incubated with species-
matched IgG alone were used as negative controls.

For immunofluorescence staining, frozen aortic sections
were incubated with antibodies against CD68 (1 : 500 dilu-
tion, ab955, Abcam), followed by TRITC-conjugated second-
ary antibodies. The fluorescence signal was monitored by
confocal laser scanning microscopy (Leica SP5, Switzerland).

2.6. Cell Culture and Treatment. Primary VSMCs from the
aortas of WT or Sm22α-/- mice (8-12 weeks old, male) were
isolated by collagenase digestion. The isolated cells were
maintained in low-glucose Dulbecco’s modified Eagle’s
medium (DMEM; Invitrogen) containing 10% fetal bovine
serum (FBS; Gibco), 100U/mL penicillin, and 100μg/mL
streptomycin [16, 17]. The purity of VSMCs was verified by
immunofluorescence staining of SM α-actin. Cells from pas-
sages 3 to 5 only were used for further experiments. The
mouse VSMC line MOVAS was purchased from ATCC
(CRL-2797) and cultured in high-glucose DMEM containing
10% FBS and 0.2mg/mL G-418. Before being treated with
different stimulations, all of the VSMCs were incubated
in serum-free medium for 24h. RAW264.7 cells were pur-
chased from ATCC (TIB-71™) and cultured in low-glucose
DMEM containing 10% FBS, 100U/mL penicillin, and
100μg/mL streptomycin.

2.7. Adenovirus Packaging and Infection. Full-length cDNA
of SM22α was cloned into pCMV-FLAG®-MAT-Tag™-1
Expression Vector (C5864; Sigma-Aldrich). The pAdeno-
MCMV-HA-P2A-EGFP was used to pack green fluorescent
protein- (GFP-) tagged adenovirus (pAdeno-MCMV-Flag-
SM22α-Mat-P2A-EGFP, Ad-SM22α for short). The VSMCs
were infected with 1010 pfu/mL adenovirus for 24 h, washed,
maintained in serum-starved medium for 24h, and then
treated with indicated stimulations.
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2.8. Small Interfering RNA (siRNA) Transfection. The siRNA
duplexes targeting mouse circRasGEF1B (si-circRasGEF1B),
ZFP36 (si-ZFP36), and scrambled siRNA (si-Con) were
designed and obtained from RiboBio (Guangzhou, China);
the siRNAs were transiently transfected into VSMCs using
Lipofectamine® RNAiMAX Transfection Reagent (Invitro-
gen) according to the manufacturer’s protocol.

2.9. Plasmid Transfection. The circRasGEF1B sequence was
amplified by PCR and constructed into a pLCDH-ciR vec-
tor (Geenseed Biotech, Guangzhou, China). The different
sequences of circRasGEF1B deletion mutants were synthe-
sized and inserted into the pLCDH-ciR vector to overexpress
mutant circRasGEF1B. The pLCDH empty vector and
pLCDH-circRasGEF1B or pLCDH-circRasGEF1B mutants
were transfected into VSMCs with the X-tremeGENE HP
DNA transfection reagent (06366236001, Roche) for 24 h
according to the manufacturer’s protocol and then treated
with indicated stimulations.

2.10. Migration Assay. Macrophage migratory activity was
performed using 24-well transwell plates with a 5μm pore
filter (Corning). VSMCs were pre-seeded in the lower
chamber. After achieving confluence, serum-starved VSMCs
were stimulated by Ang II (10-5M) for 24h. Thereafter,
RAW264.7 cells were placed in the upper chamber. After
incubating for 6 h, nonmigratory cells on the upper mem-
brane surface were removed, and the cells that traversed
and spread on the lower membrane surface were fixed with
4% paraformaldehyde and stained with gentian violet. By
utilizing a microscope with a 40x objective, the number of
migratory cells per membrane was enumerated. At least three
random fields in each filter were examined. Each experiment
was performed in triplicate, and migration was expressed as
the mean ± SD of total cells counted per field.

2.11. Adhesion Assay. VSMCs plated in 96-well culture plates
were stimulated with Ang II (10-5M) or indicated treatment,
and then, RAW264.7 cells (labeled with calcein-AM, Life
Technologies) were added to each well. After 30min incuba-
tion, nonadherent cells were removed carefully by washing
with cold phosphate-buffered saline (PBS). The fluorescent
intensities were determined by excitation and emission at
490 and 535nm, respectively. For adenovirus-infected
VSMCs, RAW264.7 cells were added to each well, and the
adherent cells were counted.

2.12. Apoptosis Assay. Apoptosis of frozen aortic sections was
determined by using the ApopTag Peroxidase In Situ Apo-
ptosis Detection Kit (S7100, Chemicon) according to the
manufacturer’s instructions.

Apoptosis of VSMCs was determined by the Annexin
V-FITC/PI Apoptosis Detection Kit (556547, BD Pharmin-
gen) according to the manufacturer’s instructions, and the
BD LSRFortessa™ flow cytometer (BD Biosciences) was
used to analyze the apoptotic index. Alternatively, using the
ApopTag Red In Situ Apoptosis Detection Kit (Millipore),
VSMC apoptosis transfected with plasmids was determined
by terminal deoxynucleotidyl transferase-mediated dUTP
nick end labeling (TUNEL) staining, and the fluorescence

signal was monitored by confocal laser scanning microscopy
(Leica SP5, Switzerland).

2.13. RNA Isolation and Quantitative Real-Time PCR (qRT-
PCR). Total RNAs were extracted using TRIzol Reagent (Life
Technologies), following the manufacturer’s instructions. To
quantify the amount of mRNA or circRNA, cDNAs were
synthesized using theM-MLV First Strand Kit (Life Technol-
ogies), and quantitative PCR was performed using SYBR
Green qPCR SuperMix-UDG (Life Technologies). For
microRNA, total RNA was extracted by using the QIAzol
Lysis Reagent. Reverse transcription and quantitative reverse
transcription PCR were performed with the miRNA Detec-
tion Kit by Sangon Biotech (Shanghai, China). Relative
circRNA, mRNA, or miRNA expression was normalized to
β-actin/GAPDH or U6 snRNA levels, using the 2−ΔΔCt
method, respectively. The sequence for each primer is listed
in Supplementary Table 1 in Supplementary Materials. The
average threshold cycle for each gene was determined from
at least three independent experiments.

2.14. Western Blot Analysis. Lysates from cells or tissues were
prepared with RIPA lysis. Equal amounts of protein were
separated by sodium dodecyl sulfate-polyacrylamide gel
electrophoresis (SDS-PAGE) and electrotransferred to a
polyvinylidene fluoride (PVDF) membrane. Membranes
were blocked with 5% nonfat dairy milk and incubated with
primary antibodies against anti-VCAM-1 (1 : 1000 dilution,
ab134047, Abcam), anti-ZFP36 (1 : 500 dilution, sc-374305,
Santa Cruz), anti-Bcl-2 (1 : 1000 dilution, sc-7382, Santa
Cruz), anti-Bax (1 : 1000 dilution, sc-7480, Santa Cruz),
anti-cleaved caspase-3 (1 : 1000 dilution, ab49822, Abcam),
anti-pro-caspase-3 (1 : 1000 dilution, ab32499, Abcam),
anti-SM22α (1 : 1000 dilution, ab14106, Abcam), anti-
ICAM-1 (1 : 1000 dilution, ab222736, Abcam), anti-IGFBP7
(1 : 500 dilution, DF7131, Affinity Biosciences), and anti-
TNC (1 : 500 dilution, DF8051, Affinity Biosciences) at 4°C
overnight. GAPDH (1 : 1000 dilution, ab181602, Abcam)
was used as an internal control. This was followed by incuba-
tion with an IRDye800®-conjugated secondary antibody
(1 : 20000 dilution, Rockland) for 1 h at room temperature
and subsequent scanning with the Odyssey Infrared Imaging
System (LI-COR Biosciences). The integrated intensity for
each detected band was determined using Odyssey Imager
software. Data are presented asmean ± SD from at least three
independent experiments.

2.15. RNA Immunoprecipitation (RIP). VSMCs were washed
in ice-cold PBS, lysed in lysis buffer (20mM/L Tris-HCl,
pH7.0, 150mM/L NaCl, 0.5% NP-40, 5mM/L EDTA, with
freshly added 1mM/L DTT, 1mM/L PMSF, and 0.4U/μL
RNase inhibitor), and then incubated with 5μg ZPF36 pri-
mary antibody (ABE285, Merck) at 4°C for 2 h. 50μL Protein
A/G PLUS-Agarose (Santa Cruz) was added to each sample,
and the mixtures were incubated at 4°C for 4 h. The pellets
were washed with PBS and resuspended in 1mL TRizol
Reagent (Invitrogen). The precipitated RNAs in the aqueous
solution were subjected to qRT-PCR analysis to demonstrate
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the presence of the binding products using respective
primers. The experiment was replicated at least three times.

2.16. RNA Pull-Down Assay. Eight to ten dishes of 15 cm in
diameter of VSMCs were used per RNA pull-down experi-
ment. RNA pull-down assays were performed as described
[18]. Briefly, VSMCs were washed in ice-cold PBS with
0.4U/μL RNase inhibitor, lysed in 500μL lysis buffer
(20mM/L Tris-HCl, pH7.0, 150mM/L NaCl, 0.5% NP-40,
5mM/L EDTA, with freshly added 1mM/L DTT, 1mM/L
PMSF, and 0.4U/μL RNase inhibitor), and then incubated
with 3μg biotinylated DNA oligo probes (designed and
obtained from RiboBio, Guangzhou, China) at 4°C for 2 h.
A total of 50μL Dynabeads™MyOne™ Streptavidin C1 mag-
netic beads (Invitrogen) were added to each binding reaction
and further incubated at 4°C for 4 h. The beads were washed
briefly with lysis buffer for three times; then, the enriched
proteins were identified by immunoblotting, and enriched
RNAs were identified by qRT-PCR. The experiment was
replicated at least three times.

2.17. Fluorescence In Situ Hybridization (FISH). The VSMCs
were washed in PBS, fixed in 4% paraformaldehyde for
30min, and permeabilized for 15min. For FISH, the cells
were incubated using specific probes of circRasGEF1B
according to user manual of the Fluorescent In Situ Hybrid-
ization Kit (RiboBio, Guangzhou, China). Hybridization was
performed using fluorescence-labeled probes in hybridization
buffer by incubation at 37°C for overnight. After stringent
washing with SSC buffer, cell nuclei were counterstained with
DAPI (Invitrogen). Images were acquired using confocal laser
scanning microscopy (Leica SP5, Switzerland).

2.18. mRNA Stability Assay. VSMCs overexpressed circRas-
GEF1B following transfecting with the plasmid for 24h.
Then, de novo RNA synthesis was blocked with 10μg/mL
ActD (C7698, Sigma-Aldrich). Total RNA was harvested at
indicated time points, and mRNA expression was detected
by qRT-PCR. The half-life of ZFP36 mRNA was determined
by comparing to the mRNA level before adding ActD.

2.19. Statistical Analysis. Data analysis was performed using
SPSS version 16.0 or GraphPad Prism 6 software. Data are
presented as themeans ± SD from at least three independent
experiments, and each independent experiment was repeated
three times to obtain the mean. Normally distributed datasets
were analyzed by the unpaired Student’s t-test for 2 indepen-
dent groups or paired t-test for 2 dependent groups and the
one-way analysis of variance (ANOVA) followed by the
post-Bonferroni’s multiple comparison test for ≥3 groups.
For all statistical comparisons, a value of P < 0:05was consid-
ered statistically significant and denoted with one, two, and
three asterisks when lower than 0.05, 0.01, and 0.001,
respectively.

3. Results

3.1. Macrophage Infiltration and VSMC Apoptosis Increase in
the Aortic Media of Sm22α-/- Mice with Ang II Infusion. We
first verified that there was higher incidence of AAA forma-

tion and aggravated aortic macrophage infiltration in
Sm22α-/- mice infused with Ang II compared to WT mice
(Figures 1(a) and 1(b)), consistent with previous findings
[10]. We next performed the TUNEL assay and showed that
TUNEL-positive cells significantly increased in the aortic
media of Sm22α-/- mice with Ang II infusion, compared
with WT control, in accordance with the decreased num-
ber of medial VSMCs with SM α-actin-positive staining
(Figure 1(c)). Thus, we speculated that SM22α loss may
cause macrophage infiltration, associated with VSMC
apoptosis.

3.2. SM22α Loss Precipitates Interaction of VSMCs with
Macrophages via Expression of VCAM-1. To assess a poten-
tial causative link between SM22α loss and macrophage
infiltration observed from the in vivo study, we performed
transwell migration assay using the Boyden chamber.
Sm22α-/- VSMCs treated with or without Ang II treatment
markedly induced the transwell migration of RAW264.7 cells
(Figure 2(a)) and enhanced their interaction with RAW264.7
cells (Figure 2(b)). Furthermore, the expression of proinflam-
matory molecules TNF-α, MCP-1, IL-6, and IL-1β signifi-
cantly increased in RAW264.7 cells treated with the
conditional media (CM) of Ang II-induced Sm22α-/- VSMCs
(Figure 2(c)). Rescue of SM22α expression reduced the inter-
action of Sm22α-/- VSMCs with macrophages (Figure 2(d)),
which displayed reduced transwell migration (Figure 2(e))
and expression of proinflammatory molecules in RAW264.7
cells under the same conditions (Figure 2(f)), suggesting that
Sm22α-/- VSMCs are able to recruit and activate macrophages
as SM22α was not expressed in WT mouse peritoneal macro-
phages and RAW264.7 cells (data not shown).

To explore how Sm22α-/- VSMCs recruit and activate
macrophages, we analyzed the complete secretome for the
conditional media (CM) of VSMCs from wild-type (WT)
and Sm22α-/- mice. Putative differentially expressed proteins
generated by iTRAQ were identified (1.5-fold change). Using
these criteria, there were a total of 267 proteins differentially
expressed between Sm22α-/- and WT mice. GO biological
process (BP) revealed that the molecules related to cell adhe-
sion, TN-C, VCAM-1, and NID-2 were significantly upregu-
lated more than 20-fold in Sm22α-/- VSMCs (Supplementary
Table 2). The expression of these adhesion molecules was
verified by Western blot and greatly elevated in Sm22α-/-

VSMCs compared with WT cells (Figure 2(g)), indicating
that Sm22α-/- VSMCs are of proinflammatory secretory
phenotype. The previous study has shown that VSMCs and
macrophages are in direct contact in human atherosclerotic
plaques by the expression of VCAM-1 [19]. To further
validate that VCAM-1 secreted by Sm22α-/- VSMCs
mediate macrophage infiltration, the specific siRNAs were
used to knockdown the expression of the adhesion
molecules. We found that knockdown of VCAM-1
markedly decreased the interaction between the VSMCs
and RAW264.7 cells (Figure 2(h)). Similarly, the VCAM-1
neutralizing antibody removed this interaction (Figure 2(i)).
These findings indicated that SM22α loss precipitates
interaction of VSMCs with macrophages via expression of
VCAM-1.
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3.3. Macrophage-Derived circRasGEF1B Induces VSMC
Apoptosis.Human macrophages potently induce VSMC apo-
ptosis via direct cell-cell interactions mediated by Fas/Fas-L
[20]. We showed that the activity of apoptosis was increased
by 1.62-fold in VSMCs treated with the CM from lipopoly-
saccharide- (LPS-) activated RAW264.7 cells compared to
those treated with the control CM (Figure 3(a)), accompa-
nied by increased expression of Bax and cleaved caspase-3
and decreased Bcl-2 protein (Figure 3(b)). To eliminate the
effect of TNF-α from LPS-activated macrophages on apopto-
sis, VSMCs were induced by the RAW264.7 CM treated with
the TNF-α neutralizing antibody. We showed that removing
TNF-α did not abolish the RAW264.7 CM-induced apo-
ptosis of VSMCs (Figure 3(c)). Furthermore, the apoptosis
of Sm22α-/- VSMCs was higher than that of WT cells
(Figure 3(d)).

It has been known that exogenous transcripts reprogram
recipient cell gene expression and function [21–25]. To
examine potential mediators for induction of VSMC apopto-
sis by macrophages, we screened and identified a set of non-
coding RNAs (ncRNAs) highly expressed in activated
macrophages, including lincRNA-Cox2, miR-146a, miR-
155, circRasGEF1B, circRNA-010231, circRNA-010056,
and circRNA-003780 [21, 26–30]. Among them, the expres-
sion of five noncoding RNAs increased in the activated

RAW264.7 cells and their CM; in particular, increase in
circRasGEF1B was more much (Figures 3(e) and 3(f)).
Although all of these noncoding RNAs were detected, the
level of circRasGEF1B was the highest in VSMCs treated with
the CM of activated RAW264.7 cells (Figure 3(g)). Further-
more, the expression of circRasGEF1B was specific to the
macrophage as it was low and unchanged in VSMCs upon
LPS treatment (Figure 3(h)). This result was further con-
firmed by the fluorescence in situ hybridization (FISH) assay.
Fluorescence-stained circRasGEF1B was observed only in the
cytoplasm of VSMCs treated with the CM of activated
RAW264.7 cells (Figure 3(i)), suggesting that circRasGEF1B
is delivered from the macrophages to VSMCs.

To further determine that macrophage-derived circRas-
GEF1B triggers VSMC apoptosis, VSMCs were transfected
with the pLCDH-circRasGEF1B plasmid. The percentage of
TUNEL-stained cells and the ratio of Bax/Bcl-2 were increased
in VSMCs overexpressing circRasGEF1B (Figures 3(j) and
3(k)). circRasGEF1B-mediated apoptosis was more serious
in Sm22α-/- VSMCs than in WT cells (Figure 3(l)). These data
suggest that circRasGEF1B is a newmediator for macrophages
inducing VSMC apoptosis.

3.4. ZFP36 Mediates circRasGEF1B-Induced Apoptotic
Programming of VSMCs. The transcriptome-wide data in
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control and circRasGEF1B-deficient macrophages have been
reported using RNA sequencing (RNA-seq) [13]. Based on
these data, we identified putative differentially expressed
genes (2-fold change cut-off) through high-throughput
transcriptomic analysis. Of the differentially expressed genes,
10 potential apoptosis-related genes were screened, including
Ada, Tnfrsf-26, Relt, Mif, Cd74, Nradd, Ticam1, Cd5, Zfp36,
and Zfp36l1 (Supplementary Table 3), and all of them were
downregulated in the circRasGEF1B-deficient group. To
determine that circRasGEF1B regulates the expression of
these genes, we tested the expression of these 10 genes
in pLCDH-circRasGEF1B-transfected VSMCs using qRT-

PCR. We showed that ZFP36 mRNA level was obviously
upregulated following circRasGEF1B overexpression
(Figure 4(a)), accompanied by increased ZFP36 protein
(Figure 4(b)). To determine how circRasGEF1B upregulates
ZFP36 expression, we measured ZFP36 mRNA half-life
after blocking de novo RNA synthesis with ActD in
VSMCs. The half-life of ZFP36 mRNA was increased in
circRasGEF1B-overexpressed VSMCs compared with the
control group (Figure 4(c)), indicating that the stabilization
of ZFP36 mRNA was enhanced. To confirm whether
ZFP36 is associated with circRasGEF1B-induced VSMC
apoptosis, we silenced ZFP36 expression by using specific
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Figure 2: SM22α loss contributes to interaction of VSMCs with macrophages via expression of VCAM-1. (a) Relative quantification for
RAW264.7 cell migration induced by the CM from WT and Sm22α-/- VSMCs treated with (+) or without (-) Ang II. (b) The fluorescent
intensity quantification of calcein-AM-labeled RAW264.7 cell adhesion to WT or Sm22α-/- VSMCs. (c) qRT-PCR of the mRNA of TNF-α,
MCP-1, IL-6, and IL-1β in RAW264.7 cells stimulated by CM from WT or Sm22α-/- VSMCs. (d) The relative number of RAW264.7 cell
adhesion to Ad-vector- or Ad-SM22α-infected Sm22α-/- VSMCs. (e) Relative quantification for RAW264.7 cell migration induced by the
CM from Ad-vector- or Ad-SM22α-infected Sm22α-/- VSMCs. (f) qRT-PCR of the mRNA of TNF-α, MCP-1, IL-6, and IL-1β in
RAW264.7 cells stimulated by CM from Ad-vector- or Ad-SM22α-infected Sm22α-/- VSMCs. (g) Western blot analysis of differentially
expressed adhesion molecules in CM from WT or Sm22α-/- VSMCs. (h, i) The fluorescent intensity quantification of calcein-AM-labeled
RAW264.7 cell adhesion to Sm22α-/- VSMCs transfected with si-VCAM-1 (h) or preincubated with IgG or VCAM-1 neutralizing
antibody (i). Data are presented as mean ± SD of three independent experiments. ∗P < 0:05, ∗∗P < 0:01, and ∗∗∗P < 0:001.
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siRNAs in circRasGEF1B-overexpressed VSMCs (Figure 4(d))
and showed that knockdown of ZFP36 abolished
circRasGEF1B-induced apoptosis (Figure 4(e)), accompanied
by a decreased Bax/Bcl-2 ratio and cleaved caspase-3
expression (Figure 4(f)), suggesting that ZFP36 mediates
circRasGEF1B-induced apoptosis of VSMCs.

3.5. circRasGEF1B Guides ZFP36 to Preferentially Bind to and
Decay Bcl-2 mRNA in VSMCs. It has been reported that the
ZFP36 family promotes mRNA decay via binding to the
3′-UTRs of their target mRNAs with AU-rich element
(ARE) to maintain appropriate target transcript and protein

levels, including Bcl-2 and ZFP36 itself [31]. As mentioned
above, overexpression of circRasGEF1B reduced Bcl-2
expression (Figure 3(l)). To verify the causal relationship
between increased ZFP36 and decreased Bcl-2 level, we
knocked down ZFP36 and showed increased level of Bcl-2
mRNA in circRasGEF1B-overexpressed VSMCs (Figure 5(a)).
To examine whether ZFP36 interacts with Bcl-2 mRNA, we
performed RIP using an anti-ZFP36 antibody and RNA pull-
down using a Bcl-2 mRNA probe, respectively. We found that
the interaction between ZFP36 protein and Bcl-2 mRNA was
increased in circRasGEF1B-transfected VSMCs (Figures 5(b)
and 5(c)). However, overexpression of circRasGEF1B did not
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Figure 3: Macrophage-derived circRasGEF1B induces VSMC apoptosis. (a, b) Flow cytometry analysis (a) or Western blot (b) of cell
apoptosis in MOVAS cells, a mouse VSMC line, pretreated with the CM from saline- or LPS-stimulated RAW264.7 cells. (c, d) Flow
cytometry analysis of cell apoptosis in MOVAS cells pretreated with IgG or TNF-α neutralizing antibody (c) or in WT and Sm22α-/-

VSMCs (d) treated with Ang II for 24 h. (e–g) qRT-PCR of lincRNA-Cox2, miR-146a, miR-155, circRasGEF1B, circRNA-010231,
circRNA-010056, and circRNA-003780 in RAW264.7 cells (e), in the conditional media from RAW264.7 cells (f), and in MOVAS cells
pretreated with the CM from RAW264.7 cells (g). (h) qRT-PCR of circRasGEF1B in RAW264.7 and MOVAS cells. (i) Confocal FISH
images of circRasGEF1B in VSMCs pretreated with CM from RAW264.7 cell or not. Bars: 10μm. (j) RT-PCR of circRasGEF1B in
MOVAS cells transfected with the pLCDH empty vector or pLCDH-circRasGEF1B plasmid. (k, l) TUNEL assay (k) and Western blot (l)
of Bax and Bcl-2 in MOVAS cells transfected with the pLCDH empty vector or pLCDH-circRasGEF1B plasmid. Bars: 100 μm (k).
(m) TUNEL assay of cell apoptosis in WT or Sm22α-/- VSMCs transfected with the pLCDH-circRasGEF1B plasmid. Bars: 100μm.
Data are presented as mean ± SD of three independent experiments. ∗P < 0:05, ∗∗P < 0:01, and ∗∗∗P < 0:001.
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Figure 4: ZFP36 mediates circRasGEF1B-induced apoptotic programming of VSMCs. (a) The relative fold change of the mRNA of Ada,
Tnfrsf-26, Relt, Mif, Cd74, Nradd, Ticam1, Cd5, Zfp36, and Zfp36l1 in MOVAS cells transfected with the pLCDH-circRasGEF1B plasmid
compared to the pLCDH empty vector group. (b) Western blot and densitometric analysis of the expression of ZFP36 in MOVAS cells
transfected with the pLCDH empty vector or pLCDH-circRasGEF1B plasmid. (c) qRT-PCR of remaining ZFP36 mRNA in pLCDH empty
vector- or pLCDH-circRasGEF1B plasmid-transfected MOVAS cells stimulated by ActD stimulation for indicated time. Values represent
mean ± SD from 3 independent experiments; ∗P < 0:05, ∗∗P < 0:01 vs. empty vector group at the same time point. (d) qRT-PCR of ZFP36
mRNA in MOVAS cells transfected with si-Con or si-ZFP36. (e, f) TUNEL assay (e) or Western blot (f) for cell apoptosis in
circRasGEF1B-overexpressed MOVAS cells transfected with si-Con or si-ZFP36. Data are presented as mean ± SD of three independent
experiments. ∗P < 0:05, ∗∗P < 0:01, and ∗∗∗P < 0:001.
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increase the interaction of ZFP36 protein with its mRNA that
contains AU-rich element (Figures 5(d) and 5(e)).

To ascertain the mechanism by which ZFP36 preferen-
tially binds to and decays Bcl-2 mRNA in circRasGEF1B-
overexpressed VSMCs, we first predicted the potential RNA
region for circRasGEF1B binding to the two mRNAs and
ZFP36 protein using the RegRNA 2.0 [32] and catRAPID
program [33], respectively, and assessed the hybridization Δ
G values for RNA-RNA pairs by RNAup Server [34]. The
potential binding region of ZFP36 protein was observed in
the circRasGEF1B sequence, and there were obviously lower
ΔG values between circRasGEF1B and Bcl-2 mRNA, com-
pared with binding to ZFP36 mRNA (Supplementary
Tables 4 and 5); namely, circRasGEF1B may serve to bind
both ZFP36 and Bcl-2 mRNAs together. This let us to
further explore the mechanism by which circRasGEF1B
directs ZFP36 to preferentially bind to Bcl-2 mRNA in the
presence of ZFP36 mRNA. RIP and RNA pull-down assay
showed that circRasGEF1B was retrieved by using a ZFP36
antibody, and ZFP36 proteins were also retrieved by using a
circRasGEF1B probe in VSMCs transfected with the
pLCDH-circRasGEF1B plasmid (Figures 5(f) and 5(g)).
Compared with the ZFP36 mRNA probe, the Bcl-2 mRNA
probe retrieved more circRasGEF1B (Figure 5(h)). Thus,
circRasGEF1B enables ZFP36 to preferentially bind to Bcl-2
mRNA in the presence of ZFP36 mRNA.

3.6. circRasGEF1B Directly Interacts with Both ZFP36 and
Bcl-2 mRNAs in a Sequence-Specific Manner. To identify
the binding sites of ZFP36 in the circRasGEF1B sequence, a
series of circRasGEF1B deletion mutants were used to deter-
mine the regions in circRasGEF1B that binds to ZFP36. We
showed that the mutants retaining the nt 161-310 sequence
of circRasGEF1B bound to ZFP36, whereas other mutants
completely lost their binding capacity (Figure 6(a)). Addi-
tionally, the catRAPID predicted the nt 244-302 motif of cir-

cRasGEF1B is a binding site for ZFP36. To verify the
prediction, blocking oligo that was complimentary to the
ZFP36 binding sites in the circRasGEF1B sequence was
transfected into VSMCs. We showed that the blocking oligo
inhibited the interaction of circRasGEF1B with ZFP36 in
the RNA pull-down assay (Figure 6(b)). Furthermore, the
interaction of circRasGEF1B with ZFP36 was enhanced in
VSMCs transfected with circRasGEF1B but not the circRas-
GEF1B deletion mutant in RNA pull-down and RIP assays
(Figures 6(c) and 6(d)).

As mentioned above, there were lower hybridization ΔG
values between circRasGEF1B and Bcl-2 mRNA, compared
with binding to ZFP36 mRNA (Supplementary Tables 4
and 5). To further confirm the binding sequences for Bcl-2
mRNA in circRasGEF1B, a series of biotinylated DNA
probes were synthesized and incubated with VSMCs
transfected with different circRasGEF1B deletion mutants,
respectively. The mixture was subsequently pulled down
with streptavidin beads, followed by real-time PCR. We
showed that the circRasGEF1B mutants retaining nt 311-
444 bound to Bcl-2 mRNA (Figure 6(e)). In contrast, the
mutants of circRasGEF1B deleting nt 244-302 or 311-444
were unable to recruit ZFP36 to decay Bcl-2 mRNA
(Figure 6(f)), which resulted in reduced VSMC apoptosis
(Figures 6(g) and 6(h)). These data suggest that
circRasGEF1B, as a platform, recruits ZFP36 to selectively
decay Bcl-2 mRNAs and may be a critical determinant of
ZFP36-mRNA target specificity.

4. Discussion

In the current study, we demonstrated that Sm22α-/- VSMCs
favor interacting with macrophages and displayed higher
sensitivity to apoptosis (Figure 7). Our findings highlight that
(1) VSMCs missing SM22α are able to recruit and activate
macrophages in a VCAM-1-dependent manner, creating an
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inflammatory microenvironment; (2) macrophage-derived
circRasGEF1B reprograms VSMC apoptosis via recruiting
ZFP36 to selectively bind to and decay Bcl-2 mRNA; and
(3) the circRasGEF1B-ZFP36 axis is a novel pathway for
communication between macrophages and VSMCs and a
new mechanism by which macrophages determine VSMC
fate. Thus, perhaps modulating VSMC phenotypes to a
differentiated or reparative state by targeting SM22α or cir-
cRasGEF1B reduces the harmful communication between

macrophages and VSMCs and may be beneficial for therapies
of aortic aneurysm and its clinical complications.

SM22α has been considered to be one of the hallmarks of
SMC phenotypic switching [35, 36]. Our recent studies have
documented that SM22α is vital in maintaining VSMC con-
tractile phenotype and vascular homeostasis [37] and is
downregulated by endothelial injury or renin-angiotensin
system activation, contributing to proliferation and hyper-
trophy of VSMCs [6, 38]. VSMCs missing SM22α may
provide a vascular environment susceptible to inflammation
and predispose the aorta to aneurismal formation [10]. How-
ever, the role of SM22α in VSMC apoptosis remains to be not
fully studied. Herein, we found that disruption of SM22α sig-
nificantly increased the expression and secretion of VCAM-1
and led to macrophage recruitment in vivo and in vitro under
Ang II treatment, which was abolished by rescued expression
of SM22α or by VCAM-1 neutralizing antibody. Decrease in
SM22α expression has been well defined in a variety of
VSMC-driven vascular diseases. Our and other studies pro-
vide further evidence of the key role of SM22α in maintaining
vascular structural integrity and the pathophysiology of mul-
tiple vascular diseases not just as a biomarker of contractile
SMC. Although the recent study considered that the effect
of SM22α deficiency on AAA formation was not mediated
by increasing cell apoptosis [10], this conclusion was only
based on the aortic cleaved caspase-3 expression by Western
blotting in ApoE−/− mouse in vivo study and ignored the
effect of ApoE deficiency on VSMC apoptosis. Ang II-
infused ApoE-/-mice, as a popular mouse model for aneu-
rysm research, displaying vascular matrix degradation and

Vector circRasGEF1B circRasGEF1B
 deletion 244-302 

circRasGEF1B
deletion 311-444 

TU
N

EL
-R

ed
 p

os
iti

ve
 ce

lls
(P

er
ce

nt
)

0

2

4

6

8

10

V
ec

to
r

ci
rc

Ra
sG

EF
1B

ci
rc

Ra
sG

EF
1B

de
le

tio
n 

31
1-

44
4

ci
rc

Ra
sG

EF
1B

de
le

tio
n 

24
4-

30
2

⁎⁎⁎⁎

⁎⁎

(h)

Figure 6: circRasGEF1B directly interacts with both ZFP36 and Bcl-2 mRNAs in a sequence-specific manner. (a) RNA pull-down assay
of ZFP36 proteins retrieved by using probes of circRasGEF1B deletion mutants in MOVAS cells transfected with circRasGEF1B deletion
mutants. (b, c) RNA pull-down assay of ZFP36 proteins retrieved by using circRasGEF1B probes in MOVAS cells transfected with
circRasGEF1B, block oligo 244-302 (b), or 244-302 deletion mutant (c). (d) RIP assay of circRasGEF1B retrieved by using a ZFP36
antibody in MOVAS cells transfected with circRasGEF1B, block oligo 244-302, or 244-302 deletion mutant. (e) RNA pull-down
assay of Bcl-2 mRNA retrieved by using probes of circRasGEF1B deletion mutants in MOVAS cells transfected with circRasGEF1B
deletion mutants. (f) RIP assay of Bcl-2 mRNA retrieved by using a ZFP36 antibody in MOVAS cells transfected with
circRasGEF1B or deletion mutants. (g, h) qRT-PCR of Bcl-2 mRNA levels (g) or TUNEL assay of cell apoptosis (h) in MOVAS
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Figure 7: Mechanism of SM22α ameliorates macrophage-induced
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in a VCAM-1-dependent manner and induce the self-apoptosis via
circRasGEF1B-ZFP36-mediated Bcl-2 mRNA decay.
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inflammation can be far more than the changes observed in
Sm22α-/- mice under the same conditions, and the effect of
AAV-SM22α in vivo could be not enough to ameliorate these
lesions in ApoE-/-mice.

Involvement of macrophages in the pathogenesis of
unstable plaque and aortic aneurysm has been well defined
in the past decade. Human macrophages potently induce
VSMC apoptosis via direct cell-cell interactions mediated
by Fas/Fas-L, promoting plaque rupture [20]. Our present
study provided evidence that macrophages induced VSMC
apoptosis by a circRNA-mediated mechanism. We identified
a set of noncoding RNAs highly expressed in LPS-activated
RAW264.7 cells and validated that the expression of circRas-
GEF1B was highest among them and transferred into
VSMCs, associated with increased apoptosis. Although the
expression of TNF-α that is a proapoptotic cytokine was
induced in the activated macrophages, we showed that the
apoptosis of VSMCs was still higher upon treatment with
the macrophage CM that was treated with the TNF-α neu-
tralizing antibody. In contrast, the activity of apoptosis
reduced in si-circRasGEF1B-treated cells that exhibited
increase in Bcl-2 expression. Thus, circRasGEF1B is a
novel mediator by which macrophages induce VSMC
apoptosis.

Cytoplasmic mRNA decay constitutes an important
posttranscriptional mechanism in mammalian cells. The
regulation of cytoplasmic mRNA half-life is mediated by
mRNA-binding proteins and noncoding RNAs (ncRNAs),
such as microRNAs and long noncoding RNAs [39]. The
AU-rich elements (AREs) are the largest group of cis-acting
elements controlling mRNA decay. ZFP36, also known as
tristetraprolin (TTP), is an ancient RNA-binding protein
belonging to a CCCH tandem zinc finger protein family
and plays a critical role in a wide variety of physiological pro-
cesses through maintaining appropriate target transcript and
protein levels as part of normal cell and tissue homeostasis by
regulating the expression of ARE-containing mRNAs includ-
ing its own [40, 41]. It has been reported that ZFP36 inhibits
the expression of Bcl-2 and enhances cisplatin sensitivity of
HNSCC cells [42]. We showed that overexpression of cir-
cRasGEF1B significantly increased ZFP36 expression at
mRNA and protein levels with increased ZFP36 mRNA
stability in VSMCs. Furthermore, knockdown of ZFP36
attenuated circRasGEF1B-induced apoptosis of VSMCs, sug-
gesting that ZFP36 is a target for the effect circRasGEF1B on
apoptosis in VSMCs. We further validated the interaction
among circRasGEF1B, ZFP36, and Bcl-2 mRNA in a
sequence-specific manner. circRasGEF1B, as a scaffold,
recruited ZFP36 to bind to and decay Bcl-2 mRNA and pro-
moted VSMC apoptosis. We considered that circRasGEF1B
may play a key role for determining ZFP36-mRNA target
specificity.

There are several limitations to this study. It has been
known that activated macrophages release inflammatory fac-
tors to induce VSMC apoptosis via the membrane receptor
pathway. Now, it is unknown how macrophage-derived
circRasGEF1B and proapoptosis factor-activated pathways
interact and converge to regulate Bcl-2 mRNA stability in
VSMCs. Is it the same in macrophages? It is necessary to

further investigate the crosstalking between this apoptosis
pathway and other functions of circRasGEF1B.

In summary, we provide evidence that Sm22α-/- VSMCs
favor interacting with macrophages and the resulting activa-
tion of the circRasGEF1B-ZFP36 axis is a novel mechanism
underlying macrophages inducing VSMC apoptosis.
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