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Tuberculosis (TB) is an infectious disease caused by the bacteria Mycobacterium
tuberculosis (Mtb) that affects millions of people worldwide. The majority of individuals
who are exposed to Mtb develop latent infections, in which an immunological response to
Mtb antigens is present but there is no clinical evidence of disease. Because currently
available tests cannot differentiate latent individuals who are at low risk from those
who are highly susceptible to developing active disease, there is considerable interest
in the identification of diagnostic biomarkers that can predict reactivation of latent TB. We
present results from our analysis of a controlled longitudinal experiment in which a group
of rhesus macaques were exposed to a low dose of Mtb to study their progression
to latent infection or active disease. Subsets of the animals were then euthanized at
scheduled time points, and granulomas taken from their lungs were assayed for gene
expression using microarrays. The clinical profiles associated with the animals following
Mtb exposure revealed considerable variability, and we developed models for the disease
trajectory for each subject using a Bayesian hierarchical B-spline approach. Disease
severity estimates were derived from these fitted curves and included as covariates
in linear models to identify genes significantly associated with disease progression.
Our results demonstrate that the incorporation of clinical data increases the value of
information extracted from the expression profiles and contributes to the identification
of predictive biomarkers for TB susceptibility.
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1. INTRODUCTION
Tuberculosis (TB) is an infectious disease caused by the bacteria
Mycobacterium tuberculosis (Mtb) that affects millions of people
worldwide. While a small fraction of individuals who are exposed
to Mtb either completely clear the infection or develop active
disease, the majority enter a state of latency, in which an immuno-
logical response to Mtb antigens is present (typically diagnosed
by a positive response to a skin test) but there is no clinical
evidence of infection. However, there is not a clear delineation
between latent and active infection, with levels of bacterial activity
encompassing a latency spectrum that varies considerably among
individuals (Barry et al., 2009; Delogu et al., 2013). This consid-
erably complicates the diagnosis and proactive treatment of TB
infection, as currently available tests cannot differentiate individ-
uals who are at low risk of disease progression from those who are
highly susceptible to developing active disease. For this reason,
there is much interest in the identification of diagnostic biomark-
ers that can predict reactivation of latent TB (Wallis et al., 2010;
Walzl et al., 2011; Ottenhoff et al., 2012).

One approach for studying the progression of Mtb infection
from initial exposure to latency is through controlled time-course

experiments. Non-human primates (NHPs), such as rhesus or
cynomolgus macaques, display a continuum of TB infection
which cannot be reproduced in other animal models (Capuano
et al., 2003; Dutta et al., 2010; Mehra et al., 2010, 2011, 2013)
and are therefore optimally suited for this type of research. In
experiments conducted at the Tulane National Primate Research
Center (TNPRC), a set of 17 rhesus macaques were exposed to
a low dose of Mtb bacteria and monitored for clinical signs of
disease. Subsets of the animals were then euthanized at scheduled
time points, and granulomas taken from their lungs were analyzed
for gene expression using microarrays. While in an ideal setting
the combined expression profiles produced from this experiment
would provide a valuable snapshot into the processes by which
latency is established at the genomic level, this would require that
all of our subjects have a common experience of infection. In our
study, a review of the clinical profiles associated with the animals
revealed considerable variability in the nature of their respec-
tive illnesses, with some subjects exhibiting no clinical signs of
infection and others presenting symptoms associated with severe
disease. Based on this heterogeneity, we considered that an inte-
grated analysis of our gene expression data that incorporated
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each animal’s clinical history would provide greater insights into
the genetic processes associated with the establishment of latent
infection than one which considered only the length of exposure
associated with each profile.

The term clinico-genomic modeling describes a large class of
methods that seek to integrate data from high-throughput exper-
iments with clinical information, typically for diagnostic or prog-
nostic purposes (Gevaert et al., 2006). For example, a recent
study of primary breast cancer recurrence demonstrated that the
incorporation of traditional clinical risk factors improved disease
outcome predictions over statistical classification tree models that
only used genomic data (Pittman et al., 2004). However, to our
knowledge ours is the first effort to incorporate longitudinal clin-
ical data from a controlled experiment in the identification of
genomic biomarkers from gene expression profiles.

We first incorporate a number of clinical covariates to model
disease progression for each subject using a Bayesian hierarchical
B-spline approach. Our methods are similar to those used in the
development of longitudinal models for lung function in children
observed in the presence of varying levels of ambient air pollu-
tion (Berhane and Molitor, 2008), although in our setting the
response variable is an unobserved disease severity score rather
than a measured quantity. From our estimated clinical trajecto-
ries, we can visualize and quantitatively compare the progression
from exposure to latent infection in each of our subjects. We then
incorporate disease severity estimates derived from these curves
along with temporal information to identify genes that are sig-
nificantly associated with either or both of these predictors. Our
results demonstrate that the incorporation of clinical data signif-
icantly increases the amount of information extracted from the
expression profiles and is consistent with other recent efforts to
identify biomarkers for TB susceptibility.

2. MATERIALS AND METHODS
2.1. EXPERIMENTAL DESIGN
Seventeen Indian rhesus macaques were exposed to 100 cfu Mtb
CDC1551 via Mtb aerosol, a dose which is known to induce latent
TB based on prior research (Dutta et al., 2010). The animals
were randomly assigned to time points at 2-week intervals for
experimental euthanasia, at which point their lungs were biop-
sied and granuloma lesions were extracted. The experiment was
conducted using previously established protocols (Dutta et al.,
2010; Mehra et al., 2011), and all procedures were approved by the
TNPRC Institutional Animal Care and Use Committee (IACUC)
and the Tulane University Institutional Biosafety Committee
(IBC). During the course of the post-exposure period, the sub-
jects were routinely weighed and monitored for body temper-
ature at regular intervals, with temperature reported as the
change from a pre-exposure baseline (denoted by TMP) and
weight reported as a percentage of the pre-exposure weight
(denoted by WT). C-reactive protein (CRP), a known indi-
cator of TB infection, was also monitored, and chest X-rays
were taken at tri-weekly intervals and scored by a TNPRC
radiologist on a 0–3 scale based on visual evidence of lesions
(CXR). Gene expression profiles for extracted granulomas were
assayed using Agilent TNPRC Macaca mulatta 4 x 44k Arrays
(GPL10183) and scanned using the GenePix 4000B Scanner. All

data files are available for download via the GEO Data Series
GSE56919.

2.2. HIERARCHICAL B-SPLINE MODELS
We use piecewise polynomials to estimate the trajectory of
the unobserved disease progression z(t) as a linear combina-
tion of a set of B-Spline basis functions (de Boor, 1993). We
restrict z(t) to the family of non-negative cubic polynomials
on [0, τ1] and [τ1, τ2], where 0 < τ1 < τ2, with continuous sec-
ond derivatives globally on [0, τ2]. Then z(t) can be expressed
as z(t) = c0B0,3(t) + c1B1,3(t) + c2B2,3(t) + c3B3,3(t) + c4B4,3(t)
where {c0, c1, c2, c3, c4} is a set of non-negative coefficients
and {B0,3(t), B1,3(t), B2,3(t), B3,3(t), B4,3(t)} is the set of B spline
basis functions. For each subject, τ2 is the duration of time from
exposure to euthanasia and is known for each subject, while τ1 is
an interior transition point (or “knot”) that is estimated. We use
the notation z(t|θ) where θ = (c0, c1, c2, c3, c4, τ1, τ2).

The four variables WT, TMP, CRP, and CXR were measured
longitudinally for the ns = 17 experimental subjects. To reduce
the high degree of fluctuation in CRP measurements, we dis-
cretized the observations to fall into one of three ordered groups
based on previous clinical observations: Level 1 for CRP = 0;
Level 2 for 0<CRP<=10; and Level 3 for CRP >10.

Let yvil be the value of the vth variable for the ith subject
at the time point tvil, where v = 1, 2, 3, 4 (which correspond
to WT, TMP, CRP, and CXR, respectively), i = 1, 2, · · · , ns and
l = 1, 2, · · · , nvi denotes the time points observed for the corre-
sponding subject and variable. At the initial time of Mtb exposure
for each subject, we set yi0 = {100, 0, 0, 0}, denoting the baseline
state for each subject i. Let Y = yvil be the array of all observations
for all subjects.

We define the following hierarchical model for the relationship
between the observed clinical variables and unobserved disease
state z(t|θ):

For i = 1, 2, . . . , ns:

y1il = b10 + b11z(t1il|θ i) + ε1il

for l = 1, 2 · · · , n1i (1)

y2il = b20 + b21z(t2il|θ i) + ε2il

for l = 1, 2, · · · , n2i (2)

logit(P(y3il ≤ g)) = βg + b31z(t3il|θ i)

for l = 1, 2, · · · , n3i and g = 0, 1 (3)

logit(P(y4il ≤ h)) = αh + b41z(t4il|θ i)

for l = 1, 2, · · · , n4i and h = 0, 1, 2 (4)

Random errors εvil ∼ N(0, σ 2
v ), v = 1, 2 are independent for each

subject and variable. Equations (3, 4) are proportional odds mod-
els (Agresti, 2002) for the discretized CRP y3il ∈ {0, 1, 2} and the
CXR y4il ∈ {0, 1, 2, 3} in which logit(x) = x

1−x and βg and αh

are non-decreasing in g and h. The parameters bvj and σ 2
v are

common for all subjects while θ i represents the effects specific to
subject i, and we assume that the measurements yvil, v = 1, 2, 3, 4
are conditionally independent given bvj, σ 2

v , and θ i.

Frontiers in Genetics | Systems Biology July 2014 | Volume 5 | Article 240 | 2

http://www.frontiersin.org/Systems_Biology
http://www.frontiersin.org/Systems_Biology
http://www.frontiersin.org/Systems_Biology/archive


Luo et al. Identification of biomarkers for TB susceptibility

We note that the slopes bv1 and the disease states z(tvil|θ i) are
not individually identifiable in our model since they only appear
as a product. However, this is simply a matter of scaling and does
not impact our ability to compare estimated disease trajectories
across subjects.

2.2.1. Parameter estimation
Let θ i = (ci0,ci1,ci2,ci3,ci4,τi1,τi2) be the parameter vector for sub-
ject i. The disease progression function for the ith subject zi(t)
is defined on the interval [0, τi2], in which τi2 is set to be the
final time point, corresponding to the last measurement for any
of the four clinical covariates. We assume that the pre-exposure
disease state z(0|θ i) = 0, so we set ci0 = 0. Therefore, among the
components of θ i, we need only estimate ci1,ci2,ci3,ci4,τi1.

The intercepts b10, b20, β0, β1, α0, α1, α2 in Equations (1–4)
determine the distribution of the corresponding clinical variables
given the disease state is 0. Since initial values for WT and TMP
were constant for all subjects at 100 and 0, respectively, the inter-
cept terms b10, b20 were also fixed. Intercepts for the CRP and
CXR probabilities at disease state 0 were also set to reflect the fact
that pre-exposure measurements for these variables were fixed at
0 for all subjects. Values for the vector {β0, β1, α0, α1, α2} were set
to be {5, 9, 5, 9, 13}, corresponding to the initial state probabil-

ity P(CRP = 0) = P(CXP = 0) = exp(β0)
1+exp(β0) = 0.993 (while these

were somewhat arbitrary choices, we note that adjustments to
these initial values were observed to have a negligible impact on
the fitted models).

The remaining parameters are {b, σ 2, θ1, · · · , θns} where b =
(b11, b21, b31, b41), σ 2 = (σ 2

1 , σ 2
2 ), and θ i = (ci1, ci2, ci3, ci4, τi1)

for i = 1, 2, · · · , ns. Equations (1–4) specify that the WT and
TMP values y1il and y2il are normally distributed while y3il and
y4il have multinomial distributions. Using the conditional inde-
pendence of the clinical variables, the joint likelihood function of
the parameters L(b, σ 2, θ1, · · · , θns |y) is just the product of the
marginal likelihoods.

We set prior distributions for these parameters to reflect
our biological intuition and imposed boundary constraints to
account for the lack of identifiability associated with our model.
As we expect that increasing disease severity should be associated
with weight loss, elevated body temperature, and/or higher lev-
els of CRP and CXR, we use truncated diffuse normal priors on
the slopes: b11 ∼ N(0, 100)I[−10,0], b21 ∼ N(0, 100)I[0,10], b31 ∼
N(0, 100)I[−10,0], b41 ∼ N(0, 100)I[−10,0], where N(μ0, ξ

2
0 )I[a,b]

is the truncated normal distribution with mean μ0 and variance
ξ 2

0 whose support is the interval [a, b]. These priors, which cor-
respond to the scaled normal distribution with support on the
interval between the mean and one standard deviation to its right
or left, place higher weight on values close to 0 but are not highly
restrictive. For the variance parameters, prior distributions were
motivated by preliminary inspection of the observed variability in
the data and bounds were set to constrain the estimates to a rea-
sonable range of values: 1/σ 2

1 ∼ U[0.001, 0.6], 1/σ 2
2 ∼ U[1, 25].

Priors for the basis functions were defined by τi1 ∼ U[0, τi2], and
cij ∼ N(0, 10)I[0,+∞) for j ∈ 1, 2, 3, 4.

We estimated the parameters by sampling from the posterior
distribution using MCMC as implemented in WinBUGS (Lunn
et al., 2000). After a burn-in period of 1000 iterations, we ran

the MCMC algorithm for 15,000 iterations and thinned the chain
by taking every third point to produce an effectively uncorrelated
sample of T = 5000 points from the posterior distribution.

2.2.2. Simulation study
To test our method’s ability to accurately estimate the progression
of a specified disease trajectory from observed clinical covari-
ates, we constructed 4 hypothetical disease scenarios and then
simulated associated observations for WT, TMP, CRP, and CXR.

Our simulations represented the following cases: (1) progres-
sion to severe illness; (2) asymptomatic infection; (3) recovery
following acute illness, and (4) gradual progression to moder-
ate illness. Given a specified disease trajectory, we generated 100
simulated datasets of weekly clinical observations according to
Equations (1–4). At each time point, WT and TMP observa-
tions were randomly generated from the normal distributions
determined by Equations (1, 2) and the categorical CRP and
CXR observations were taken to be the level with the maxi-
mum probability determined by Equations (3, 4). We set the
intercepts b10 = 100, b20 = 0, β0 = 5, β1 = 9, α0 = 5, α1 = 9,
α2 = 13 as above. The slopes were set to be b11 = −2, b21 = 0.6,
b31 = −3, b41 = −3.5 and the precisions were set to be 1/σ 2

1 =
0.11 and 1/σ 2

2 = 2. These parameters were picked so that the sim-
ulated values resembled the observed measurements in our TB
experimental data.

For each simulated dataset, we sampled from the posterior
distributions of the parameters (including slopes, precisions and
subject-specific parameters ci1,ci2,ci3,ci4,τi1) via MCMC. Due to
the large number of samples in our study, we reduced our compu-
tational requirements to include a burn-in period of 50 iterations
and then we retained every third sample of the following 1000
iterations. The empirical median of the posterior distribution for
each parameter was chosen as its estimate, and these were then
used to generate the estimated trajectories of the disease state for
the four subjects.

2.3. LINEAR MODELS FOR GENE EXPRESSION PROFILES
Following estimation of the disease trajectories for each subject,
we employed linear models to detect genes that are significantly
associated with disease features.

In this setting, we fit gene-wise models as described in Smyth
(2004), in which the response variables were the normalized log
expression value associated with gene g for each of the i sub-
jects and the covariates were derived from the estimated trajectory
ẑi(t).

Our two-channel microarray data included expression levels
of 44,449 gene probes for 17 subjects, arranged in a loop design
that included other control samples. We analyzed the two chan-
nels individually, normalized the arrays using the Bioconductor
packages LIMMA and OLIN (Smyth, 2005; Futschik, 2012), and
extracted the data for the samples of interest.

To focus our attention on genes that would likely be associated
with disease progression, we removed probes that showed insuf-
ficient variability across the subjects. Letting ugi denote the log2
expression level for the gth gene probe of the ith subject, we used
the following filtering criterion: exclude the gth gene probe from
the analysis if

(
maxi ugi − mini ugi

)
< 1.5.
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For J clinical features Z1, Z2, · · · , ZJ as predictors of the
expression profiles for the G probes remaining after the filtering
step, we fit models of the form

ug = Xβg + eg and eg ∼ N(0, σ 2
g I) (5)

for each g = 1, 2, · · · , G where ug = (ug1, ug2, · · · , ugS)T ∈ R
S,

the S × (J + 1) design matrix X =

⎛
⎜⎜⎜⎜⎝

1 z11 z21 · · · zJ1

1 z12 z22 · · · zJ2
...

...
...

...
...

1 z1S z2S · · · zJS

⎞
⎟⎟⎟⎟⎠

and

βg = (μg, αg1, αg2, · · · , αgJ)T . The intercept μg is the mean
expression level for the gth probe across the subjects and
αg1, αg2, · · · , αgJ are the slopes of the J clinical features for the
gth probe.

We determined that a particular gene probe was significantly
associated with the covariate combination Z1, Z2, · · · , ZJ if the
p-values of the individual t-tests for the J covariates were all less
than 0.05 and the p-value of the overall model F test H0 : αg1 =
αg2 = · · · αgJ = 0 was less than 0.01. Given a set of competing
models, the model with the smallest overall p-value for which all
coefficients met the α = 0.05 significance level was selected as the
best model for that probe.

Probe-level results were aggregated to the set of unique Agilent
probe IDs. Because pairs of replicate probes occasionally were
best fit by models with differing parameterizations, the statisti-
cal significance of the pooled coefficients was calculated by taking
the geometric mean of the observed p-values (which were auto-
matically assigned to the value 1 for any covariates that were not
included in the best-fitting model for a given probe) and we reset
any model coefficients that were not associated with aggregate
p-values of 0.05 or less to be equal to 0.

Hierarchical clustering was performed in R to classify the
unique probe IDs with respect to the scaled matrix of fitted model
coefficients, using the Euclidean distance and Ward’s minimum
variance method.

2.4. BIOINFORMATICS ANALYSIS
Agilent probe IDs that were significantly associated with a fit-
ted clinical model were mapped to annotated genes or genomic
regions using the DAVID Gene ID conversion tool (Huang et al.,
2009a,b). Subsequently, the set of all unique mapped gene IDs was
uploaded to the DAVID suite and analyzed for functional anno-
tation. Our threshold for statistical significance of enriched terms
was a Benjamini-Hochberg adjusted p-value of 0.05 or less.

The set of significantly enriched SP-PIR keywords was ana-
lyzed to determine whether representation of associated genes was
equally distributed across the model-derived gene clusters. For
each keyword, we conducted a Chi-Square goodness of fit test for
the cluster distributions based on the null hypothesis of no asso-
ciation and calculated the associated p-values with adjustment for
multiple testing using the Benjamini-Hochberg correction.

3. RESULTS
Data for three of the subjects included in our study were found to
be anomalous. In one case, terminal illness required immediate

euthanasia, and in the two others we observed aberrant expres-
sion profiles suggesting experimental error. Data for these sub-
jects were discarded and the results presented here correspond to
the 14 remaining subjects.

3.1. MODELING OF SIMULATED TRAJECTORIES
The results from our simulation study are shown in Figure 1. The
100 estimated trajectories for each of the four cases were com-
pared to the true disease trajectory. As mentioned previously, the
disease state is not identifiable and is unique only up to a con-
stant. Therefore, the comparison was done in relative terms to
see whether our modeling approach can recover the “shape” of
the disease state trajectories. Specifically, suppose zi(t) is the true
trajectory and ẑi(t) is any one of the 100 estimated trajectories
for the ith case where i = 1, 2, 3, 4. We expect that there exists a
scaling constant γ such that γ zi(t) ≈ ẑi(t) for all i, and the right
panel of Figure 1 displays a plot of the 100 estimated trajectories
ẑi(t) against the scaled true trajectory γ zi(t). In each case, our
simulations faithfully recovered the underlying trajectory, thereby
demonstrating the ability of our approach to accurately estimate
model parameters in practice.

3.2. FITTED TRAJECTORIES FOR CLINICAL PROFILES
The left panel of Figure 2 displays the observed clinical variables
for four typical subjects: HC90, HC20, HB74, FR67. The CRP
used in the plot is the discretized CRP. Hierarchical B-Spline
models Equations (1–4) were fitted for each of the subjects as
described. Following MCMC estimation, we obtained empiri-
cal posterior distributions for the common effects parameters, as
shown in Figure 3 and summarized in Table 1.

While all parameters were statistically significant, estimated
trajectories, as shown in the right panel of Figure 2, were more
sensitive to changes in CRP and CXR than to those in TMP and
WT. Table 2 summarizes certain key features of the fitted trajecto-
ries for each subject. Time post-exposure T is defined by the time
from initial exposure to euthanasia, final severity S is the value
from the fitted disease trajectory at the final time point, onset time
O is the time when the subject initially reaches a specified sever-
ity level (which here was taken as 1.4 based on estimated severity
scores associated with symptomatic illness), and the maximum
severity M is the highest value attained for a given trajectory.

3.3. LINEAR MODELS FOR GENE EXPRESSION
After preliminary filtering, 14,504 candidate gene probes were
retained for further investigation. Not surprisingly, preliminary
analysis indicated that the predictors in Table 2 were highly cor-
related, and so we chose to focus our attention on two of the least
correlated predictors, time post-exposure T and final severity S.
For each of these probes, the best-fitting regression model was
chosen from among models containing all subsets of linear and
quadratic terms for T as well as a linear term for S. A total of
9130 probes were significantly associated with at least one of these
models, and 8453 of these corresponded to annotated genes or
genomic regions as identified by the DAVID Gene ID conversion
tool. The probe level results were then aggregated to represent a
set of 4864 unique Agilent probe IDs. As shown in Table 3, the
great majority of genes (93%) were significantly associated only

Frontiers in Genetics | Systems Biology July 2014 | Volume 5 | Article 240 | 4

http://www.frontiersin.org/Systems_Biology
http://www.frontiersin.org/Systems_Biology
http://www.frontiersin.org/Systems_Biology/archive


Luo et al. Identification of biomarkers for TB susceptibility

FIGURE 1 | Left: An illustration of the simulated clinical observations for WT,
TMP, CRP, and CXR associated with trajectories representing rapid disease
progression (subject 1), minimal infection (subject 2), infection followed by

recovery (subject 3), and gradually progressing infection (subject 4). Right:

Estimated disease state trajectories for 100 simulated datasets (green curves)
and the associated scaled true trajectory (black curve) for each of the four cases.

with post-exposure time T, with the remaining 7% associated
with either severity S alone or with both S and T.

Hierarchical clustering was performed on the scaled set of
estimated model parameters to determine subsets of probe IDs
that had the most similar characteristics with respect to their fit-
ted models. Following visual inspection, we determined that 6

clusters were sufficient to adequately classify the results, as shown
in Figure 4.

The largest cluster (which we denote Cluster 1) contained 2165
probes which mapped to 1950 distinct gene IDs. These expression
profiles were predominantly characterized by quadratic increases
in gene expression over time T (with linear increases in the
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FIGURE 2 | Left: Observed clinical variables for four typical subjects: HC90, HC20, HB74, FR67. CRP values are binned into 3 groups, corresponding to absent,
low, or high CRP levels. Right: Estimated disease trajectories from Bayesian hierarchical B-Spline models incorporating the four clinical covariates.

remaining few). Cluster 2 contained 102 probes that displayed a
parabolic trend, initially increasing and then decreasing in expres-
sion over time. These mapped to 100 distinct gene IDs. Cluster
3 (251 probes, 247 unique gene IDs) included probes whose
expression significantly increased as a function of severity score
S. Approximately half of these probes were also significantly asso-
ciated with time T, either as a quadratic or linear term. Cluster

4 was the second largest (1891 probes, 1818 unique gene IDs)
and exclusively included probes whose expression decreased as
a quadratic function of time T. Cluster 5 was the smallest of
the clusters, containing 74 probes mapping to 73 unique gene
IDs. Expression profiles for probes in this cluster were all nega-
tively associated with disease severity S, and the majority of these
were also significantly associated with time T. Finally, Cluster 6

Frontiers in Genetics | Systems Biology July 2014 | Volume 5 | Article 240 | 6

http://www.frontiersin.org/Systems_Biology
http://www.frontiersin.org/Systems_Biology
http://www.frontiersin.org/Systems_Biology/archive


Luo et al. Identification of biomarkers for TB susceptibility

FIGURE 3 | The empirical densities of posterior distributions of the

slopes b11 (WT), b21 (TMP), b31 (CRP), b41 (CXR).

Table 1 | Distributions of parameter estimates.

Parameter Mean SD 2.5% Median 97.5%

b11 (weight) −0.1026 0.0874 −0.3228 −0.0804 −0.0032

b21 (temperature) 0.0885 0.0324 0.0285 0.0875 0.1549

b31 (CRP) −1.9971 0.2141 −2.4630 −1.9860 −1.6160

b41 (CXR) −2.5587 0.2746 −3.1631 −2.5420 −2.0809

1/σ 2
1 (weight) 0.0437 0.0043 0.0357 0.0436 0.0525

1/σ 2
2 (temperature) 1.3532 0.1358 1.0950 1.3465 1.6340

(381 probes, 373 gene IDs) included probes whose expression
decreased linearly as a function of T.

3.4. FUNCTIONAL ASSOCIATIONS
The set of all unique gene IDs included in the six clusters
was imported into the DAVID bioinformatics tool suite and
analyzed for functional annotation. We found that this subset
was significantly enriched for 181 GO Biological Process (BP)
terms, 50 Cellular Component (CC) terms, 7 GO Molecular
Function (MF) terms, 8 KEGG Pathways, 77 Swiss-Prot Protein
Information Resource (SP-PIR) Keywords, and 5 UniProt
Sequence Annotation (UP-SEQ) Features. To avoid redundancy,
we present results for the 56 statistically significant SP-PIR key-
words that were unambiguously defined in the Swiss-Prot con-
trolled vocabulary of keywords (www.uniprot.org/docs/keywlist).
Figure 5 displays these terms along with the relative proportion of
gene IDs included within each expression profile cluster. Based on
the observed numbers of gene IDs in each cluster, if the gene IDs
represented by a given keyword were randomly associated with
the set of six clusters we would expect the percentage of gene IDs
by cluster to be distributed as follows: 42.4% in Cluster 1, 2.2% in

Table 2 | Features of fitted disease trajectories.

Subject Time Final Onset Maximum

post-exposure severity time severity

BV21 15.0 2.95 8.1 2.97

CA75 15.1 1.96 12.0 1.96

FE10 23.0 2.20 5.0 2.20

FJ05 26.0 2.10 22.1 2.10

FR67 16.1 0.95 12.0 1.43

HA77 12.0 3.84 1.1 3.86

HB74 26.0 2.06 6.6 2.06

HC20 21.0 6.77 2.9 6.77

HC38 9.0 6.25 1.7 6.59

HC90 25.0 0.76 1.3 2.56

HG80 5.0 2.86 1.4 2.88

HJ01 21.0 3.91 3.7 4.04

HJ91 17.0 2.92 8.7 3.05

HJ93 9.0 4.51 2.9 4.51

Table 3 | Best-fitting models for 4864 Unique Agilent Probe IDs.

Clinical covariates Number of significantly associated genes

Ti 367

T 2
i 3959

Ti , T 2
i 188

Si 145

Ti , Si 25

T 2
i , Si 151

Ti , T 2
i , Si 29

Cluster 2, 5.5% in Cluster 3, 39.7% in Cluster 4, 1.6% in Cluster
5, and 8.6% in Cluster 6. Chi-Square tests for random association
of enriched genes with cluster membership identified 24 terms
that were consistent with the expected cluster distribution, while
the remaining 32 terms deviated significantly from the expected
proportions. For a few terms, the deviations reflected an imbal-
ance of gene IDs associated with quadratic temporal increases
or decreases (Clusters 2 and 4), which would be expected to be
observed in nearly equal proportions. For example, for the key-
word “Hormone” 31 of 33 gene IDs were associated with Cluster
2 (p = 0.005) while 14 of the 15 gene IDs associated with the
keyword “Ubiquinone” were contained in Cluster 4.

Of particular interest were the keywords that exhibited signifi-
cant over-representation of genes associated with disease severity
score, represented by Clusters 3 and 5. For the keyword inflam-
matory response, 6 of the 32 included gene IDs (17.6%) were
severity-associated (CCL2, CCL11, CCL20, CXCL1, CXCL3, and
TLR8), and over 10% of the gene IDs mapped to the key-
words “activator,” “chemotaxis,” “chromosomal rearrangement,”
“cytokine,” “electron transport,” “endosome,” and “SH3 domain”
were included in Clusters 3 or 5. While relatively few genes were
significantly down-regulated with increased severity, an interest-
ing inclusion was the chemokine CXCR5. Recent studies have
demonstrated that CXCR5 activity is essential for TB immune
response (Gopal et al., 2013; Slight et al., 2013), and our results
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FIGURE 4 | Hierarchical clustering of unique probe IDs based on fitted

model coefficients. All coefficients were scaled prior to analysis to assign
equal weight to each covariate. Red values denote coefficients that are

positively associated with increases in the given covariates at the α = 0.05
significance level, while values in blue denote significant negatively
associated coefficients.

suggest that expression of this chemokine may be deficient in
our most symptomatic subjects. CCL2, a chemokine which was
positively associated with severity in our analysis, has also been
proposed as a biomarker based on experimental findings demon-
strating that expression of this gene was elevated for the more
severe cases within a group of human patients (Hasan et al., 2009;
Hussain et al., 2011; Ansari et al., 2013).

To put our results in a larger context, we compared our tran-
scription profiles with those identified in recent studies seeking
to identify TB expression biomarkers. In 2010, researchers pub-
lished a list of 393 transcripts that were found to effectively
discriminate between cases of active and latent TB in blood
samples (Berry et al., 2010). We downloaded this list, which
included 376 distinct gene IDs, and matched it to our set of
1950 genes that were significantly associated with T and/or S.
We found an overlap of 106 genes and applied hierarchical clus-
tering to the expression profiles associated with this subset. The
results, shown in Figure 6, clearly separated five of our sub-
jects from the others. Interestingly, these correspond to five of
the six lowest scoring cases using our fitted severity models, all
of which had very low CXR scores, 0 CRP values, and low or
undetectable levels of bacteria upon autopsy. A very low-scoring
subject on our severity scale that was not included in this group
was CA75, an animal which demonstrated considerable weight
loss despite an absence of other clinical symptoms and whose
expression profile more closely resembled those of some of the
more symptomatic subjects. Overall, we found that there was

a significant difference in both time post-exposure and sever-
ity score between the subjects in the two clusters, although the
temporal association may be due to the fact that the three ani-
mals that were studied for over 24 weeks were also coincidentally
among the least symptomatic cases. We also performed a hierar-
chical clustering analysis on the set of profiles for 168 temporal-
and/or severity associated genes included in a list of 409 gene
IDs identified in a recent aggregate analysis of TB expression
biomarkers identified in 7 prior studies (Joosten et al., 2013) and
obtained identical clusters, suggesting that our results are fairly
robust.

4. DISCUSSION
The majority of clinico-genomic modeling efforts to date have
emphasized the aggregation of clinical and genetic data in the
prediction of binary disease outcomes. However, for infectious
diseases such as TB that are associated with a spectrum of con-
ditions, such an approach is unlikely to illuminate the subtle
variations in genetic function that might predispose one indi-
vidual to develop a more severe infection than another. As our
experimental data clearly demonstrate, the progression from Mtb
exposure to the development of latent infection is a far from
uniform process. Even in controlled experiments such as ours,
reactions vary considerably and the clinical response is difficult
to predict. Therefore, the analysis of gene expression profiles to
understand the development of latent infection will be of limited
value unless such variation is taken into account.
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FIGURE 5 | Enriched SP-PIR keywords for the set of unique gene

IDs associated with post-exposure time T and/or final severity

score S at the α = 0.05 significance level. For each keyword, the

distribution of associated genes by model cluster is displayed using
colored bars, with Cluster 1 on the left (light blue) and Cluster 6 on
the right (yellow).

Despite the obvious benefits of incorporating clinical data in
this setting, little work has been done to facilitate such analyses by
effectively aggregating a set of disparate longitudinal clinical mea-
surements in a practical and intuitive way. To contribute to this

important area of research, we have applied Bayesian hierarchi-
cal B-Spline models to the estimation of disease trajectories. Our
fitted estimates provide helpful summaries of the clinical pro-
files of each of our subjects and enable the direct incorporation
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FIGURE 6 | Heatmap of expression profiles for 106 genes

significantly associated with post-exposure time T and/or final

severity score S and included in a set of 393 transcripts that

were previously reported to effectively discriminate between cases

of active and latent TB in blood samples (Berry et al., 2010).

Hierarchical clustering of the samples on the basis of this subset
separates 5 of the 6 least severe cases in our sample from the
remaining 9 cases.

of aspects of the individual disease progressions in a quantitative
form. Furthermore, the modeling of continuous disease trajec-
tories offers a great deal of analytical flexibility. While in our
particular study we concluded that the duration of time post-
exposure and the estimated severity of disease at the time of
euthanasia were the most important explanatory factors for vari-
ation in gene expression, one might imagine that in other settings
different aspects of an estimated disease trajectory would be more
predictive. For example, the frequency of bouts of acute illness
might be more relevant for some conditions, while for others the
time to recovery might be of particular interest.

As an alternative to predicting disease outcomes, we have
focused our attention on the incorporation of clinical profiles
in the identification of biomarkers associated with observed dis-
ease severity. Our results demonstrate that, even with a fairly
limited set of subjects, our approach can identify key genes that
have been shown to be factors in TB prognosis. This illustrates
the potential of such integrated analyses for not only TB, but
for a variety of complicated diseases in which subjects are mon-
itored over time. While controlled experiments such as ours are,
of course, limited to the laboratory setting, the ability to incorpo-
rate longitudinal clinical profiles in the analysis of gene expression
data from human subjects is certainly an option in many obser-
vational studies and clinical trials. The estimation of individual
disease trajectories in such studies would not only enable sig-
nificant improvements in both the sensitivity and specificity of
biomarker identification beyond current approaches, but would
also provide insights into personalized treatment strategies.
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